Atomic snapshots in O(log®n) steps
using randomized helping

James Aspnes* Keren Censor-Hillelt

January 25, 2014

Abstract

A randomized construction of unbounded snapshots objects from
atomic registers is given. The cost of each snapshot operation is
O(log3 n) atomic register steps with high probability, where n is the
number of processes, even against an adaptive adversary. This is
an exponential improvement on the linear cost of the previous best
known unrestricted snapshot construction [9, 10] and on the linear
lower bound for deterministic constructions [11], and does not re-
quire limiting the number of updates as in previous sublinear con-
structions [4]. One of the main ingredients in the construction is a
novel randomized helping technique that allows out-of-date processes
to obtain up-to-date information without running into covering lower
bounds.

Our construction can be adapted to implement snapshots in a
message-passing system. While a direct adaptation using the Attiya-
Bar-Noy-Dolev construction gives a cost of O(log® n) time and O(n log®)
messages per operation with high probability, we show that exploiting
the inherent parallelism of a message-passing system can eliminate the
need for randomized helping and reduce the complexity to O(log?n)
time and O(n log? n) messages per operation in the worst case. This
implementation includes an O(1)-time, O(n)-message construction of
an unbounded max register that may be of independent interest.

1 Introduction

An atomic snapshot object allows processes to obtain the entire contents
of a shared array as an atomic operation. The first known wait-free imple-

*Yale University, Department of Computer Science. Supported in part by NSF grant
CCF-0916389.
fTechnion, Department of Computer Science. Shalon Fellow.

mentations of snapshot from atomic registers [1, 2, 7] required ©(n?) steps
to carry out a snapshot with n processes; subsequent work [9, 10] reduced
this cost to O(n), which was shown to be optimal in the worst case for
non-blocking deterministic algorithms by Jayanti et al. [11].

Limitations of the Jayanti et al. lower bound became apparent with
the development of wait-free sublinear-complexity limited-use variants of
objects to which the lower bound applied. These included deterministic
implementations of max registers (which, when read, return the largest
value written to them) and counters [3], and even snapshot objects [4], all
with individual step complexity polylogarithmic in the number of operations
applied to them.! These objects still have linear cost in the worst case, but
the worst case is reached only after exponentially many operations.

The dependence on the number of operations was shown to be necessary
initially for max registers [3], and later for a variety of objects satisfying
a perturbability condition similar to that used in the Jayanti et al. lower
bound [5]. Curiously, for randomized implementations these lower bounds
were not larger than O(logn) for any number of processes. This appeared
to be a weakness of the particular proof technique used to obtain the ran-
domized lower bounds.

We show that it is not the case that other techniques may produce larger
lower bounds. Using a new randomized helping procedure along with a sim-
ple max register implementation, it is possible to accelerate the max register
implementation of [3] so that every operation finishes in O(logn) steps with
high probability, regardless of the number of previous operations, provided
the max register value does not change too quickly. Applying the same
techniques to the max array of [4] (a pair of max registers supporting an
atomic snapshot operation) yields a max array with O(log? n) step complex-
ity with high probability, under the same restriction. This can be used in the
snapshot implementation of [4] to obtain atomic snapshots with O(log®n)
step complexity with high probability. Because the use of the max array
within the atomic snapshot satisfies the restriction on changes in value, the
complexity of the snapshot implementation holds without restrictions. The
end result is a polylogarithmic snapshot implementation in which the cost
of each operation does not depend on the number of operations but only on
the number of processes.

We further adapt our construction to message-passing, showing that we

In the case of snapshot, this requires both registers large enough to hold a complete
snapshot and the cooperation of updaters. The assumption of large registers may be
avoidable for some applications of snapshot where only summary information is needed.

can obtain an improvement in performance (compared to a naive conversion
using the Attiya-Bar-Noy-Dolev construction [8]) and remove the need for
randomization by exploiting the additional powers of a message-passing sys-
tem. This adaptation includes a deterministic construction of an unbounded
max register that runs in O(1) time and O(n) messages per operation.

Excluding the adaptation to message-passing, the results in this paper
previously appeared in DISC 2013. [6]

1.1 Previous constructions

Before giving more detail on our construction, we give a quick review of
the previous work on which it is based. The basic building block of the
bounded snapshot construction in [4] is a 2-component max array. This
object supports a write operation, which specifies a value and a component,
and a read operation, which returns a pair of the maximal values written to
the two components in all write operations linearized before it. To directly
build an unbounded snapshot object we need an unbounded version of a
max register, and an unbounded version of a 2-component max array.

The max register construction of [3] is based on a tree of switches, which
are one-bit registers that initially hold the value 0 and can only be set to
1. Each leaf represents a value for the register. A write operation sets
the switches on the path toward the respective leaf, while a read operation
follows the rightmost path of set switches to get the largest value written.
The problem with an unbounded max register according to this construction
is that the length of an operation reading the rightmost path in the infinite
tree construction is unbounded. This is because this operation is searching
for the first node on the rightmost path whose switch is 0, and the depth
of this node depends on the values that have been written, which are now
unbounded. Even worse, such an operation is not guaranteed to be wait-free,
as it might not terminate if new writes keep coming in with greater values,
forcing it to continue moving down the tree to the right. To handle this,
the tree is backstopped with a linear snapshot object that is used for larger
values in order to bound the number of steps. Formally, this means that at
some threshold level, the node on the rightmost path of switches no longer
points to an infinite subtree of switches but rather to a single linear-time
snapshot object, and all write operations set the switch at this node after
writing their value to the snapshot object, and all read operations accessing
this node continue by reading the snapshot object. In total, this gives a
complexity of O(min (logv,n)) steps per operation that reads or writes the
value v.

The max array construction of [4] builds upon the above max register
construction by combining the trees of the two components in a subtle man-
ner. The data structure consists of a main tree, corresponding to the tree of
the first component. The tree of the second component is embedded in the
main tree at every node. That is, each switch of the main tree is associated
with a separate copy of the tree of the second component. Writing to the
first component is done by writing to the main tree, ignoring the copies of
the second component at the switches. Writing to the second component
is done by writing to the copy associated with the root of the main tree.
The coordination between the pairs of values is left for the read operations.
Such an operation travels the main tree in order to read the value of the first
component, while dragging down the maximal value it reads for the second
component along its path. It is proven in [4] that this implementation gives
a linearizable 2-component max array.

1.2 Owur Contributions

Our first contribution is an O(logn) construction of an unbounded max
register, which overcomes the obstacle of the construction of [3] by combining
a max-register with a novel technique of randomized helping. In essence,
this technique allows an operation that is traveling down the tree to the
right (we refer to the rightmost path of the tree as the spine of the tree) for
too long to jump farther ahead to a point on the spine that is the correct
one, that is, the first point on the spine for which the switch is unset. This
is done by adopting a location in the spine used by another operation, with
the challenge of making sure that this value is fresh—recent enough that
the first operation can use it without violating linearizability. The only
condition we place on the usage of the max register in order for this to work
is that operations write values that are not increasing too fast. We need this
condition in order to argue that once the operation found the correct node
on the spine, it can safely continue to the left subtree without the worry
that a new write operation is now writing a much larger value that is placed
farther down the spine. While at first glance this might seem as a strong
restriction, this is actually a very reasonable condition in applications that
use max registers, and in particular it is satisfied by our implementation of
an unbounded snapshot object.

Our second contribution is a 2-component max array that is unbounded,
and whose cost per operation does not depend on the number of operations.
The natural thing to try is embedding the unbounded max register construc-
tion in the 2-component max array construction of [4]. However, this does

not work directly, since the main insight there is that values of the second
component need to be propagated down while traveling the tree of the first
component in order to guarantee that returned pairs are comparable. This
cannot be done within our randomized helping technique because operations
may jump down the spine without accessing each node along the way. We
address this problem by restructuring the 2-component max array imple-
mentation such that operations that go right on the spine re-read the value
of the second component that is located at the root. The main observation
here is that a single re-reading of the root is inexpensive, and that we do not
care that this information skips the nodes between the root and the target
node since the second component of these nodes will never be accessed again
(because their switches are either set or skipped).

Plugging these two contributions into the snapshot implementation of [4]
gives an implementation of an unbounded snapshot object with an O(log3 n)
step complexity (with high probability) for updating or scanning the object.

Finally, we adapt our implementation to a message-passing system, ob-
taining a snapshot implementation with O(log? n) time and O(n log? n) mes-
sages per operation. While a direct use of ABD gives a complexity of
O(log®n) time and O(nlog®n) messages per operation, we show how to
leverage the capability of a message-passing system to consolidate multiple
messages into a single one in order to reduce the complexity, by simply col-
lecting all elements of an n-element array in O(1) time and O(n) messages
as for a single read/write register, instead of sampling an n3-element array.

2 Unbounded max registers with bounded incre-
ments

A max register [3] supports operations WriteMax(v) and ReadMax(), where
WriteMax(v) writes the value v to the max register and ReadMax() returns
the largest value previously written. The purpose of a max register is typi-
cally to avoid lost updates, by ensuring that old values (tagged with smaller
timestamps) cannot obscure newer values, regardless of the order in which
they are written. In this section, we show how to construct an unbounded
max register that is linearizable in all executions and wait-free with O(logn)
step complexity with high probability in executions with bounded incre-
ments.

2.1 Bounded max registers

We begin by reviewing the max register implementation of Aspnes et al. [3].
The idea is to implement the register as a fixed binary tree of one-bit atomic
registers, referred to as switch bits. Initially these bits are all 0, which is
interpreted as pointing to the left child of the register, while a 1 points to
the right child. Each value of the max register corresponds to a leaf of
the tree (which does not get a register). A ReadMax operation follows the
path determined by the values of the switch bits until it reaches a leaf; the
number of leaves to the left of this leaf (its rank) gives the return value.
(See Algorithm 1.)

Shared data:

switch: a single bit multi-writer register, initially 0

left: a MaxRegister,,, object, where m = [k/2], initially 0,
right: a MaxRegister;,_,,, object, initially 0

procedure WriteMax(r,v)

if v <m then

if r.switch = 0 then
L WriteMax(r.left, v)

© 0 N O A W N

Ise
11 WriteMax(r.right,v —m)
12 r.switch < 1

[
(=)
)

13
14 procedure ReadMax(r)

15 if r.switch = 0 then

16 ‘ return ReadMax(r.left)

17 else

18 L return ReadMax(r.right) +m

Algorithm 1: Implementation of WriteMax(r,v) and ReadMax(r) for a
MaxRegister;, object called 7.

Because a ReadMax reads one register for each node on the path, the
cost of a ReadMax is just the depth of the leaf it reaches. For an m-valued
max register implemented as a balanced tree, this will be at most [logm].
Unbalanced trees can be used to obtain adaptive costs; it is shown in [3] that
using an appropriate unbalanced tree backstopped by a linear-time snapshot
implementation gives a cost of O(min(logwv,n)) for an operation that reads

or writes the value v.

A WriteMax(v) operation must set the switch bits so that subsequent
ReadMax operations will be directed to the leaf with rank v, unless some
larger v’ has already been written. This is implemented as two passes
through the path from the root to leaf v: first, a downward pass start-
ing at the root looks for larger values; these correspond to 1 bits in nodes
where v’s path would contain a 0 bit. If a larger value exists, the WriteMax
exits immediately. Next, an upward pass starting at v writes a 1 to each
switch bit whose right child is on the path to v. (See Algorithm 1.) It is
shown in [3] that this procedure gives a linearizable execution even with
concurrent ReadMax and WriteMax operations.

The number of steps for a WriteMax(v) operation is at most twice the
depth of the corresponding leaf. This gives a cost for WriteMax that is
asymptotically equal to ReadMax, and that depends on the structure of the
tree.

Aspnes et al. [3] show that O(min(logv,n)) is optimal for determin-
istic obstruction-free max register implementations from atomic registers.
For randomized implementations, they show a weaker lower bound of
O(logn/loglogn) steps for n-bounded max registers. This lower bound is
obtained as a trade-off between the complexities of ReadMax and WriteMax
operations.

We will show that with randomization, the dependence on v can be elim-
inated. It is possible to build a snapshot object (and thus a max register),
whose cost is polylogarithmic in n with high probability for all operations,
regardless of the size of the values it contains.

2.2 An unbounded max register implementation

We now show how to extend the results of [3] to allow an unbounded max
register that nonetheless has fixed cost per operation with high probability.
The first step is to bound the cost of WriteMax operations. We will do this
under the assumption of k-bounded increments, which we will define
by the rule that each new WriteMax operation writes a value v that is at
most k£ more than the largest input to any previously initiated WriteMax
operation.? This assumption will be justified later by the details of our
unbounded snapshot construction.

As in a standard max register, the core of our unbounded max register
is a binary tree of switch bits. But now the tree is infinite, consisting of an

2Note that we do not require that this previous WriteMax operation finished.

infinite spine forming the rightmost path through the tree, each node of
which has an m-valued max register (implemented as a balanced [logm]-
depth tree), where m is an integer that will be chosen later, rooted at its
left child (see Figure 1). Using this tree with the original algorithm, a
WriteMax(v) operation must walk all the way from the root of the tree to
the corresponding leaf, which will be found in the [v/m]-th m-valued max
register. It must then walk back up to the root, setting switch bits as needed,
giving a cost of O(v/m + logm).

In our algorithm, we assume that the tree is packed in memory so that
a WriteMax(v) operation can access the root of the [v/m]-th max register
directly. Within this subtree, it executes the standard algorithm; but along
the spine, it sets only as many switch bits as are needed to guarantee that
all ancestors are set; this is checked by performing an embedded ReadMax
operation. This optimization does not affect correctness, because setting
switches that are already set farther up the spine has no effect. What it
does give is an improvement to the step complexity under the assumption of
k-bounded increments, since between the n processes v can have increased
by at most kn above the value of the last complete WriteMax, meaning that
only kn/m steps up the spine are needed.

Setting aside for the moment the cost of the ReadMax, this gives a cost
for the WriteMax of O(logm) for updating the m-valued max register plus
O(kn/m) for updating the segment of the spine. We will later choose k
and m in a way for which the above results in O(logn) steps per WriteMax
operation. Note that assuming bounded increments, this procedure gives
this complexity for WriteMax operations without dependence on the value
being written and that this implementation is deterministic.

However, the ReadMax operations still suffer from the problem mentioned
earlier: they are not wait-free in the presence of concurrent WriteMax oper-
ations with increasing values. For this we add an additional mechanism of
randomized helping. Algorithm 2 is a pseudo-code of our implementation,
where WrapWriteMax, and WrapReadMax,; are the operations for process 7,
which invoke WriteMax and ReadMax operations as in [3] on the m-values
max registers (in which the process id does not matter).

We now provide a high-level description of the helping mechanism. Each
WriteMax operation is wrapped with a WrapWriteMax, procedure, as follows.
WrapWriteMax,; operations by process i cycle over the PIDs, helping one
process at a time. The operation then reads the timestamp, TS[s], associated
with the current helped process, s, written to TS[s] by a WrapReadMax,
operation. It then reads the value v’ of the max register, and if the value
v it needs to write is larger than v' it goes ahead and writes it into the

max register. It then records the maximum between v and v’ into a helping
array, along with the timestamp it saw for s, and updates a random location
in a pointer array with its pid. A WrapReadMax; operation first increments
its timestamp and then takes a certain amount of steps reading the max
register. If it does not finish within that number of steps, it tries to get
help from a random process chosen from a random location in the pointer
array. Getting help is done by checking whether the chosen helping process,
J, holds the current timestamp of process ¢, performing the WrapReadMax,
operation, and if so, taking its value from its helping array.

The idea behind the proof is that if a ReadMax operation takes too many
steps trying to read the max register without finishing, it must be that
there are many concurrent WriteMax operations that keep sending it down
the spine. But in such a case, the WrapReadMax, operation finds a value in
one of the helping arrays that it may use, in the sense that it was updated
by one of these concurrent WrapWriteMax; operations — specifically, after
the WrapReadMax, operation started.

m-valued
max registers

Figure 1: An unbounded max register

Next, we proceed with the formal proof. Let spine be the array induced
by the switch bits on the spine of the tree. Let M; be the m-valued max
register whose root is spineli].

We linearize a WrapWriteMax; operation writing a value v at the first
time in which all the relevant switches on the path from the root to the
leaf corresponding to v are set. We linearize a WrapReadMax, operation
that returns in Line 24 at the time the corresponding original ReadMax is
linearized. We linearize a WrapReadMax; operation that returns in Line 28
at the linearization point of the WrapReadMax; operation by p; that is part
of the WrapWriteMax; operation that wrote to help[j].T'S[i] the value read
by WrapReadMax; in Line 27.

Shared Data:

array TS[1..n] where T'S[i] = timestamp for process i

array pointer[1..n]; each entry is a pid

array help[i]; each entry consists of
value = integer, most recent value seen by a WrapWriteMax;

operation

6 TS[j] = integer, most recent timestamp of p; seen by a
WrapWriteMax, operation

7 procedure WrapWriteMax,(v)

s+ s+ 1 mod n // initialized to 0

t < TS[s]

10 | v < WrapReadMax,()

11 if v > v’ then

U R W N

12 WriteMax(M|,/m,|,v mod m) // Write to the corresponding
m-valued max register

13 for j = |v/m] to |v'/m] do

14 L spine[j] < 1

15 help[i].value < max(v,v’)

16 help[i]. TS[s] «— t

17 pointer[random()] < @

18 procedure WrapReadMax;,/()
19 TS[i] + TS[i] +1

20 while true do

21 // For a constant ¢, to be fixed in the step complexity proof
for t =1 to ¢’ logm do

22 Take a step of ReadMax() // Starting from the largest

spine location observed in help[j].value fields of previous
accesses to Line 26

23 if finished (initially false) then
24 ‘ return value

25 else

26 j ¢ pointer[random(1,...,n3)]
27 if help[j].TS[i] = TS[i] then
28 L return help[j].value

Algorithm 2: Max register with randomized helping; code for process i.

10

It is worth mentioning that, as the proof below shows, we do not need the
assumption of k-bounded increments for linearizability of the construction.
This assumption is used only for bounding the step complexity.

Lemma 2.1. Algorithm 2 is a linearizable implementation of an unbounded
mazx register.

Proof. We base our proof on the correctness proof of the max register con-
struction in [3]. We need to address two issues that differ in our imple-
mentation. First, we need to address WrapWriteMax; operations and show
that the switches leading to a written value are indeed set by the time it
terminates, showing that our linearization is well defined. The second issue
is that we need to address WrapReadMax; operations that return in Line 28.

We use an induction on the order of linearization points to prove the
correctness of the linearization. We add to the inductive claim the invariant
that all switches on the path from the root to a leaf corresponding to a value
v written by a WriteMax operation op are set if the path descends to their
right child on the tree, by the time op finishes. This clearly holds for the
base case, when no operation has yet been performed.

Assume that the linearization is correct up to some operation ¢ — 1 in
the total order it induces. Let op be the t-th operation, and assume it is a
WrapWriteMax; operation. By construction, all appropriate switches inside
M (|v/m]) are set in Line 12. By the induction hypothesis, all spine switches
from the root down to location [v'/m], where ¢’ is the value read by op in
Line 10, are set. The loop in Line 13 then shows that the invariant still
holds.

Next, since correctness for WrapReadMax; operations that return in
Line 24 now follows from the proof in [3], let op be a WrapReadMax, op-
eration that returns in Line 28. Let op’ be a WrapWriteMax; operation by
p; that writes to help[j].TS[i] the timestamp read by op in Line 27. Let
op” be the WrapReadMax; operation performed by op’ in Line 10. Since op”
is performed after op writes to TS[i] and before op’ writes to help[j]. TS[i],
the linearization point of op” is within the execution interval of op. By the
correctness of the linearization points of the construction in [3], the value
returned by op, which is the maximum between the value returned by op”
and the value written by op/, is the largest value written by operations that
are linearized before op.]

Having shown that this implementation is linearizable, we turn to prove
its logarithmic step complexity. Here we choose m = 3cn®logn < O(n?)
and k = O(n?log? n) for some fixed constant c that is required by the proof.

11

Lemma 2.2. The step complezity of operations in Algorithm 2 is O(logn)
with high probability, when taking m = O(n3logn) and assuming k-bounded
increments for k = O(n?log®n).

Proof. Let m = 3cn3logn3, where the constant ¢ is taken such that with
high probability m random coupons are enough to cover n? distinct coupons,
by a coupon collector argument (see, e.g., [12, Chapter 2]).

For every time 7, let w; be the number of WriteMax operations that have
been linearized before time 7. Let t be a time for which w; > m, and denote
by W, the set of m WriteMax operations whose inputs are the largest among
those linearized before time t.

We claim that at any such time ¢, with high probability, all elements of
the pointer except at most 2n, are among the values written by operations in
Wy . This is because, by a coupon collector argument, with high probability
the operations in W; cover all elements of the pointer array, at most n of
them may be pending to write to the pointer array, and at most n values
may be overwritten by smaller values. The last observation holds since for
a value v in pointer to be overwritten by a smaller value v’ it has to be the
case that the WriteMax operation that writes v’ starts before the WriteMax
operation that writes v, but finishes after it. For n + 1 values among those
written by operations in W; to be overwritten with values that are smaller
than those written by operations in Wy, there has to be a process p which
performs a WriteMax operation op)] with input v} smaller than the values
in Wy, that starts before a WriteMax operation op; with an input v; but
finishes after it, and then performs another WriteMax operation op), with
input v that starts before a WriteMax operation op, with an input vy but
finishes after it. However, the operation oph with input v/, starts after the
operation op; with input vy finishes, and hence the value that it writes to
the pointer array is among the values written by operations in Wy, since it
performs an embedded WrapReadMax operation.

Now, let op; be a WrapReadMax, operation by p;. We show that there is a
constant ¢’ such that op; finishes after 2¢’ logm steps with high probability.

The operation first starts reading down the spine for ¢’ logm steps, ac-
cording to the loop in Line 21, where the constant is such that the number
of steps is enough to read a spine segment and an m-valued max register
covering 2km values. Assume op; does not finish within this loop. For
this to happen, op; takes at least O((¢’ — 1)logm) steps down the spine
(otherwise, it goes down some m-valued max register and terminates within
another O(logm) steps). By the k-bounded increments assumption, there
are at least 2m values being written for this to happen. This implies that

12

by the time t in which op; accesses the pointer array in Line 26, it holds that
wy > m, hence the pointer array contains at least n® — 2n values that are
among the values written by operations in W;. Therefore, with probability
at least 1 —2n/n3 = 1—0(1/n), when p; accesses the pointer array it obtains
a value v that is rooted in the spine at a location which is at most ¢’ logm
away from the largest switch value along the spine that is set.

We say that a process p; is current for operation op; if help[j].TS[i| =
TS[i], where TS[i] is the timestamp written by op. Every process p; can
perform at most n WrapWriteMax; operations before it becomes current for
op;, since j iterates over the processes to help.

If v was not a value of an operation that is current for p;, then p; performs
another ¢’ logm steps of the loop in Line 21, starting from the spine location
where v is rooted. If p; does not finish within this loop, then there are at least
m WriteMax operations that started after p; and have been linearized by this
time, i.e., they begin after TS[i] is incremented. Then, at most n? of these
operations are by processes that are not current for op;. There can be at
most n? different locations in the pointer array written by such process, plus
at most n — 1 locations that have operations by current processes pending
to write them, but still contain previous values. The rest of the ©(n3)
locations hold values written by processes that are current for op;. This
implies that the probability of op; choosing a random location in pointer
that holds a value written by a process that is current for it is at least
1—(n+n?)/n®=1-0(1/n). Therefore, with high probability, op; finishes
within O(logm) = O(logn) steps.

Finally, a WrapWriteMax; operation op; takes O(logm + kn/m) steps in
addition to calling WrapReadMax;. We choose k = O(n?log?n) such that
kn/m = O(logn) and therefore the number of steps required for this oper-
ation is also O(logn), completing the proof. O

3 Unbounded max arrays with bounded incre-
ments

To present our unbounded 2-component max array, we first describe the
implementation in [4] and then show how to overcome the obstacles that arise
when embedding our unbounded max register in that construction. The [4]
2-component max array roughly works as follows. It has a main tree for the
max register of the first component, where each of the switches is associated
with a MaxRegister variable tail, that holds copy of the max register of the
second component. A write operation to the first component simply ignores

13

these copies, and travels up the main tree from the relevant leaf to the
root, setting the required switches along the way. A write operation to the
second component writes only to the tail copy associated with the root of
the main tree. A read operation travels down the main tree reading the first
component, while reading the tail copy of the second component at every
switch and updating it if it saw a greater value earlier up the tree.

Propagating the values of the second component down the main tree is
the key ingredient in guaranteeing that returned pairs are comparable. The
main invariant that needs to be maintained is that a reader does not go right
at a switch of the main tree returning a value for the second component that
is smaller than that returned by a reader who goes left at that switch. In [4],
this is guaranteed by having the reader re-read the tail copy of a switch that
is set, and propagating this fresher value down to the right subtree.

However, embedding our max register in this construction does not work:
in our max register implementation, a read operation does not travel all the
way down from the root to the leaf, therefore it cannot drag the value of the
second component with it. This causes gaps in the values of the tail copies
of the second component along the tree, violating the required invariant.

To solve this, our observation is that we can re-read the tail copy of
the second component associated with the root of the main tree, instead
of reading the tail component of the current spine node, which may not
have been updated. This guarantees that the value returned for the second
component is always updated to the largest one written. Notice that we
can only do this with read operations that go down the rightmost path
of the main tree, that is, the spine. Otherwise, an operation that started
early and goes left at some switch of the main tree might read a value
for the second component that is too large: larger than the one read by a
quicker operation that goes right. But the fact that we can do this only for
the spine is exactly what we need, and our approach to handle the above
issue is indeed to re-read the tail variable at the root only when traveling
the spine. At other switches the reader copies the values down the tree
as in the original construction, which is unaffected by our max register
implementation since gaps in switches can only occur on the spine, as a
process going down some m-valued max register travels an entire path from
its root to a leaf. Algorithms 3 and 4 show the pseudo-code.

Instead of repeating the linearizability proof of the 2-component max
array in [4] (denoted by Alg hereafter), we reduce the algorithm in Algo-
rithms 3 and 4 to Alg. In particular, we show that any execution of the
algorithm can be translated to an execution of Alg in a way which pre-
serves returned values, implying that the linearization of Alg also applies

14

Shared Data:

2 switch: a 1-bit multi-writer register, initially 0
3 left, right: two MaxArray objects with an unbounded second

© W N o ok

10
11
12
13
14
15
16
17

18
19
20

21
22
23

component, initially (0,0); at the spine, left has an m-bounded first
component and right has an unbounded first component; at a
MaxArray with a b-bounded first component for any integer b, the
first component of both left and right is b/2-bounded
tail: an unbounded MaxRegister object, initially 0
array TS[l..n] where TS[i] = timestamp for process i
array pointer[1..n3]; each entry is a pid
array help[i]; each entry consists of

value = most recent value seen by p;

TS[j] = most recent timestamp seen by p; for p;
procedure WriteMaxArray0(r,v) // Write to the first component
s+ s+ 1 mod n // initialized to 0
t < TS[s]
(v',v") <~ ReadMaxArray(r)
if v > v’ then

WriteMax(M |, m |, v mod m)
for j = |v/m| to |v//m] do
L spine[j] + 1

help[i].value < max(v,v")
help[i]. TS[s] < t
pointer[random(1,...,n3)] < i

procedure WriteMaxArrayl(r,v) // Write to the second component
L WrapWriteMax,(r.tail, v)

Algorithm 3: Writing to the 2-component max array; code for process i.

to the algorithm in Algorithms 3 and 4. The intuition is that whenever a
ReadMaxArray operation goes down the spine of the main tree, just before it
is about to read the copy of the second component again before going right,
we imagine that a very quick ReadMaxArray operation in Alg starts and runs
solo, going down the spine of the main tree, propagating the value of the
second component that is at the copy of the second component associated
with the root. If we then let the first ReadMaxArray operation do its read
then it gets exactly the value associated with the root at that time. Hence,

15

1 procedure ReadMaxArrayDirect(r)

2 x <— WrapReadMax; (r.tail)

3 if r.switch = 0 then

4 WrapWriteMax,(r.left.tail, z)

5 return ReadMaxArrayDirect(r.left)
6 else

7 if on spine then

8 ‘ x 4 WrapReadMax; (root.tail)

9 else

10 L x < WrapReadMax,(rtail)

11 WrapWriteMax, (r.right.tail, z)
12 return ReadMaxArrayDirect(r.right) + (m,0)

13
14 procedure ReadMaxArray(r)
15 TS[i] + TS[i] +1

16 while true do

17 for t =1 to 'logm // For a constant ¢’ as in Algorithm 2 do
18 L Take a step of ReadMaxArrayDirect(r)

19 if finished then

20 ‘ return pair

21 else

22 j ¢ pointer[random(1,...,n%)]

23 if help[j].TS[i] = TS]i] then

24 firstComponent < help[j].value

25 return ReadMaxArrayDirect(spine[firstComponent/m])
26

Algorithm 4: Reading the 2-component max array; code for process i.

it cannot distinguish between these two executions, and we can take its lin-
earization point as that of its corresponding operation in Alg. Following is
the formal proof of the above argument.

Theorem 3.1. The algorithm in Algorithms 3 and 4 is a linearizable imple-
mentation of a 2-component maz array. It has a step complezity of O(log® n)
per operation with high probability, when taking m = O(n®logn) and assum-
ing k-bounded increments for k = O(n?log®n).

Proof. Let a be an execution of the algorithm in Algorithms 3 and 4

16

with processes {po,...,pn—1}. We construct a sequence of executions
a = ag,aq,...,ap = o, which ends in an execution o/ of Alg, for which
the return values of all operations are the same as in «. The length of the
sequence is such that ¢ is the umber of times that ReadMaxArray operations
re-read root.tail in a.

Every execution «; in the sequence is an execution with n+ 1 processes,
such that every process p; € {po,...,pn—1} invokes the same operations as
in «, and process p, is an extra process that performs only ReadMaxArray
operations. If in « the process p; reads the copy of the second component
associated with the root in Line 8, then starting from some «; it reads the
copy associated with the current switch (notice that this difference only
occurs when reading locations on spine).

Even though p; reads different locations in o and «;, steps by p,, are used
to make it obtain the same values. We define the behavior of p,, by induction.
In ag the process p, is not used, therefore it is the execution described
above. Assume executions ay, ..., o; are defined and define execution a1
as follows. Let p; be the first process in «; that reads root.tail in Line 8
corresponding to some location x on the spine. Denote o = ojs;j such

that s; is that step of p; (note that we can assume an operation on a max
N/

register is an atomic operation). We define a1 = a;asiaj, where in o
process py, performs a read operation and s is a step by p; reading the copy
of the second component associated with location x.

Our claim is that all operations return the same values in o;; and in a;j41.
The reason is that p, reads the copy of the second component associated
with the root of the main tree and copies it down the spine at least until
location x since it starts after p; reaches x and hence all switches toward
it are set. Therefore, when p; reads the copy in z in s} in a1 it gets
the same value it reads from the root in s; in «;. Finally, for some j we
reach an execution o = a; of Alg, for which all returned values of processes
{po,...,pn—1} are the same as in . This execution ' is linearizable by the
proof of [4] Because p,, performs only ReadMaxArray operations, removing
these operations from the linearization of o does not affect the return values
of any other operations; this reduced linearization is thus a linearization of

Q. O

4 Unbounded snapshots

Given our unbounded 2-component max array implementation, we can now
obtain an unbounded snapshot object.

17

We use the construction from [4], which for convenience we restate here
in Algorithm 5.
The shared data is:

e leaf;, for j € {0,...,n — 1}: the leaf node corresponding to process j,
with fields:

— parent: the parent of this leaf in the tree

— view|[0,1,...]: an infinite array, each of whose entries contains a
partial snapshot, view[0] contains the initial value of component
j and view[{] contains the ¢-th value of component j

— root: the root of the tree
e Fach internal node has the fields:

— left: the left child of the node in the tree
— right: the right child of the node in the tree

— view[0,1,...]: an infinite array, each of whose entries con-
tains a partial snapshot, view[0] contains the concatenation of
leaf j.view[0] for all leaves leaf; in the subtree rooted at this node,
and view[/] contains the concatenation of views of the leaves after
¢ updates

— ma: an infinite MaxArray object, initially (0,0)

e The root also has the field mr: an infinite MaxRegister object, initially
0

e Each non-root internal node also has the field parent: the parent of
the node in the tree

We use this algorithm with our implementations of unbounded max reg-
isters and unbounded max arrays from the previous sections. Loosely speak-
ing, the construction is based on a balanced binary tree with n leaves, one
for each process. Each intermediate node holds a 2-component max array
object for its two children, that counts the number of update operations
performed on each. It also stores the (unique) view corresponding to this
number. A process that updates its location does so by updating the nodes
from its leaf to the root, and a process scans the object by reading the view
held by the root. We emphasize that correctness is always guaranteed in the
above implementation, therefore the proof from [4] shows that this gives an
unbounded snapshot object.

18

1 procedure Update(s,i,v)
2 count; < count; + 1
3 u < leaf;
4 ptr <— count;
5 u.view[ptr| - v
6 while u # root do
7 if u = u.parent.left then
8 L WriteMaxArrayO(u.parent.ma, ptr)
9 if u = u.parent.right then
10 L WriteMaxArrayl(u.parent.ma, ptr)
11 U <— u.parent
12 (Iptr, rptr) <— ReadMaxArray(u.ma)
13 Iview < w.left.view|lptr]
14 rview <— u.right.view|rptr]
15 ptr < Iptr + rptr
16 u.view[ptr] <— Iview - rview
17 WriteMax(root.mr, ptr)

18 procedure Scan(s)
19 ptr < ReadMax(root.mr)
20 return root.view|ptr]

Algorithm 5: Unbounded snapshot object; code for process 1.

It remains to show the step complexity of our construction. For this, we
only need to show that the k-bounded increment assumption holds, and use
the complexity analysis of the previous sections. Intuitively, this is because
every MaxRegister is used only to store the number of operations observed
in the subtree of processes that it represents. If the difference between
two values written to a MaxRegister is more than n, then some processes
completed a WriteMax operation between these two WriteMax operations,
implying that the maximal difference was smaller to begin with. Formally,
we prove this claim in the following lemma.

Lemma 4.1. In Algorithm 5, all MaxRegister and MaxArray objects are
accessed according to the n-bounded increments assumption.

Proof. A process that performs WriteMaxArray on u.ma for some node u
writes the value of its ptr variable. We show that ptr holds a value which is at
most the number of Update operations invoked by processes corresponding

19

to this subtree, hence a value being written to u.ma is larger by at most n
than the largest value previously written to it. The claim follows by a simple
induction on the height of the node that holds the object. When accessing
a leaf, ptr holds the value of count;, which is the number of operations
performed by process p;. For an intermediate node u, ptr holds the sum of
the values of its two children, which, by the induction hypothesis are the
number of Update operations invoked by processes corresponding to these
subtrees, which proves the claim. Finally, the same holds for the value of
ptr when the root is accessed, implying the claim also for the MaxRegister
object there. O

Combining Lemma 4.1 with Theorem 3.1 gives our main theorem.

Theorem 4.2. Algorithm 5 is an implementation of an unbounded snapshot
object, with a step complexity 0fO(log3 n) per operation with high probability.

5 Extension to message passing

Our algorithm can be adapted to give an implementation of a snapshot ob-
ject in an asynchronous message-passing system with fewer than n/2 crash
failures. A direct adaptation using the classic Attiya-Bar-Noy-Dolev (ABD)
register simulation [8] would require O(log® n) time and O(n log® n) messages
on average for each operation, where one time unit is the maximal mes-
sage delay in the execution. This is because ABD implements a read/write
register operation in O(1) time and O(n) messages, and our max register
implementation uses O(log®n) accesses to read/write registers.

By taking advantages of the message-passing model, we can improve this
to O(log?n) time and O(nlog®n) messages, while eliminating the need for
randomization. The key idea is that the inherent parallelism of a message-
passing system and the ability to consolidate multiple concurrent messages
into one allows operations like max register reads or collects to be imple-
mented at no greater cost than the O(1) time and O(n) needed for a simple
atomic register.

We begin by describing our implementation of an unbounded max regis-
ter using message passing; this gives the log-factor reduction in complexity.
We then show how the procedures WriteMaxArray and ReadMaxArray can
be simplified by eliminating the pointer array in favor of performing collects
on the help array directly; this eliminates the need for randomization. Sub-
stituting these new implementations into Algorithm 5 gives the full result.

20

5.1 Message-passing max registers

An unbounded max register can be implemented directly in an asynchronous
message-passing system with ¢ < n/2 crash failures using a straightforward
adaptation of the classic atomic register simulation of Attiya, Bar-Noy, and
Dolev [8].

Pseudocode is given in Algorithm 6. Each process stores a local value
maxValue for the max register. The WriteMax and ReadMax operations are
both implemented using a core Update subroutine. This obtains a maximum
value from a majority of processes, possibly replaces it with the argument
to WriteMax, and transmits the new value to a majority of processes. As
in the ABD register, this second round is needed to ensure linearizability
when the maximum value obtained in the first round is not in fact stored in
a majority of the processes.

local data: maxValue, initially 1; ¢, initially O
1 upon receiving Update(t,v) from j do

2 maxValue «+— max(maxValue, v)

3 Send respond(t, maxValue) to j

4 procedure Update(v)

5 t1t+1

6 Send Update(t, L) to all processes.

7 Wait to receive respond(t,v;) from a majority of processes i.
8 Let v" = max(v, max;(v;)).

9 t+t+1
10 Send Update(t,v’) to all processes.
11 Wait to receive respond(t, —) from a majority of processes.
12 return v'.

13 procedure WriteMax(v)
14 LUpdate(v)

15 procedure ReadMax()
16 L return Update(l)

Algorithm 6: Max register in message passing using ABD

Theorem 5.1. Algorithm 6 gives a linearizable implementation of a max
register.

Proof. Given an execution of Algorithm 6, construct an explicit linearization
ordering, by first ordering all operations by the value v obtained in Line 8,

21

then by observable execution order (order of non-overlapping operations)
within each group of operations with the same value of v/, finally by putting
WriteMax operations before ReadMax operations and breaking any remaining
ties arbitrarily.

To show that this is consistent with the observed execution order, sup-
pose that some operation A finishes before B starts. Let v/y and vz be the
values of v' computed by A and B, respectively. Then A broadcasts v/; to
a majority of processes before it finishes, and at least one of these processes
is also in the majority that later respond to B’s Update(t, L) message. So
the calculation of vz includes either v/; or a larger value, giving vz > v/y. If
vy = vy, then B is ordered after A by the execution ordering; if viz > v/y,
then B is ordered after A by the v’ ordering.

Next we argue that the linearized execution is a sequential execution of
a max register. Since the only operations that return values are ReadMax
operations, it is enough to show that these values are equal to the largest
input to any previous WriteMax operation in the linearized execution.

Let us begin with a simple invariant: In any prefix of an execution of the
algorithm, any value other than 1 that appears as maxValue, in some process
p, or appears as the value in an Update or respond message, appears as the
input to some WriteMax operation that starts in this prefix. The proof is a
straightforward induction: examination of the code shows that new values
can appear only when a WriteMax emits its second Update message, and such
values will either be the input to the WriteMax or a value that previously
appeared in a respond message to the process carrying out the WriteMax
operation. It follows that any value returned by a ReadMax corresponds to
some value written in a WriteMax.

The computation in Line 8 ensures that any WriteMax(v) operation W
computes vy, > v; in the other direction, any ReadMax operation R returns
v. So for any given ReadMax operation R, only WriteMax operations with
input less than or equal to v can be linearized before R. From the preceding
argument, there exists at least one WriteMax operation W with input vy,
that is equal to vj. This operation linearizes before R. It follows that v}
is in fact the largest input to any WriteMax operation linearized before R,
and the sequential specification is satisfied. O

5.2 Eliminating the pointer array

A collect object is a weak version of a snapshot that does not guarantee
that values read from distinct register appear to be read atomically. It is
equivalent to an array of n single-writer registers, with a write operation for

22

each register and a collect operation that returns a value for each register
that is current at some time between the start and finish of the collect.

The trivial implementation of a collect is to have the reader read each
register directly. This gives a cost of O(1) steps per write and O(n) steps
per collect. In a message-passing system, we can use the standard ABD sim-
ulation for each register and combine the messages for the n read operations
used in the collect. This gives a cost of O(1) time and O(n) messages for
both write and collect, making a collect no more expensive than reading a
single simulated register.

Using this message-passing collect, we can rewrite the WriteMaxArray(
procedure from Algorithm 3 and the ReadMaxArray procedure from Al-
gorithm 4 to bypass the pointer array. The revised procedures are
given in Algorithm 7. We omit the pseudocode for WriteMaxArrayl and
ReadMaxArrayDirect as these procedures are unchanged from the shared-
memory implementation.

To demonstrate correctness of Algorithm 7, observe that when
ReadMaxArray uses help[j] in Line 21, the effect is the same as if it found
help[j] using the pointer array in the original algorithm. As this is the only
place where the change to the algorithm affects the output, the same argu-
ment as for the previous algorithm goes through.

For complexity, observe that each operation on a spine bit costs O(1)
time and O(n) messages, as does each max register operation. In the worst
case, we carry out O(logn) such operations for each operation on the max
array, giving a complexity of O(logn) time and O(nlogn) messages for max
array operations, under the assumptions of Theorem 3.1. We summarize
these results in the following lemma.

Lemma 5.2. Under the assumptions of Theorem 3.1, replacing appropriate
components of Algorithms 8 and 4 with the procedures in Algorithm 7 gives
a linearizable message-passing implementation of an unbounded maz array
that finishes each operation in O(logn) time and O(nlogn) messages.

5.3 The full snapshot algorithm

To complete the algorithm, implement Algorithm 5 using the max arrays
from Section 5.2. We then have:

Theorem 5.3. Using message-passing maz arrays, Algorithm 5 is an im-
plementation of an unbounded snapshot object, with a time complexity of
O(log?n) and message complezity of O(nlog®n) for each operation.

23

1 procedure WriteMaxArrayO(r,v) // Write to the first component
2 s+ s+ 1 mod n // initialized to 0

3 t < TS[s]

4 (v',v") < ReadMaxArray(r)

5 if v > v’ then

6 WriteMax(M|,/m |, v mod m)

7 for j = [v/m] to [v'/m] do

8 L spine[j] «+ 1

9 help[i].value «+— max(v,v")
10 | help[i]. TS[s] « ¢

11
12 procedure ReadMaxArray(r)
13 TS[i] «+ TS[i] +1

14 while true do

15 for t =1 to ' logm // For a constant ¢ as in Algorithm 2 do
16 L Take a step of ReadMaxArrayDirect(r)

17 if finished then

18 ‘ return pair

19 else

20 perform a collect on help

21 if help[j].TS[i] = TS[i] for some j then

22 firstComponent < help[j].value

23 return ReadMaxArrayDirect(spine[firstComponent/m])
24

Algorithm 7: Revised procedures for message-passing max array

6 Discussion

This paper gives the first sub-linear unbounded snapshot implementation
from atomic read/write registers. It is a randomized algorithm, with a step
complexity of O(log®n) with high probability for each operation, where n is
the number of processes. The main component of the construction is a new
randomized implementation of an unbounded max register with a complexity
of O(logn) steps per operation with high probability. The novelty of the
construction is a randomized helping technique, which allows slow processes
to obtain fresh information from other processes.

The use of randomization avoids in most cases the linear worst-case

24

lower bound based on covering arguments of Jayanti et al. [11], because
the adversary cannot predict what locations a process will read from the
helper array and thus cannot guarantee to cover those locations with old
values. Conversely, the lower bound shows that some use of randomization
is necessary.

Curiously, randomization does not appear to be necessary in a message-
passing implementation. Here we exploit the fact that we can read n Attiya-
Bar-Noy-Dolev registers in parallel at no additional cost to allow the algo-
rithm to read the entire helper array directly. Together with an O(1)-time
deterministic unbounded max register based on the ABD construction, this
gives a cost per operation of O(log?n) time and O(nlog?n) messages using
message-passing. It would be interesting to see if a more sophisticated use
of the powers of a message-passing system could reduce this cost further.

Acknowledgements

The authors thank the anonymous reviewers of the conference version of
this paper for careful comments and suggestions that helped improve the
presentation of this work.

References

[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Mer-
ritt, and Nir Shavit. Atomic snapshots of shared memory. J. ACM,
40(4):873-890, 1993.

[2] James H. Anderson. Multi-writer composite registers. Distributed Com-
puting, 7(4):175-195, 1994.

[3] James Aspnes, Hagit Attiya, and Keren Censor-Hillel. Polylogarithmic
concurrent data structures from monotone circuits. J. ACM, 59(1):2:1-
2:24, March 2012.

[4] James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith Ellen.
Faster than optimal snapshots (for a while). In 2012 ACM Symposium
on Principles of Distributed Computing, pages 375—-384, July 2012.

[5] James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Danny Hendler.
Lower bounds for restricted-use objects. In Twenty-Fourth ACM Sym-
posium on Parallel Algorithms and Architectures, pages 172—181, June
2012.

25

[6]

[11]

[12]

James Aspnes and Keren Censor-Hillel. Atomic snapshots in O(log® n)
steps using randomized helping. In Yehuda Afek, editor, Distributed
Computing: 27th International Symposium, DISC 2013, Jerusalem, Is-
rael, October 14—-18, 2013. Proceedings, volume 8205 of Lecture Notes
in Computer Science, pages 254—268. Springer Berlin Heidelberg, 2013.

James Aspnes and Maurice Herlihy. Wait-free data structures in the
asynchronous PRAM model. In Second Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 340-349, July 1990.

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory
robustly in message-passing systems. Journal of the ACM, 42(1):124—
142, 1995.

Hagit Attiya and Arie Fouren. Adaptive and efficient algorithms for
lattice agreement and renaming. SIAM J. Comput., 31(2):642-664,
2001.

Michiko Inoue and Wei Chen. Linear-time snapshot using multi-writer
multi-reader registers. In WDAG ’94: Proceedings of the Sth Inter-
national Workshop on Distributed Algorithms, pages 130-140, London,
UK, 1994. Springer-Verlag.

Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower
bounds for nonblocking implementations. STAM Journal on Computing,
30(2):438-456, 2000.

Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

26

