
Approximate Shared-Memory Counting Despite a Strong Adversary

James Aspnes∗ Keren Censor†

Abstract

A new randomized asynchronous shared-memory data
structure is given for implementing an approximate
counter that can be incremented up to n times.
For any fixed ε, the counter achieves a relative
error of δ with high probability, at the cost of
O(((1/δ) log n)O(1/ε)) register operations per increment
and O(n4/5+ε((1/δ) log n)O(1/ε)) register operations per
read. The counter combines randomized sampling for
estimating large values with an expander for estimating
small values. This is the first sublinear solution to this
problem that works despite a strong adversary scheduler
that can observe internal states of processes.

An application of the improved counter is an im-
proved protocol for solving randomized shared-memory
consensus, which reduces the best previously known in-
dividual work complexity from O(n log n) to an optimal
O(n), resolving one of the last remaining open problems
concerning consensus in this model.

1 Introduction

Counting is a fundamental algorithmic task. Unfortu-
nately, in an asynchronous shared-memory setting using
only read/write registers, exact counting appears to be
quite expensive. The main limitation is the need to
avoid lost updates, where one incrementer overwrites
values left by another. The simplest implementation,
where each incrementer writes its increment to a sepa-
rate location in an array of registers, requires n regis-
ters operations when collecting the array for the read
operation. Even with more sophisticated primitives,
there are still strong lower bounds on the time- and
space-complexity for exact counting in a distributed sys-
tem [9,11].

This suggests relaxing the requirements and allow-
ing a reader of the counter to return only an approxi-
mate value. There is a substantial literature on proba-

∗Department of Computer Science, Yale University, New
Haven, CT 06520-8285, USA. Email: aspnes@cs.yale.edu. Sup-
ported in part by NSF grant CNS-0435201.

†Department of Computer Science, Technion, Haifa, Israel.
Email: ckeren@cs.technion.ac.il. Supported in part by the
Israel Science Foundation (grant number 953/06), and by the
Adams Fellowship Program of the Israel Academy of Sciences and
Humanities.

bilistic approximate counting in a non-adversarial, se-
quential context. Some early examples are given in
[13, 14, 23], where the space taken by a counter is re-
duced by storing only an approximation to the log of
the number of increments. This involves incrementing
the stored counter value only every 2C steps on aver-
age, which is accomplished by applying increments only
with probability 2−C . However, in a distributed set-
ting, a strong adversary that can halt processes after
observing their internal states can discard these rare up-
dates, causing the counter value to appear much smaller
than it should. Solving the approximate counting prob-
lem in this model thus requires new techniques.

Formally, we consider the standard model of an
asynchronous shared-memory system, where n processes
communicate by reading and writing to shared multi-
writer multi-reader registers. Each step consists of
some local computation, including an arbitrary number
of local coin-flips (possibly biased) and one shared
memory event, which is either a read or a write to some
register. The interleaving of processes’ steps is governed
by a strong adversary that observes the results of the
local coin-flips before scheduling the next process.

A minimal requirement on an exact distributed
counter would be that a read operation always returns a
value between k and K, where k is the number of incre-
ment operations that finished before the read operation
started, and K is the number of increment operations
that started before the read operation finished.1 For
an inexact counter, we can characterize its accuracy by
how close it gets to this ideal:

Definition 1. Let C be a counter supporting the oper-
ations CounterRead and CounterIncrement. A call to
CounterRead is δ-accurate if its return value R sat-
isfies (1 − δ)k ≤ R ≤ (1 + δ)K, where k is the num-
ber of CounterIncrement operations that finish before
this call to CounterRead starts, and K is the number
of CounterIncrement operations that start before this
call to CounterRead finishes. Otherwise, this call to
CounterRead is δ-inaccurate.

1This is a weaker condition than, say, linearizability [19],
because it makes no consistency guarantees on the values returned
by different read operations.

Our paper makes two main contributions: a
sublinear-work implementation of an approximate
counter for a strong-adversary model that is δ-accurate
with high probability, and an application of this counter
to obtained a protocol for randomized consensus
that requires an optimal O(n) operations per process.
This latter protocol completely resolves the question of
the complexity of randomized consensus in a strong-
adversary model, a twenty-year-old open problem.

1.1 Counting The running time of our counter is
O(((1/δ) log n)O(1/ε)) register operations per increment
and O(n4/5+ε((1/δ) log n)O(1/ε)) register operations per
read, where ε > 0 is a parameter that can be chosen to
trade off the costs of increment and read operations.
The counter is specialized for the case where each
process increments at most once.

A full description of the counter is given in Sec-
tion 2. The essential idea is that when many increments
have occurred, sampling an array of bits representing
increments works despite a strong adversary as long as
both incrementers and readers choose randomly which
array locations they will use. The analysis of this com-
ponent of the counter is complicated both by the pos-
sibility that some increments will collide (write to the
same bit) and by the fact that the upper bound on the
estimated counter value depends on the number of incre-
ments that start before a read finishes, a quantity that
can be altered by the adversary while the read is still
in progress. Nonetheless we show that this part of the
counter works using a combination of Chernoff bounds
on the lower-bound side and the method of bounded
differences on the upper-bound side.

This still leaves the problem of what to do when
there are few increments. Here the sampling component
breaks down: a small sample from the array is likely to
miss all the increments—thus return 0, much less than
(1 − δ)k. Instead, we use an expander to determine
which bits in a second array are set by each increment;
since the sets of bits set by each increment don’t overlap
much (this is the expansion property), we can obtain a
good estimate of the number of increments by simply
counting all ones in the array and dividing by the
degree of the expander. This estimate also lets us
detect when we have exceeded the useful range of the
expander-based counter and must switch to sampling.
The sampling bounds apply if this occurs because the
sampling component is always incremented first, and
therefore a large number of increments to the expander
component must be preceded by a large number of
increments to the sampling component.

Although our implementation is only mildly more
efficient than a linear counter, having any sublinear

counter can be crucial for some applications. This
is demonstrated in an application of the approximate
counter in a weak shared coin protocol used for ran-
domized consensus, which is the second contribution
of this paper.

1.2 Consensus In the consensus problem, which is a
fundamental task in asynchronous systems, n processes
starting with individual inputs are required to arrive
at the same decision value. To prevent trivial solutions,
this agreement condition is accompanied by a validity
condition which requires the decision value to be the
input of some process. A termination condition
requires that eventually all processes decide.

It is well known that there is no deterministic con-
sensus protocol in an asynchronous system, if one pro-
cess may fail [12, 18, 21]. However, reaching consensus
becomes possible using randomization with the termina-
tion condition relaxed to hold with probability 1, while
the agreement and validity properties remain the same.
The complexity of solving consensus is measured by the
expected number of register operations carried out by
all processes (total work) or by any one process (per-
process or individual work).

Many randomized consensus protocols were de-
signed for the asynchronous model under a strong adver-
sary, The first of these, due to Abrahamson [1], required
exponential work. Subsequent work (e.g., [3, 6, 24]) re-
duced the complexity first to a polynomial number of
total operations and finally to O(n2 log n) operations
in the paper of Bracha and Rachman [10]. Further
progress in reducing total operations stalled at this
point, although Aspnes and Waarts [7] showed that
O(n log2 n) individual work could be achieved, at the
cost of a slight increase in total work. The subsequent
Ω(n2/ log2 n) lower bound on total work of Aspnes [4]
(which implies an Ω(n/ log2 n) lower bound on individ-
ual work) showed that significant further improvements
were unlikely, although the polylogarithmic gap between
the known upper and lower bounds remained a contin-
uing annoyance.

This gap was closed for total work by Attiya and
Censor [8], who presented a protocol with O(n2) total
work and a matching Ω(n2) lower bound. In their
protocol, however, a process running alone may have
to perform all this work by itself, meaning that the
individual work is also Θ(n2). By combining techniques
from the Attiya-Censor protocol with the older Aspnes-
Waarts protocol, Aspnes et al. [5] obtained an O(n log n)
upper bound on individual work, but a logarithmic gap
still remained between this upper bound and the Ω(n)
lower bound that follows from the Ω(n2) lower bound
on total work.

We eliminate this gap by showing that wait-free
randomized consensus can be solved using only atomic
multi-writer multi-reader registers with O(n) expected
individual work and O(n2) expected total work; both
measures are optimal since they match the lower bound.

The cornerstone of our protocol is a new weak
shared coin protocol that requires from each process at
most O(n) operations. A weak shared coin with agree-
ment parameter p [6] is a distributed protocol with
the property that (a) against any adversary strategy,
with probability at least p, every process returns −1, (b)
against any adversary strategy, with probability at least
p, every process returns +1. The rest of the time the
output of the protocol is arbitrary; the adversary may
determine the outputs of the processes or even arrange
for them to disagree. The reduction in [6] shows that
a weak shared coin protocol with agreement parameter
p, expected individual work complexity I, and expected
total work complexity T , yields a consensus protocol
with expected individual work complexity O(n + I/p)
and expected total work complexity O(n2 + T/p). The
goal then is to construct a weak shared coin with con-
stant agreement parameter and low cost.2

Essentially all known shared coins are based on ran-
dom voting, with some variation in how votes are col-
lected and how termination is detected. The particular
version we use appeared first in the O(n2 log n) total
work protocol of Bracha and Rachman [10], where each
process generates votes until it observes that a predeter-
mined threshold is reached, and afterwards collects all
the votes and decides upon the sign of their sum. Typ-
ically n2 votes are needed, so that the majority value is
not overwhelmed by selective withholding of up to n−1
votes by the adversary.

Detecting that the threshold has been reached is a
counting problem: using a standard counter with O(n)-
operation reads means that the threshold can be checked
only occasionally without blowing up the cost. Amaz-
ingly, Bracha and Rachman showed having each pro-
cess check only after each Θ(n/ log n) votes—an amor-
tized cost of O(log n) register operations per vote—was
enough to guarantee a constant agreement parameter,
even with no coordination between processes. This cost
was further reduced to O(1) amortized operations per
vote by Attiya and Censor, who added a termination
bit that could be used to cut off voting immediately by
any process that detected termination.

A second technique is needed to reduce individual
work, as in the standard voting-style protocol a single

2Smaller agreement parameters do not appear to be helpful,
although the consensus protocol of [3], which does not use the
reduction of [6], effectively embeds a weak shared coin with
agreement parameter Θ(1/n).

process might generate most of the Θ(n2) votes. Our
shared coin is based on the weighted voting approach
pioneered in the O(n log2 n) individual-work protocol
of Aspnes and Waarts [7], where a process that has
already cast many votes becomes impatient and starts
casting votes with higher weight. Combined with the
termination bit, this gives an O(n log n) protocol [5],
but it still requires that some processes execute Θ(log n)
counter reads in some executions.

By applying our sublinear counter, we can carry
out these Θ(log n) counter reads within the O(n) time
bound. This gives an O(n) weak shared coin proto-
col, and thus O(n) consensus. Our protocol is given
in Section 3; it is adapted to use a collection of ap-
proximate counters, and also contains some technical
improvements on [5,7] that simplify the analysis (which
is to appear in a full version of this paper).

We conclude, in Section 4, with a discussion of our
results and the problems that remain open, the main
ones being reducing the complexity of the counter and
applying the counter to more tasks.

2 A sublinear approximate counter

In this section we describe the full approximate counter
and prove its complexity and accuracy. The sampling
component appears in Section 2.1 and the expander
component in Section 2.2. In Section 2.3 we show how
to combine the two counters in order to obtain the
approximate counter with sublinear work and a high
probability for δ-accurate read operations.

2.1 The sampling component The sampling com-
ponent of the counter works by having each increment
operation set a bit at a random location in an array a
of size N , and having each approximate read operation
sample s locations with replacement, computing an esti-
mate of the counter value that is (N/s)S where S is the
number of one bits seen among these samples. When
there are few increments, this estimate will have high
relative error; however, we will show that after enough
increments, the resulting value is neither too high nor
too low, despite any strategy the adversary might at-
tempt to bias it. What makes this difficult is that an
adaptive adversary can see the locations of the writes
and reads done by each operation before the actual read
or write is performed, and selectively delay processes in
response.

There are two main issues we have to consider in
showing that SamplingRead works:

1. The sampling procedure may under- or over-
represent the number of bits set in a. Here we
need concentration bounds on the sampled value.

shared data: array a [1..N] of multi-writer bits,
initially all 0

Let r be a uniform random index in the range1

1..N ;
a[r] ← 1;2

Procedure SamplingIncrement

S ← 0;1

for i ← 1 to s do2

Let r be a uniform random index in the3

range 1..N ;
S ← S + a[r];4

end5

return (N/s) · S6

Procedure SamplingRead

For the lower bound, we pretend that any bit not
set by the start of the call to SamplingRead does
not contribute to the total; this gives a fixed set of
bits to consider, and allows us to apply standard
Chernoff bounds. For the upper bound, the situ-
ation is more complicated, as the adversary may
choose to allow fewer or more increments depend-
ing on how the sampling so far has gone. Here we
apply a more sophisticated analysis, showing that
the observed sample gives an estimate not much
higher than the number of increments that start
before the call to SamplingRead finishes using the
method of bounded differences.

2. The bits set in a may under-represent the actual
number of increments, for example if many calls
to SamplingIncrement write to the same location.
This problem is exacerbated by the adversary’s
ability to delay processes between choosing their
location to write (in Line 1) and actually writing
the bit (in Line 2), because the adversary can se-
lectively hold back writes to new locations while
allowing through writes to locations already writ-
ten. However, it is not hard to show that the total
number of lost writes during an execution with n in-
crements is

(
n
2

)
/N on average, and a further appli-

cation of Chernoff bounds puts the number of lost
writes close to this value with high probability. For
a suitable choice of N and sufficiently many com-
pleted increments, the relative error contributed by
these lost writes is negligible.

We begin by showing the bound on the number of
lost writes. Note that this is a global bound that applies
to an entire execution, so unlike the later bounds on
sampling error, it does not depend on the number of

calls to SamplingRead.

Lemma 2.1. Fix an adversary strategy, and let each of
n processes execute SamplingIncrement at most once.
For each t, let at be the state of array a at time t and
let kt be the number of processes that have executed the
write operation in Line 2 of SamplingIncrement by
time t. Then

Pr

[
∃t :

N∑
r=1

at[r] ≤ kt − n2/N

]
< exp

(
−

(
n

2

)
/3N

)
.

Proof. Order the n increment operations by the time
at which each chooses its location to write in Line 1
of SamplingIncrement. For each i, let Xi be the in-
dicator variable for the event that the i-th increment
chooses a location previously chosen by some other in-
crement. It is easy to see that Pr[Xi = 1|X1 . . . Xi−1] =
(i−1)−Pi−1

j=1 Xj

N ≤ i−1
N , as the numerator in the middle ex-

pression simply counts the number of previously-chosen
locations.

Because the conditional probability of each Xi is
bounded, we can construct a second series of ran-
dom variables Yi where for each Yi, Xi ≤ Yi, and
Pr[Yi = 1|Y1 . . . Yi−1] equals i−1

N exactly. We then have
E [

∑n
i=1 Yi] =

∑n
i=1

i−1
N =

(
n
2

)
/N .

Since the probability of each Yi doesn’t depend
on the outcome of its predecessors, we also have that
the Yi are independent. So standard Chernoff bounds
apply (see, e.g., [22, Theorem 4.4, case 2]), and for any
0 ≤ δ ≤ 1,

Pr

[
n∑

i=1

Yi ≥ (1 + δ)
(

n

2

)
/N

]
≤ exp

(
−δ2

(
n

2

)
/3N

)
.

For convenience, we set δ = 1 and use 2
(
n
2

)
< n2 to

simplify this to

Pr

[
n∑

i=1

Yi ≥ n2/N

]
≤ exp

(
−

(
n

2

)
/3N

)
,

and the same bound immediately applies to
∑n

i=1 Xi ≤∑n
i=1 Yi.

To complete the proof, we must show that the
bound also applies to the difference between kt and∑

at[r] for each time t. Here we observe that no two
increments i and j with i < j and Xi = Xj = 0 both
write to the same location (otherwise Xj would be 1).
After kt completed increments, at least kt−

∑n
i=1 Xi of

these increments thus write to different locations, giving∑N
r=1 at[r] ≥ kt −

∑n
i=1 Xi ≥ kt −

∑n
i=1 Yi.

The next lemma bounds the probability that a value
R returned from SamplingRead is too small compared to

the number of bits that are set in the array. Combining
it with the previous lemma will later allow us to
bound the probability that a value R returned from
SamplingRead is too small compared to the number of
SamplingIncrement operations.

Lemma 2.2. Fix an adversary strategy, and consider an
execution of SamplingRead. Let A be the set of indices
r in a such that a[r] = 1 at the start of this execution.
Let R be the random variable equal to the value returned
by SamplingRead. The for any 0 ≤ δ ≤ 1,

Pr [R ≤ (1− δ) · |A|] ≤ exp
(
−δ2(s/N) · |A|

2

)
.

Proof. Observe that the process increments its count S
each time it reads a location i in A, which occurs with in-
dependent probability (1/N) · |A| per sample. Thus the
final value of S is bounded below by a sum of indepen-
dent random variables with total expectation (s/N)·|A|;
the probability that this sum is less than or equal to
(1−δ)(s/N) · |A| is less than exp

(−δ2(s/N)|A|/2
)

from
Chernoff bounds. But then the same bound holds for
the probability that R = (N/s)S is less than or equal
to (N/s)(1− δ)(s/N)|A| = (1− δ)|A|.

We now bound the probability that a value R
returned from a SamplingRead operation is too high.

Lemma 2.3. Fix an adversary strategy, and consider an
execution of SamplingRead as part of a global execution
that includes at most n ≤ N SamplingIncrement
operations. Let K be the random variable equal to the
number of SamplingIncrement operations that start
before this execution of SamplingRead finishes. Let R
be the random variable equal to the value returned by
SamplingRead. Then for every δ,

Pr [R ≥ (1 + δ)K] ≤ exp
(
− (δK)2s

2N2

)
.

Proof. Let Si be the value of S after i iterations of the
loop, and let Ki be the number of increment operations
that start before the read operation in Line 4 in the i-th
iteration of the loop. Let Xi = Si −

∑i
j=1 Kj/N . We

will apply the method of bounded increments to show
that Xs is small with high probability.

Observe that Xi+1 − Xi = (Si+1 − Si) −Ki+1/N .
From the fact that Si ≤ Si+1 ≤ Si + 1 and 0 ≤
Ki+1 ≤ n ≤ N , it follows that |Xi+1 − Xi| ≤ 1. If
we can show in addition the supermartingale property
E[Xi+1|X1 . . . Xi] ≤ Xi, we can apply the supermartin-
gale version of Azuma’s inequality [25, Lemma 4.2] to
get the desired bound.

Condition on all events prior to the i-th read, and
consider what happens with the (i + 1)-th read. The

Si+1 component of Xi+1 rises if and only if the reader
observes a 1 in its chosen location a[r]. Assume that
r is chosen immediately after the previous read (there
is no payoff to the adversary for waiting); then the
probability that a[r] either already contains a 1 or is
covered by a pending write is at most Ki/N . The
adversary can schedule additional increments after r
is chosen but before a[r] is read; each of these adds
at most a 1/N probability of placing a 1 in a[r], but
also increases the number of started increments by
1. Summing all probabilities thus gives a bound of
Ki/N + (Ki+1 − Ki)/N = Ki+1/N on the probability
that Si+1 − Si = 1. This is precisely the net change in∑i+1

j=1 Kj/N . It follows that E[Xi+1−Xi|X1 . . . Xi] ≤ 0
and thus E[Xi+1|X1 . . . Xi] ≤ Xi.

We now apply Azuma’s inequality. For any α > 0,
we have

Pr[Xs ≥ α] ≤ exp
(
−α2

2s

)
.

The definition of Xs implies Xs = Ss−
∑s

j=1 Kj/N , and
since Kj is an increasing function of j we have Ss ≥ Xs+
(s/N)Ks. The value returned by SamplingIncrement
is R = (s/N)Ss and therefore Pr[R ≥ α(N/s) + Ks] ≤
Pr[Ss ≥ α + (s/N)Ks] ≤ Pr[Xs ≥ α] ≤ exp

(
−α2

2s

)
.

Finally, choose α = (s/N)δK and recall that K =
Ks; then α(N/s) = δK and hence

Pr[R ≥ (1 + δ)Ks] ≤ exp
(
− (δK)2s

2N2

)
.

We are now ready to prove that there is high
probability for a call to SamplingIncrement to be δ-
accurate. The choice of the parameters N and s
combines two conflicting considerations. On one hand,
we would like s to be as small as possible, as it
determines the cost of SamplingRead. At the same time
we would like the probability of error to be exponentially
small, which requires s to be small (otherwise we get
a small error probability only for large numbers of
increment operations, which will require the expander
component to work for larger numbers of increment
operations).

Theorem 2.1. Let 0 < ε < 2/5 and 2n−ε/4 ≤
δ ≤ 1/2. Fix an adversary strategy, and con-
sider an execution of a single sampling counter with
s = n4/5+ε and N = n6/5+ε/4 that includes at most
n calls to SamplingIncrement. Consider a call to
SamplingRead that starts after at least n4/5/δ calls to
SamplingIncrement finish. Then the probability that
this call is δ-inaccurate is at most exp

(−δ2nε/2/2
)
(1+

o(1)).

Proof. We will consider three sources of error, then show
that the last one dominates the total error probability.

From Lemma 2.1, the probability that more
than n2/N = n4/5−ε/4 writes are lost is at
most exp

(−(
n
2

)
/3N

) ≤ exp
(−(

n
2

)
/3n6/5+ε/4

) ≤
exp

(−n4/5−ε
)
, for sufficiently large n.

If not more than n2/N = n4/5−ε/4 writes are
lost, then for any call to SamplingRead starting after
k ≥ n4/5 completed increments, we have |A| ≥ k −
n4/5−ε/4 ≥ k(1 − n−ε/4) ≥ k(1 − δ/2). In this case we
have (1 − δ)k ≤ (1 − δ/2)2k ≤ (1 − δ/2)|A|, hence the
probability that R ≤ (1− δ)k is at most the probability
that R ≤ (1−δ/2)|A|, which from Lemma 2.2 is at most

exp
(
− (δ/2)2(s/N) · |A|

2

)
≤

≤ exp
(
−(δ/2)2n−2/5+(3/4)ε(1− δ/2)n4/5/2

)

≤ exp
(
−δ2(1− δ)n2/5+(3/4)ε

)
≤ exp

(
−2n2/5+(1/4)ε

)

≤ exp(−n2/5),

again for sufficiently large n.
Finally, we consider the possibility that some

call to SamplingRead returns a value that is too
high. By Lemma 2.3 to get, for a single call to
SamplingRead, Pr[R ≥ (1 + δ)K] ≤ exp

(
− (δK)2s

2N2

)
≤

exp
(
− (δn4/5)2n4/5+ε

2(n6/5+ε/4)2

)
= exp

(−δ2nε/2/2
)
.

Summing the three probabilities gives a total error
probability of

exp
(
−n4/5−ε

)
+ exp(−n2/5) + exp

(
−δ2nε/2/2

)
.

For ε < 2/5 and δ ≤ 1/2, the last term is at least
exp

(−n1/5/8
)
, which easily dominates the others.

Note that while the theorem bounds the probability
of failure of each call to SamplingRead, these probabil-
ities are not independent: there is a small but nonzero
chance that the bound in Lemma 2.1 will fail, causing
all reads to return values that are too low.

2.2 The expander component We augment the
sampling counter with a second data structure that re-
turns accurate values for small values of k; in particular,
for k ≤ Kmax = n3/4+2ε. This data structure also uses
an array of bits, which are now multi-writer. Each in-
crement operation sets a subset of D bits in the array.
These subsets will be chosen so that for any k ≤ Kmax

increments, the number of bits set in the array will be
at least (1− δ)Dk.

The value of the this component is computed by
scanning every bit in the second array and returning

the number of ones observed divided by D. For a small
number of increments this will give a value between
(1− δ)k and K.

The property that each set of k ≤ Kmax increments
sets of (1− δ)Dk bits is precisely the defining property
of an expander. We use a recent explicit expander
construction of [16] to get good performance out of the
expander component of the counter. Concurrency be-
tween increment and read operations raises some ad-
ditional complications; these are handled by providing
separate lower and upper bounds on the return value of
the counter that may diverge in the presence of concur-
rency.

Expanders have a long history in combinatorics,
with many variants and applications; see [20] for a
recent survey. We use an explicit construction of an
unbalanced bipartite expander of Guruswami et
al. [16]. In their notation, a bipartite multigraph has a
set of left-vertices [N] = {1 . . . N}, a set of right-vertices
[M] = {1 . . . M}, and a function Γ : [N] × [D] → [M]
that specifies for each left-vertex and each index i in
[D] = {1 . . . D} a corresponding right-vertex. Such a
multigraph is a (≤ Kmax, A)-expander if every set S of
K ≤ Kmax left-vertices has |Γ(S)| ≥ A · |S|. Intuitively,
the right-hand neighbors of any small set of left-hand
nodes don’t overlap much. The main result of [16] is
the following theorem:

Theorem 2.2. ([16]) For every constant α > 0, every
N ∈ N, Kmax ≤ N , and δ > 0, there is an explicit
(≤ Kmax, (1 − δ)D)-expander Γ : [N] × [D] → [M]
with degree D = O((log N)(log Kmax)/δ)1+1/α and M ≤
D2 ·K1+α

max . Moreover, D is a power of 2.

Given an expander of this form, we represent the
counter as an array corresponding to the right-hand
side. An increment for process pid consists of setting all
bits in Γ(pid), and requires D register write operations.
A read operation scans the entire array of M bits,
taking M register read operations, and returns the
number of one bits seen divided by D. The expansion
property guarantees that for small enough numbers of
increments, this quantity will not be too much less than
the correct value.

shared data: array b[1..M] of multi-writer bits
for i ← 1 to D do1

b[Γ(pid, i)] ← 12

end3

Procedure ExpanderIncrement.

It remains to choose the parameters of the ex-
pander. The value δ we will use in the expander is

return 1
D

∑M
i=1 b[i]1

Procedure ExpanderRead

the same δ used for the sampling counter. We as-
sume as in Theorem 2.1 that δ ≤ 1/2, while allowing
for the possibility that δ depends on n. We also use
the parameter ε from the exponent of the run-time of
the sampling counter, with the assumption that ε does
not exceed 2/5. Our goal is to arrange for the cost
of reading the entire right-hand side of the expander
to be asymptotically no higher than the n4/5+ε cost of
SamplingRead, ignoring log terms and terms depending
on δ. At the same time we want to set Kmax higher than
the the minimum accurate count n4/5+ε/4 for the sam-
pling counter. We accomplish these goals by choosing
α so that (4/5 + ε/4)(1 + α) = 4/5 + ε.

Set N = n, Kmax = n4/5+ε/4, and α = 15ε
16+5ε .

Further, set D = O ((log N) (log Kmax) /δ)1+1/α =
O

(
(log n)76/(25ε) (1/δ)8/(5ε)

)
and M ≤ D2 · K1+α

max =

O
(
n4/5+ε (log n)152/(25ε) (1/δ)16/(5ε)

)
.

The cost of an increment operation is D =
O

(
((1/δ) log n)O(1/ε)

)
. The cost of a read is M =

O
(
n4/5+ε ((1/δ) log n)O(1/ε)

)
. The lemma below states

that the expander-based counter works as advertised.

Lemma 2.4. Let R be the value returned by an exe-
cution of ExpanderRead that starts after k calls to
ExpanderIncrement have finished and ends after K
calls to ExpanderIncrement have started. Then R sat-
isfies (1− δ)min(k, n4/5+ε/4) ≤ R ≤ K.

Proof. Recall that Kmax = n4/5+ε/4. From the ex-
pansion property, we have that a set S0 of at least
(1 − δ)min(k, Kmax)D bits in b are set at the start of
the ExpanderRead operation. It is also the case that a
set S1 of at most KD bits are set when it completes,
since each ExpanderIncrement operation sets at most
D bits. Because bits are never unset once their value is
1, the set S of bits i for which b[i] = 1 which is included
in the sum in ExpanderRead satisfies S0 ⊆ S ⊆ S1 and
thus (1− δ)min(k, Kmax)D ≤ |S0| ≤ |S| ≤ |S1| ≤ KD.
But then (1− δ)min(k,Kmax) ≤ 1

D |S| ≤ K

2.3 The complete counter The complete counter
is obtained by combining the expander and sampling
components into one approximate counter as described
in the introduction, in a technique that ensures high
probability for having a δ-accurate read.

The following theorem combines the bounds of
Theorem 2.1 and Lemma 2.4.

SamplingIncrement();1

ExpanderIncrement();2

Procedure ApproxIncrement.

S ← ExpanderRead();1

if S < (1− δ)n4/5+ε/4 then2

return S;3

else4

return SamplingRead();5

end6

Procedure ApproxRead

Theorem 2.3. Let n be the maximum number of calls
to ApproxIncrement. Let 0 < ε < 2/5 be a con-
stant and 2n−ε/4 ≤ δ ≤ 1/2, as in Theorem 2.1.
Then ApproxIncrement and ApproxRead together im-
plement an approximate counter where the cost of
ApproxIncrement is O

(
((1/δ) log n)O(1/ε)

)
, the cost of

ApproxRead is O
(
n4/5+ε ((1/δ) log n)O(1/ε)

)
, and for

each call to to ApproxRead, the probability that it is
δ-inaccurate is at most exp

(−δ2nε/2/2
)
(1 + o(1)).

Proof. The time bounds follow from summing the time
bounds of the appropriate operations of the sampling
and expander counters.

For the error bound, for each call to ApproxRead,
there are two cases, depending on whether its return
value is supplied by ExpanderRead or SamplingRead.

The first case occurs if ExpanderRead returns a
value S < (1 − δ)n4/5+ε/4. Then from Lemma 2.4
we have that (1 − δ)min(k, n4/5+ε/4) ≤ S ≤ K
(since k acts as a lower bound on the number of calls
to ExpanderIncrement that finish before the call to
ExpanderRead starts and K similarly acts as an up-
per bound in the other direction). We immediately
get R = S ≤ K ≤ (1 + δ)K. On the other side,
expanding the min gives that either (1 − δ)k ≤ S or
(1− δ)n4/5+ε/4 ≤ S; but the latter case contradicts the
assumption on S, so the former case holds. It follows
that this call to ApproxRead is δ-accurate with proba-
bility 1.

The second case occurs if ExpanderRead returns
a value S ≥ (1 − δ)n4/5+ε/4. Now ApproxRead
returns the value obtained by SamplingRead. Be-
cause ApproxIncrement calls SamplingIncrement be-
fore ExpanderIncrement, the number of started calls to
ExpanderIncrement is a lower bound on the number of
finished calls to SamplingIncrement. So from the fact
that the number of started calls to ExpanderIncrement
before the end of the call to ExpanderRead is at least

S ≥ (1 − δ)n4/5+ε/4, we have that the number of com-
pleted calls to SamplingIncrement before the start of
the call to SamplingRead is at least (1 − δ)n4/5+ε/4.
Under the assumption that 2n−ε/4 ≤ δ ≤ 1/2, we
have (1 − δ) ≥ 1/2 and nε/4 ≥ 2/δ; it follows that
(1 − δ)n4/5+ε/4 ≥ n4/5/δ, the condition under which
Theorem 2.1 applies. This gives the probability bound
claimed in the theorem.

3 Application: consensus with optimal
individual work

In this section we describe an application of our count-
ing protocol: a protocol for solving randomized consen-
sus with optimal O(n) work per process. This improves
the best previously known bound of O(n log n) of Asp-
nes et al. [5] to match the Ω(n) lower bound of Attiya
and Censor [8]. While the Attiya-Censor results showed
a tight bound of Θ(n2) on the total number of opera-
tions carried out by all processes, our is the first pro-
tocol that guarantees that this work is in fact evenly
distributed among all the processes.

We use a standard reduction [6] of randomized con-
sensus to the problem of implementing a weak shared
coin. The code for each process’s actions in the shared
coin implementation is given as Procedure SharedCoin.

The weight wi of the i-th vote is a function of the
total variance vi−1 of all previous votes, as computed in
Line 6; we discuss the choice of this formula in more
detail in the full version of this paper. The voting
operation consists of lines 6 through 9; each time the
process votes, it computes the weight wi of the next
vote, updates the total variance vi, generates a random
vote with value ±wi with equal probability, and adds
this vote to the pool votes[pid], where pid is the current
process id.

Termination can occur in one of three ways:

1. The process by itself produces enough variance to
cross the threshold (first clause of while loop test
in Line 4).

2. All processes collectively produce enough variance
for the threshold test to succeed in (Line 13).

3. The process observes that some other process has
written done (second clause of while loop test in
Line 4). This last case can only occur if some other
process previously observed sufficient total variance
to finish.

The full analysis of the shared coin protocol will
appear in a full version of this paper. Below we describe
the main tools used to obtain the time complexity and
agreement parameter of the shared coin.

shared data: array c[0..(2 log n)] of
approximate counters with
parameters δ = 1/2 and ε = 1/10,
array votes[1..n] of single-writer
registers, multi-writer bit done

i ← 0;1

v0 ← 0;2

varianceWritten ← 0;3

while vi < 1 and not done do4

i ← i + 1;5

wi = min (max(vi−1, 1/n), 1/
√

n);6

vi = vi−1 + w2
i ;7

vote = LocalCoin() · wi;8

votes[pid] ← votes[pid] + vote;9

if vi ≥ 2varianceWritten/n2 then10

ApproxIncrement(c[varianceWritten]);11

varianceWritten ← varianceWritten + 1;12

if
∑2 log n

k=0

(
2k · ApproxRead(c[k])

) ≥ 3n2
13

then
break ;14

end15

end16

end17

done ← true;18

return sgn(
∑

p votes[p]);19

Procedure SharedCoin

First, we prove properties of the weight function,
which allow us to bound the expected individual work
of each process, as stated next.

Lemma 3.1. Procedure SharedCoin executes O(n) lo-
cal coin-flips and O(n) register operations.

Next, we prove that the shared coin protocol has a
constant agreement parameter. Consider the sequence
of votes generated by all processes, ordered by the
interleaving of execution of the LocalCoin procedure.
Write Xt for the random variable representing the value
of the t-th such vote (or 0 if there are fewer than t total
votes); we thus have a sequence of votes X1, X2, We
prove upper and lower bounds on the total variance of
all the generated votes, as stated in the following lemma.

Lemma 3.2. Let T be the total number of votes gener-
ated by all processes during an execution of the shared
coin protocol, and let V =

∑T
i=1 X2

i be the total variance
of these votes. Then we have

1. Pr[V < 1] ≤ n(2 log n+1)2 exp
(
−n1/20

8

)
(1+o(1)),

2. Pr
[
V > 13 + 4

n

] ≤
≤ n(2 log n + 1) exp

(−n1/20/8
)
(1 + o(1)).

We will assume for convenience that the adversary
scheduler is deterministic, in particular that the choice
of which process generates vote Xt is completely de-
termined by the outcomes of votes X1 through Xt−1;
this assumption does not significantly constrain the ad-
versary’s behavior, because any randomized adversary
strategy can be expressed as a weighted average of de-
terministic strategies. Under this assumption, we have
that the weight |Xt| of Xt is a constant conditioned
on X1 . . . Xt−1, but because the adversary cannot pre-
dict the outcome of LocalCoin, the expectation of Xt

is zero even conditioning on the previous votes. That
E[Xt = 0|X1, . . . Xt−1] is the defining property of a
class of stochastic processes known as martingales
(see [2, 15, 17]); in particular the Xt variables form a
martingale difference sequence while the variables
St =

∑t
i=1 Xt form a martingale proper.

Martingales are a useful class of processes because
for many purposes they act like sums of independent
random variables: there is an analog of the Central
Limit Theorem that holds for martingales, [17, Theorem
3.2] which we use in the proof of Lemma 3.3; and as with
independent variables, the variance of St is equal to the
sum of the variances of X1 through Xt, [17, p. 8] a fact
we use in the proof of Lemma 3.4.

Martingales can also be neatly sliced by stopping
times, where a stopping time is a random variable τ
which is finite with probability 1 and for which the event
[τ ≤ t] can be determined by observing only the values
of X1 through Xt (see [15, Section 12.4]); the process
{S′t =

∑t
i=1 X ′

i} obtained by replacing Xt with X ′
t = Xt

for t ≤ τ and 0 otherwise, is also a martingale [15,
Theorem 12.4.5], as is the sequence S′′t =

∑t
i=1 Xτ+i

[15, Theorem 12.4.11]. We will use a stopping time to
distinguish the core and extra votes.

Define τ as the least value such that either (a)∑τ
t=1 X2

t ≥ 1 or (b) the protocol terminates after
τ votes. Observe that τ is always finite, because if
the protocol does not otherwise terminate, any process
eventually generates 1 unit of variance on its own .
Because the weights of votes vary, τ is in general a
random variable; but for a fixed adversary strategy, the
condition τ = t can be detected by observing the values
of X1 . . . Xt. Thus τ is a stopping time relative to the
Xt. The quantity Sτ will be called the core vote of the
protocol. The remaining votes Xτ+1, Xτ+2, . . . form the
extra votes.

First, we show a constant probability of the core
vote being at least a constant. This will follow by an
application of the martingale Central Limit Theorem,
particularly in the form of Theorem 3.2 from [17].

Lemma 3.3. For any fixed α and n sufficiently large,
there is a constant probability pα such that, for any

adversary strategy, Pr[Sτ ≥ α] ≥ pα.

By symmetry, we also have Pr[Sτ ≤ −α] ≥ pα.
We now consider the effect of the extra votes. Our

goal is to bound the probability that the total extra vote
is too large using Chebyshev’s inequality, obtaining a
bound on the variance of the extra votes from a bound
on the sum of the squares of the weights of all votes as
shown in Lemma 3.2, (2). There is a complication in
that (with very small probability), this latter quantity
may be too big; we deal with this by truncating the
process early (for now) and handling the rare case that
the protocol runs too long later.

Lemma 3.4. Define τ ′ to be the maximum index such
that (a) Xτ ′ 6= 0 and (b)

∑τ ′

i=1 X2
i ≤ 13 + 4/n. Let p19

be the probability from Lemma 3.3 that Sτ is at least 19.
Then for sufficiently large n and any adversary strategy,
Pr[Sτ ′ > 15] ≥ (1/8)p19.

This leads us to the final result:

Theorem 3.1. For sufficiently large n, Procedure
SharedCoin implements a weak shared coin with con-
stant agreement parameter.

4 Discussion

We have constructed an approximate counter for a
shared-memory system, that works under a strong ad-
versary which can decide upon its scheduling adaptively,
by observing the execution so far, including the results
of local coin-flips. Incrementing and reading the counter
require sublinear work, and any read operation has a
high probability of returning a value which is at most
a fraction of δ less than the number of increments that
have finished before the read started, and at most a
fraction of δ more than the number of increments that
have started before the read finished.

We have shown an application of this approximate
counter in a shared coin protocol with O(n) individual
work, and hence O(n2) total work. This implies a ran-
domized consensus protocol with the same complexities,
which improve upon the best previously known protocol
of O(n log n) individual work [5], and are tight due to
the Ω(n2) lower bound of [8].

While the approximate counter of Section 2 is highly
specialized for our particular application, the underlying
techniques seem fairly general. We believe that further
improvements could give an approximate counter with
much better complexity and fewer restrictions on its use.

The analysis of our shared coin protocol is asymp-
totic. While the O(n) individual work bound holds
with a reasonably small constant for all values of n,
the bound on the agreement parameter is proved only

for values of n that are quite large, and the agreement
parameter itself is very small. This is in contrast to the
many shared coin protocols based on unweighted vot-
ing [3,6,10,24] culminating in the O(n2) total work pro-
tocol of [8], where both the protocols and their proofs
are relatively simple, work even for small n, and give
highly respectable agreement parameters. Though the
theoretical question of the asymptotic individual work
complexity of randomized wait-free consensus is now
settled, the resulting algorithm is still likely to be quite
expensive, and it is an intriguing open question whether
a practical algorithm with linear individual work can be
obtained.

Acknowledgements: The authors would like to
thank Dana Angluin and David Eisenstat for useful discus-
sions and Hagit Attiya for many helpful comments and sug-
gestions.

References

[1] Karl Abrahamson. On achieving consensus using a
shared memory. In Proceedings of the 7th Annual ACM
Symposium on Principles of Distributed Computing
(PODC), pages 291–302, 1988.

[2] Noga Alon and Joel H. Spencer. The Probabilistic
Method. John Wiley & Sons, 1992.

[3] James Aspnes. Time- and space-efficient randomized
consensus. Journal of Algorithms, 14(3):414–431, May
1993.

[4] James Aspnes. Lower bounds for distributed coin-
flipping and randomized consensus. Journal of the
ACM, 45(3):415–450, May 1998.

[5] James Aspnes, Hagit Attiya, and Keren Censor. Ran-
domized consensus in expected O(n log n) individual
work. In Proceedings of the twenty-seventh ACM sym-
posium on Principles of distributed computing (PODC),
pages 325–334, 2008.

[6] James Aspnes and Maurice Herlihy. Fast randomized
consensus using shared memory. Journal of Algorithms,
11(3):441–461, September 1990.

[7] James Aspnes and Orli Waarts. Randomized consen-
sus in expected O(N log2 N) operations per processor.
SIAM Journal on Computing, 25(5):1024–1044, Octo-
ber 1996.

[8] Hagit Attiya and Keren Censor. Tight bounds for
asynchronous randomized consensus. In Proceedings of
the thirty-ninth annual ACM symposium on Theory of
computing (STOC), pages 155–164, 2007.

[9] Hagit Attiya, Rachid Guerraoui, Danny Hendler, and
Petr Kouznetsov. Synchronizing without locks is in-
herently expensive. In Proceedings of the twenty-fifth
annual ACM symposium on Principles of distributed
computing (PODC), pages 300–307, 2006.

[10] Gabriel Bracha and Ophir Rachman. Randomized con-
sensus in expected O(n2 log n) operations. In Sam
Toueg, Paul G. Spirakis, and Lefteris M. Kirousis, ed-

itors, Distributed Algorithms, 5th International Work-
shop, volume 579 of Lecture Notes in Computer Sci-
ence, pages 143–150, Delphi, Greece, 7–9 October 1991.
Springer, 1992.

[11] Faith Ellen Fich, Danny Hendler, and Nir Shavit.
Linear lower bounds on real-world implementations of
concurrent objects. In Proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 165–173, 2005.

[12] Michael J. Fischer, Nancy A. Lynch, and Michael S.
Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382,
April 1985.

[13] Philippe Flajolet. Approximate counting: a detailed
analysis. BIT, 25(1):113–134, 1985.

[14] Philippe Flajolet and G. Nigel Martin. Probabilistic
counting algorithms for data base applications. J.
Comput. Syst. Sci., 31(2):182–209, 1985.

[15] G. R. Grimmet and D. R. Stirzaker. Probability and
Random Processes. Oxford Science Publications, 2nd
edition, 1992.

[16] Venkatesan Guruswami, Christopher Umans, and Salil
Vadhan. Unbalanced expanders and randomness ex-
tractors from Parvaresh-Vardy codes. In Proceedings of
the 22nd Annual IEEE Conference on Computational
Complexity (CCC ‘07), pages 96–108, June 2007.

[17] P. Hall and C.C. Heyde. Martingale Limit Theory and
Its Application. Academic Press, 1980.

[18] Maurice Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and Systems,
13(1):124–149, January 1991.

[19] Maurice P. Herlihy and Jeannette M. Wing. Lin-
earizability: a correctness condition for concurrent ob-
jects. ACM Transactions on Programming Languages
and Systems, 12(3):463–492, July 1990.

[20] Shlomo Hoory, Nathan Linial, and Avi Wigderson.
Expander graphs and their applications. Bulletin
(new series) of the American Mathematical Society,
43(4):439–561, October 2006.

[21] Michael C. Loui and Hosame H. Abu-Amara. Mem-
ory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research,
pages 163–183, 1987.

[22] Michael Mitzenmacher and Eli Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.

[23] Robert Morris. Counting large numbers of events in
small registers. Commun. ACM, 21(10):840–842, 1978.

[24] Michael Saks, Nir Shavit, and Heather Woll. Opti-
mal time randomized consensus—making resilient al-
gorithms fast in practice. In Proceedings of the 2nd
annual ACM-SIAM symposium on Discrete algorithms
(SODA), pages 351–362, 1991.

[25] Nicholas C. Wormald. The differential equation
method for random graph processes and greedy algo-
rithms. In M. Karonski and H. J. Proemel, editors, Lec-
tures on Approximation and Randomized Algorithms,
pages 73–155. PWN, 1999.

