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ABSTRACT
In this paper we study gossip based information spreading
with bounded message sizes. We use algebraic gossip to
disseminate k distinct messages to all n nodes in a network.
For arbitrary networks we provide a new upper bound for
uniform algebraic gossip of O((k+logn+D)∆) rounds with
high probability, where D and ∆ are the diameter and the
maximum degree in the network, respectively. For many
topologies and selections of k this bound improves previous
results, in particular, for graphs with a constant maximum
degree it implies that uniform gossip is order optimal and
the stopping time is Θ(k +D).

To eliminate the factor of ∆ from the upper bound we pro-
pose a non-uniform gossip protocol, TAG, which is based on
algebraic gossip and an arbitrary spanning tree protocol S.
The stopping time of TAG is O(k+logn+d(S)+t(S)), where
t(S) is the stopping time of the spanning tree protocol, and
d(S) is the diameter of the spanning tree. We provide two
general cases in which this bound leads to an order optimal
protocol. The first is for k = Ω(n), where, using a simple
gossip broadcast protocol that creates a spanning tree in
at most linear time, we show that TAG finishes after Θ(n)
rounds for any graph. The second uses a sophisticated, re-
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cent gossip protocol to build a fast spanning tree on graphs
with large weak conductance. In turn, this leads to the op-
timally of TAG on these graphs for k = Ω(polylog(n)). The
technique used in our proofs relies on queuing theory, which
is an interesting approach that can be useful in future gossip
analysis.

1. INTRODUCTION
One of the most basic information spreading applications

is that of disseminating information stored at a subset of
source nodes to a set of sink nodes. Here we consider the
k-dissemination case: k initial messages (k ≤ n) located at
some nodes (a node can hold more than one initial message)
need to reach all n nodes. The all-to-all communication –
each of n nodes has an initial value that is needed to be dis-
seminated to all nodes – is a special case of k-dissemination.
The goal is to perform this task in the lowest possible num-
ber of time steps when messages have limited size (i.e., a
node may not be able to send all its data in one message).

Gossiping, or rumor-spreading, is a simple stochastic pro-
cess for dissemination of information across a network. In
a synchronous round of gossip, each node chooses a single
neighbor as the communication partner and takes an ac-
tion. In an asynchronous time model a single node wake-up
and chooses the communication partner and n consecutive
steps are considered as one round. The gossip communica-
tion model defines how to select this neighbor, e.g., uniform
gossip is when the communication partner is selected uni-
formly at random from the set of all neighbors. We then
consider three possible actions: either the node pushes in-
formation to the partner (PUSH), pulls information from the
partner (PULL), or does both (EXCHANGE), but here we mostly
present results about EXCHANGE.

A gossip protocol uses a gossip communication model in
conjunction with the choice of the particular content that
is exchanged. Due to their distributed nature, gossip proto-
cols have gained popularity in recent years and have found



applications both in communication networks (for example,
updating database replicated at many sites [9, 14], computa-
tion of aggregate information [15] and multicast via network
coding [8], to name a few) as well as in social networks [16,
6].

In the current work we analyze algebraic gossip which
is a type of network coding known as random linear cod-
ing (RLNC) [18, 17] that uses gossip algorithms for all-to-
all communication and k-dissemination. In algebraic gos-
sip the content of messages is the random linear combina-
tion of all messages stored at a sender. Once a node has
received enough independent messages (independent linear
equations) it can solve the system of linear equations and
discover all the initial values of all other nodes. It has been
proved [13] that network coding can improve the throughput
of the network by better sharing of the network resources.
Note, however, that in gossip protocols, nodes select a single
partner, so for k-dissemination to succeed each node needs to
receive at least k messages (of bounded size), hence at least
a total of kn messages need to be sent and received. This
immediately leads to a trivial lower bound of Ω(k) rounds
for k-dissemination.

We study uniform and non-uniform algebraic gossip both
in the synchronous and the asynchronous time models on
arbitrary graph topologies. The stopping time obviously
depends on the protocol, the gossip communication model,
the graph topology, but also on the time model, as shown
in other cases [11]. We now give an overview of our results
followed by a discussion of previous work.

1.1 Overview of Our Results
Our first set of results is about the stopping time of uni-

form algebraic gossip. In [2] we have shown a tight bound of
Θ(n) for all-to-all communication for graphs with constant
maximum degree. To prove this, we used a reduction of gos-
sip to a network of queues and analyzed the waiting times
in the queues. Bounding the general k-dissemination case
is significantly harder, despite some similarity in the tools
used. Unless explicitly stated, all our results are for gossip
using EXCHANGE and are with high probability∗.

We provide a novel upper bound for uniform algebraic
gossip of O((k + logn+D)∆) where D is the diameter and
∆ is the maximum degree in the graph. For graphs with
constant maximum degree this leads to a bound of O(k+D).
For the synchronous case we have a matching lower bound
of Ω(k +D) which makes uniform algebraic gossip an order
optimal gossip protocol for these graphs. We conjecture
that the optimality holds for the asynchronous time model
as well, but only show it when k = Ω(D).

However, there are topologies for which uniform algebraic
gossip performs badly, e.g., in the barbell graph (two cliques
connected with a single edge) it takes Ω(n2) rounds to per-
form all-to-all communication [2]. This is usually the re-
sult of bottlenecks that exist in the graph and lead to low
conductance. For such ”bad” topologies we propose here
a modification of the uniform algebraic gossip called Tree
based Algebraic Gossip (TAG). The basic idea of the pro-
tocol is that it operates in two phases: first, using a gossip
protocol S it generates a spanning tree in which each node
in the tree has a single parent. In the next phase, algebraic
gossip is performed on the tree where each node does EX-

∗An event occurs with high probability (w.h.p. ) if its prob-
ability is of at least 1−O( 1

n
).

CHANGE with its parent. Let t(S) and d(S) be the stopping
time of S and the diameter of the tree generated by S, re-
spectively. For any spanning tree gossip protocol S we prove
for TAG an upper bound of: O(k + logn+ d(S) + t(S)) for
the synchronous and the asynchronous time models. As a
special case of a spanning tree protocol, one can use a gos-
sip broadcast (or 1-dissemination) protocol B – a protocol
in which a single message originated at some node should
be disseminated to all nodes. Interestingly, using a gos-
sip broadcast for the spanning tree construction in TAG,
eliminates the dependence on the diameter of the spanning
tree in the synchronous time model, i.e., if we use B as S,
we obtain the bound of O(k + logn + t(B)) rounds. For
a general spanning tree protocol S, it follows directly that
if k = Ω(max(logn, d(S), t(S))), TAG is an order optimal
with a stopping time of Θ(k). We provide two examples
of this scenario: the first example leads to the most signifi-
cant result of the paper. Using a simple round-robin-based
broadcast we show that TAG is an order optimal gossip pro-
tocol for k-dissemination in any topology when k = Ω(n).
This imply, somewhat surprisingly, that for any graph, if
k = Ω(n), TAG finishes in Θ(n) rounds. In the barbell
graph mentioned above, TAG leads to a speedup ratio of
n compared to the uniform algebraic gossip. The second
example makes use of a recent non-uniform information dis-
semination protocol from [5] that works well on graphs G
with large weak conductance denoted by Φc(G) for a param-
eter c (see Section 6). We provide sufficient conditions on
k, c and Φc(G) that make TAG order optimal when using
the protocol of [5] as a spanning tree protocol. Table 1 sum-
marizes our main results of the paper and next, we discuss
previous results.

1.2 Related Work
Uniform algebraic gossip was first proposed by Deb et al.

in [8]. The authors studied uniform algebraic gossip using
PULL and PUSH on the complete graph and showed a tight
bound of Θ(k), for the case of k = ω(log3(n)) messages.
Boyd et al. [3, 4] studied the stopping time of a gossip
protocol for the averaging problem using the EXCHANGE al-
gorithm. They gave a bound for symmetric networks that
is based on the second largest eigenvalue of the transition
matrix or, equally, the mixing time of a random walk on
the network, and showed that the mixing time captures the
behavior of the protocol. Mosk-Aoyama and Shah [20] used
a similar approach to [3, 4] to first analyze algebraic gossip
on arbitrary networks. They consider symmetric stochas-
tic matrices that (may) lead to a non-uniform gossip and
gave an upper bound for the PULL algorithm that is based
on a measure of conductance of the network. As the authors
mentioned, the offered bound is not tight, which indicates
that their conductance-based measure does not capture the
full behavior of the protocol.

In [2], we used queuing theory as a novel approach for an-
alyzing algebraic gossip. We then gave an upper bound of
O(n∆) rounds for any graph for the case of all-to-all commu-
nication, where ∆ is the maximum degree in the graph. In
addition, a lower bound of Ω(n2) was obtained for the bar-
bell graph – the worst case graph for algebraic gossip. The
bounds (upper and lower) in [2] were tight in the sense that
they matched each other for the worst case scenario. The
parameter ∆ is simple and convenient to use, but, it does
not fully capture the behavior of algebraic gossip. While it



Protocol Graph Synchronous Asynchronous

Uniform AG
any graph O((k + logn+D)∆)

constant max degree Θ(k + D) O(k +D) (*)

TAG

any graph
O(k + logn+ d(S) + t(S))

O(k + logn+ t(B)) O(k + logn+ d(B) + t(B))

k = Ω(n), any graph Θ(n)

c = O(logp (n))
Θ(k) O(k + d(IS)) (**)

k = Ω(log2p+3 (n))

Table 1: Overview of the main results of the paper. Bold text and Θ indicate order optimal result. (*) we
prove an upper bound but conjecture it is optimal. (**) we prove the upper bound but conjecture it should
be Θ(k). S is a spanning tree protocol, B is a broadcast protocol, and IS is an information dissemination
gossip protocol from [5].

gives optimal (Θ(n)) result for any constant-degree graphs
(e.g., line, grid), it fails to reflect the stopping time of alge-
braic gossip on the complete graph, for example, by giving
the O(n2) bound instead of O(n).

A recent (yet, unpublished) work of Haeupler [12] is the
most related to our work. Haeupler’s paper makes a signif-
icant progress in analyzing the stopping time of algebraic
gossip. While all previous works on algebraic gossip used
the notion of helpful message/node to look at the rank eval-
uation of the matrices each node maintains (this approach
was initially proposed by [8]), Haeupler used a completely
different approach. Instead of looking on the growth of the
node’s subspace (spanned by the linear equations it has),
he proposed to look at the orthogonal complement of the
subspace and then analyze the process of its disappearing.
This elegant and powerful approach led to very impressive
results. First, a tight bound of Θ(n/γ) was proposed for
all-to-all communication, where γ is a min-cut measure of
a related graph. This bound perfectly captures algebraic
gossip behavior for any network topology. For the case of
k-dissemination, the author gives a conjecture that the up-
per bound is of the form of O(k+T ) where T is the time to
disseminate a single message to all the nodes. But formally,
the bound that is proved is O(k/γ + log2 n/λ) where λ is
a conductance-based measure of the graph (Lemma 7.6 in
[12]). The work in [12] implicitly considered the uniform al-
gebraic gossip, but could be extended to non-uniform cases.
It is therefore hard to compare TAG to the results of [12],
nevertheless, our bounds for the uniform algebraic gossip are
better for certain families of graphs. Table 2 presents few
such examples.

To give a quick summary of our results and previous work,
the two main contributions of the paper are i) we prove
that for graphs with constant maximum degree uniform al-
gebraic gossip is order optimal for k-dissemination in the
synchronous time model and ii) we offer a new non-uniform
algebraic gossip protocol, TAG, that is order optimal for
large selections of graphs and k. The rest of the paper is or-
ganized as follows: in Section 2 we give definitions. Section
3 proves results for uniform algebraic gossip and Section 4
presents the TAG protocol and its general bound. Sections
5 and 6, then, discuss cases where TAG is optimal.

2. PRELIMINARIES
We model the communication network by a connected

undirected graph Gn = Gn(V,E), where V is the set of

vertices and E is the set of edges. The number of vertices in
the graph is |V | = n. Let N(v) ⊆ V be a set of neighbors of
node v and dv = |N(v)| its degree, let ∆ = maxv dv be the
maximum degree of Gn, and let D be the diameter of the
graph.

We consider two time models: asynchronous and syn-
chronous. In the asynchronous time model at every times-
lot, one node selected independently and uniformly at ran-
dom, takes an action and a single pair of nodes communi-
cates†. We consider n consecutive timeslots as one round. In
the synchronous time model at every round, every node
takes an action and selects a single communication partner.
It is assumed that the information received in the current
round will be available to a node for sending only at the
beginning of the next round. A Gossip communication
model (sometimes called gossip algorithm) defines the way
information is spread in the network. In the gossip commu-
nication model, a node that wakes up (according to the time
model) can initiate communication only with a single neigh-
bor‡ (i.e., communication partner). The model describes
how the communication partner is chosen and in which di-
rection (to – PUSH, from –PULL, or both – EXCHANGE) the
message is sent. In this work we use the following commu-
nication models:

Definition 1 (Uniform Gossip). Uniform gossip is a
gossip in which a communication partner is chosen randomly
and uniformly among all the neighbors.

Definition 2 (Round-Robin (RR) Gossip). In round-
robin gossip, the communication partner is chosen according
to a fixed, cyclic list, of the nodes’ neighbors. This list dic-
tates the order in which neighbors are being contacted. If the
initial partner is chosen at random, this gossip communica-
tion model is known as the quasirandom rumor spreading
model[1, 10].

2.1 Gossip Protocols
Gossip protocols define the task and the message content.

In turn, a gossip protocol can use any of the gossip com-
munication models defined above (and others). We will use

†Alternatively, this model can be seen as each node having
a clock which ticks at the times of a rate 1 Poisson process
and there is a total n clock ticks per round [3].
‡Note that this implies that in the synchronous model a
node can communicate with more than a single neighbor, if
other nodes initiate communication with it.



Graph O(k/γ + log2 n/λ)/n [12] O((k + logn+D)∆) [here] Improvement factor

Line O(k + n log2 n) O(k + n) log2 n

Grid O(k +
√
n log2 n) O(k +

√
n) log2 n for k = O(

√
n)

Binary Tree O(k + n log2 n) O(k + logn) Ω(n logn
k

)

Table 2: Comparison of our results with [12]

two types of gossip protocols here. The first is STP Gos-
sip – protocols whose task is to create a spanning tree of
the graph. The goal of a Gossip STP protocol S is that ev-
ery node, except a node which is the root, will have a single
neighbor called the parent. Note that one simple way to gen-
erate a spanning tree is by using a 1-dissemination protocol,
namely a broadcast protocol.

The second protocol, is a k-dissemination protocol called
Algebraic Gossip. In algebraic gossip, every message sent
by a node is sent according to the random linear coding
(RLNC) technique which is described next. As mentioned,
algebraic gossip can use any of the communication models
presented above.

2.2 Random Linear Network Coding (RLNC)
The random linear network coding approach is used in al-

gebraic gossip for building outgoing messages to achieve fast
information dissemination. Let Fq be a field of size q. There
are k ≤ n initial messages (x1, ..., xk) that are represented
as vectors in Frq. We can represent every message as an in-
teger value bounded by M , and therefore, r =

⌈
logq(M)

⌉
.

All transmitted messages have a fixed length and represent
linear equations over Fq. The variables (unknowns) of these
equations are the initial values xi ∈ Frq, 1 ≤ i ≤ k and a
message contains the coefficients of the variables and the re-
sult of the equation; therefore the length of each message is:
r log2 q+ k log2 q bits (and it is usually assumed that r � n
[8]). A message is built as a random linear combination of all
messages stored by the node and the coefficients are drawn
uniformly at random from Fq. A received message will be
appended to the node’s stored messages only if it is inde-
pendent of all linear equations (messages) that are already
stored by the node and otherwise it is ignored. Nodes store
messages (linear equations) in a matrix form and once the
dimension (or rank) of the matrix becomes k, a node can
solve the linear system and discover all the k messages.

The following definition is necessary for understanding the
concept of helpfulness in the analysis of algebraic gossip.

Definition 3 (Helpful node and helpful message).
We say that a node x is a helpful node to a node y if and
only if a random linear combination constructed by x can be
linearly independent with all equations (messages) stored in
y. We call a message a helpful message if it increases the
dimension (or rank) of the node (i.e., the rank of the matrix
in which the node stores the messages).

3. K-DISSEMINATION WITH UNIFORM
ALGEBRAIC GOSSIP

The main result of this section is that uniform algebraic
gossip is order optimal k-dissemination for graphs with con-
stant maximum degree and for any selection of k. It is for-
mally stated in Theorem 3 and is an almost direct result of
the following general bound for uniform algebraic gossip:

Theorem 1. For any connected graph Gn, the stopping
time of the uniform algebraic gossip protocol with k mes-
sages is O((k + logn + D)∆) rounds for synchronous and
asynchronous time models w.h.p.

The idea of the proof relies on the queuing networks tech-
nique we presented in [2]. The major steps of the proof are:

• Perform a Breath First Search (BFS) on Gn starting
at an arbitrary node v. The search results in a directed
shortest path spanning tree Tn rooted at v. The max-
imum depth lmax of the tree Tn rooted at v is at most
D.

• Reduce the problem of algebraic gossip on a tree Tn to
a simple system of queues Qtreen rooted at v, where at
each node we assume an infinite queue with a single
server. Every initial message becomes a customer in
the queuing system. The root v finishes once all the
customers arrive at it.

• Show that the stopping time of the tree topology queu-
ing system – Qtreen , is O((k+logn+lmax)n∆) timeslots
w.h.p. So, we obtain the stopping time for the node v.

• Use union bound to obtain the result for all the nodes
in Gn.

Just before we start the formal proof of Theorem 1, we
present an interesting theorem related to queuing theory.
The theorem gives the stopping time of the feedforward
queuing system [7] arranged in a tree topology. Consider
the following scenario: n identical M/M/1 queues arranged
in a tree topology. There are no external arrivals, and there
are k customers arbitrarily distributed in the system. In
the feedforward network, a customer can not enter the same
queue more than once, thus, customers eventually leave the
system via the queue at the root of the tree. We ask the
following question: how much time will it take for the last
customer to leave the system?

Theorem 2. Let Qtreen be a network of n nodes arranged
in a tree topology, rooted at the node v. The depth of the
tree is lmax. Each node has an infinite queue, and a single
exponential server with parameter µ. The total amount of
customers in the system is k and they are initially distributed
arbitrarily in the network. The time by which all the cus-
tomers leave the network via the root node v is t(Qtreen ) =
O((k+ lmax + logn)/µ) timeslots with probability of at least
1− 2

n2 .

The main idea of the proof is to show that the stopping
time of the network Qtreen (i.e., the time by which all the cus-
tomers leave the network) is stochastically§ smaller or equal

§For completeness, stochastic dominance is formally defined
in appendix.



to the stopping time of the systems of lmax queues arranged
in a line topology – Qlinelmax

. Then, we make the system Qlinelmax

stochastically slower by moving all the customers out of the
system and make them enter back via the farthest queue
with the rate λ = µ/2. Finally, we use Jackson’s Theorem
for open networks to find the stopping time of the system.
See Fig. 1 for the illustration. The full proof of the above
theorem can be found in the appendix. We can now prove
Theorem 1.

Proof Proof of Theorem 1. We start the analysis of
the uniform algebraic gossip with k messages and the asyn-
chronous time model. First, we perform a Breath First
Search (BFS) on Gn starting at an arbitrary node v. The
search results in a directed shortest path spanning tree Tn
rooted at v. The depth of Tn is lmax, and since Tn is the
shortest path tree, lmax ≤ D, where D is the diameter of
the graph. On the tree Tn, consider a message flow towards
the root v from all other nodes. Once k helpful messages
arrive at v, it will reach rank k and finish the algebraic gos-
sip protocol. We ignore messages that are not sent in the
direction of v. Ignoring part of messages can only increase
the stopping time of the algebraic gossip protocol.

We define a queuing system Qtreen by assuming an infinite
queue with a single server at each node. The root of Qtreen

is the node v. Customers of our queuing network are helpful
messages, i.e., messages that increase the rank of a node
they arrive at. This means that every customer arriving at
some node increases its rank by 1. When a customer leaves
a node, it arrives at the parent node. The queue length of a
node represents a measure of helpfulness of the node to its
parent, i.e., the number of helpful messages it can generate
for it.

The service procedure at a node is a transmission of a help-
ful message towards the node v (from a node to its parent).
Lemma 2.1 in [8] gives a lower bound for the probability of a
message sent by a helpful node to be a helpful message, which
is: 1− 1

q
. In the uniform gossip communication model, the

communication partner of a node is chosen randomly among
all the node’s neighbors in the original graphGn. The degree
of each node in Gn is at most ∆. Thus, in the asynchronous
time model, in a given timeslot, a helpful message will be
sent over the edge in a specific direction with probability
of at least (1 − 1

q
)/n∆, where 1

n
is the probability that a

given node wakes up in a given timeslot, 1
∆

is the minimal
probability that a specific partner (the parent of the node)
will be chosen, and 1− 1

q
is the minimal probability that the

message will be helpful. Thus, we can consider that the ser-
vice time in our queuing system is geometrically distributed
with parameter p ≥ (1 − 1

q
)/n∆, and since q ≥ 2, we can

assume the worst case: p = 1
2n∆

.
Lemma 2 in [2] shows that we can model the service time

of each server as an exponential random variable with pa-
rameter µ = p, since in this case, exponential servers are
stochastically slower than geometric. Such an assumption
can only increase the stopping time.

Theorem 2 with µ = p gives us an upper bound for the
stopping time of the node v, tv = O((k + lmax + log n)2n∆)
timeslots with probability of at least 1− 2

n2 . Since the depth
of every BFS tree is bounded by the diameter D, using a
union bound we obtain the upper bound (in timeslots) for

all the nodes in Gn:

Pr

(⋂
v∈V

tv = O((k + logn+D)2n∆)

)
> 1− 2

n
. (1)

Thus we obtain the upper bound for uniform algebraic
gossip: O((k + logn + D)∆) rounds. Next, we show that
this bound holds also for the synchronous time model. The
proof for the synchronous time model is almost the same as
in the asynchronous case, except for the following change.
Instead of dividing time into timeslots, we measure it by
rounds (1 round = n timeslots). In a given round, a help-
ful message will be sent over the edge in a specific direction
with probability p ≥ (1− 1

q
)/∆, where the 1

∆
is the minimal

probability that a specific partner (the parent of the node)
will be chosen, and 1 − 1

q
is the minimal probability that

the message will be helpful. Since q ≥ 2, we can assume the
worst case: p = 1

2∆
. The difference from the asynchronous

model is the factor of n in p, since in the synchronous model,
every node wakes up exactly once in a each round. More-
over, in the synchronous case (and in the EXCHANGE gossip
variation) there is a possibility to receive 2 messages from
the same node in one round (in the asynchronous time model
it was impossible to receive 2 messages from the same node
in one timeslot). We assume that if a node receives 2 mes-
sages from the same node at the same round, it will discard
the second one. Such an assumption can only increase the
stopping time of the protocol, and will make our analysis
simpler. From that point on, the analysis is exactly the
same as in the asynchronous case since Theorem 2 does not
depend on the time model.

3.1 Optimality for Constant Maximum Degree
Graphs and Synchronous Time

Following Theorem 1 we can state the main results of the
section:

Theorem 3. For any connected graph Gn with constant
maximum degree, the stopping time of the uniform alge-
braic gossip protocol with k messages is Θ(k + D) in the
synchronous time and O(k + D) in the asynchronous time
w.h.p.

Proof. To show the upper bound the following simple
claim is proved in the appendix:

Claim 1. For any connected graph Gn with a constant
maximum degree (∆ = O(1)), the diameter of Gn is Ω(logn).

Now, using Claim 1 and fact that the maximum degree is
constant the upper bound follows. For the lower bound
note that in order to disseminate k messages to n nodes, at
least kn transmissions should occur in the network. In syn-
chronous time model, kn transmissions require at least k/2
rounds, since every round at most 2n messages are sent (2
transmissions per communication pair). In the asynchronous
time model, kn transmissions require at least kn/2 times-
lots, since at each timeslot at most 2 nodes transmit (due
to EXCHANGE). Thus, in both time models, Ω(k) rounds are
required. Moreover, in the synchronous time model, dissem-
ination of a single message will take at least D/2 rounds,
since in this model, a message can travel at most one hop
in a single round. So, for the synchronous time model, the
bound Θ(k +D) is tight and optimal.
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Figure 1: Reduction of AG to a system of queues. (a) – Initial graph Gn. (b) – Spanning tree Tn. (c) – System of

queues Qtreen . (d) – System of queues Qlinelmax
. Stopping time of Qlinelmax

is larger than of Qtreen . (e)–Taking all customers

out of the system and use Jackson theorem for open networks.

Protocol TAG Pseudo code for node v. Example for
asynchronous time model.

Require: N(v), k, gossip spanning tree protocol S
Initialize: parent = null

On odd wakeup: // Phase 1: EXCHANGE gossip
spanning tree protocol S

1: choose parter u ∈ N(v) and exchange messages with it
according to S

2: according to S decide if parent = u

On even wakeup: // Phase 2: EXCHANGE algebraic
gossip

3: if obtained parent during the protocol S then
4: exchange messages with parent according to alge-

braic gossip (RLNC)

On contact from other node w ∈ N(v):
5: if w performs Phase 1 then
6: exchange messages with w according to S
7: according to S decide if parent = w
8: else(w performs Phase 2)
9: exchange messages with w according to algebraic gos-

sip (RLNC)

4. TAG: K-DISSEMINATION WITH
TREE-BASED ALGEBRAIC GOSSIP

We now describe the protocol TAG (Tree based Algebraic
Gossip), which is a k-dissemination gossip protocol that ex-
ploits algebraic gossip in conjunction with a spanning tree
gossip protocol S (see Sec. 2). Given a connected network of
n nodes and k messages x1, ..., xk that are initially located at
some nodes, the goal of the protocol TAG is to disseminate
all the k messages to all the n nodes. The protocol consists

of two phases. Both phases are performed simultaneously in
the following way: if a node wakes up when the total number
of its wakeups until now is even, it acts according to Phase 1
of the protocol. If the node wakes up when the total number
of its wakeups until now is odd, it acts according to Phase
2 of the protocol.

• In Phase 1, a node performs a spanning tree gossip pro-
tocol S. Once a node becomes a part of the spanning
tree, it obtains a parent.

• In Phase 2, a node is idle until it obtains a parent
in Phase 1. From now on, in Phase 2, the node will
perform an EXCHANGE algebraic gossip protocol with a
fixed communication partner – its parent.

The following theorem gives an upper bound on the stop-
ping time of the protocol TAG.

Theorem 4. Let t(S) be the stopping time of the gossip
spanning tree protocol S performed at Phase 1, and let d(S)
be the diameter of the spanning tree created by S. For any
connected graph Gn, the stopping time of the k-dissemination
protocol TAG, is:

t(TAG) = O(k + logn+ d(S) + t(S)) rounds (2)

for synchronous and asynchronous time models, and w.h.p.

Proof. In order to prove this theorem, we will find the
time needed to finish TAG, after Phase 1 is completed. Once
Phase 1 is completed, every node knows its parent and thus,
in Phase 2, we have the algebraic gossip EXCHANGE protocol
on the spanning tree Tn, where communication partners of
the nodes are their parents. The following lemma gives an
upper bound on the stopping time of such a setting.

Lemma 1. Let Tn be a tree with n nodes, rooted at the
node r, with depth lmax. There are k initial messages lo-
cated at some nodes in the tree. Consider algebraic gossip



EXCHANGE protocol with the following communication model:
the communication partner of a node is fixed to be its parent
in Tn during the whole protocol. Then, the time needed for
all the nodes to learn all the k messages is O(k + logn +
lmax) rounds for the synchronous and asynchronous time
models, with probability of at least 1− 2

n
.

The proof of Lemma 1 is very similar to the proof of Theo-
rem 1, and relies on reducing the problem of algebraic gossip
to a simple system of queues. The service time is geometri-
cally distributed with a worst-case parameter p = 1

2n
. The

∆ is eliminated from p since each node chooses now a single
communication partner. Then, using Theorem 2 we obtain
the stopping time of algebraic gossip with on the tree Tn.
Detailed proof of Lemma 1 can be found in appendix.

Since for every choice of the tree root, the depth of the
tree Tn (which was created using protocol t(S)) is bounded
by its diameter, we can replace the lmax in the bound O(k+
logn+lmax)) with d(S). Now, we just add the stopping time
of Phase 1 (the spanning tree time – t(S)) and the stopping
time of Phase 2 (after Phase 1 has finished), and obtain that
the number of rounds needed to complete the protocol TAG
is O(k + logn+ d(S) + t(S)) w.h.p.

4.1 TAG protocol using 1-dissemination as a
spanning tree protocol

The spanning tree task can be successfully performed by a
simple gossip broadcast (or 1-dissemination) protocol. When
a node receives for the first time the message, it marks the
sending node as its parent. In such a way we obtain a span-
ning tree rooted at the node that initiated the broadcast
protocol. Let us denote a gossip 1-dissemination protocol
as B. Clearly, the result of Theorem 4 can be rewritten as:
t(TAG) = O(k+ logn+ d(B) + t(B)). An interesting obser-
vation regarding the broadcast protocol B, is that for syn-
chronous time model the depth of the broadcast tree cannot
be larger that the broadcast time (measured in rounds), i.e.,
t(B) ≥ d(B). The last is true since a message can not travel
more than one hop in a single round. Thus, for the syn-
chronous time model we obtain that the number of rounds
needed to complete the TAG protocol w.h.p. is:

t(TAG) = O(k + logn+ t(B)). (3)

5. OPTIMAL ALL-TO-ALL
DISSEMINATION USING TAG

In this section we propose to use the TAG protocol in
conjunction with a 1-dissemination (or broadcast) gossip
protocol BRR for spanning tree construction. For the case
where k = Ω(n) messages need to be disseminated, TAG
with BRR achieves order optimal performance. For the case
k = Ω(n) the lower bound of any gossip dissemination pro-
tocol is Ω(n) rounds. The bound from Theorem 4 gives
t(TAG) = O(k+logn+d(S)+ t(S)), and if k = n we obtain
O(n+ t(S)). Thus, all we need to show is the existence of a
gossip spanning tree protocol that finishes after O(n) rounds
w.h.p. on any graph.

Theorem 5. For any connected graph Gn, the stopping
time of the broadcast protocol with the round-robin com-
munication model – BRR is O(n) rounds. In the asyn-
chronous time model, this result holds with probability of at
least 1−n(2/e)3n, and in the synchronous time model, with
probability 1.

In order to prove Theorem 5 we need the following lemma
which is proved in the appendix.

Lemma 2. For any connected graph Gn with n nodes, the
sum of the degrees of the nodes along any shortest path be-
tween any two nodes v and u is at most 3n.

Proof Proof of Theorem 5. In this proof we assume
the PUSH gossip variation, but it is clear that the result holds
also for EXCHANGE. Without loss of generality, assume that
the message that needs to be disseminated is initially located
at the node v. In the round-robin gossip, when a node is
scheduled to transmit, it transmits a message to its neighbor
according to the round robin scheme.

Consider a shortest path between v and some other node
u. On the shortest path of length l there is exactly one node
at the distance i from v, where i ∈ [0, . . . , l], and l ≤ n− 1.
Let di be the degree of the node at distance i from v. In order
to guarantee the delivery of the message from v to u, we need∑l
i=0 di transmissions in the following order: first, we need

d0 transmissions of the node v, then d1 transmissions of the
next node in the path v → u, and so on until the message is
delivered to u. From Theorem 2,

∑l
i=0 di ≤ 3n.

In the asynchronous model, a node transmits at a given
timeslot with probability 1

n
. So, the number of timeslots

until some specific node transmits is a geometric random
variable with parameter 1

n
. We define this geometric random

variable as X, i.e., X ∼ Geom
(

1
n

)
.

The number of timeslots until 3n specific transmissions
occur, is the sum of 3n independent geometric random vari-
ables. Using a Chernoff bound we obtain O(n2) timeslots
(or O(n) rounds) with exponential high probability. The
last allows us to perform union bound for shortest paths to
all other nodes in G, thus obtaining the O(n) bound for the
broadcast time. We omit here the formal part of the proof.
The full proof can be found in the appendix.

It is easy to see that in the synchronous time model, 3n
specific transmissions will occur exactly after 3n communi-
cation rounds. E.g., after d0 rounds, v will perform d0 trans-
missions – each one to different neighbor (according to the
round-robin scheme). Thus, the message will be delivered
to u after at most 3n rounds with probability 1.

Using Theorems 4 and 5 we obtain the upper bound on
the stopping time of TAG with BRR as a spanning tree
construction protocol: O(k+logn+d(S)+n) which is Θ(n)
for k = Ω(n).

6. GRAPHS WITH LARGE WEAK
CONDUCTANCE

For values of k which are smaller than n we use the in-
formation spreading protocol (hereafter, IS) of [5], which
requires only a polylogarithmic number of rounds for broad-
cast on graphs with large weak conductance. Roughly speak-
ing, the weak conductance is a value in [0, 1] that measures
the connectivity of subsets of nodes of a graph. It has been
used to analyze the time required for partial information
spreading, where each message is only required to reach some
fraction of the nodes. This, in turn, has been applied in the
analysis of the IS protocol to show that the running time for
full information spreading inversely depends on the weak
conductance. The graphs with large weak conductance, for
which the IS protocol is fast, form a broad family of graphs,
including graphs that exhibit some (though not too many)



communication bottlenecks. A simple example is the bar-
bell graph, consisting of two cliques of n/2 nodes, connected
by a single edge, which corresponds to a bottleneck since
information must pass along it, but the probability of ran-
domly choosing it is small due to large node degrees. The IS
protocol overcomes this and runs in a logarithmic number
of synchronous rounds on the barbell.

Formally, for an integer c, the weak conductance of a
graph G = (V,E) is defined as:

Φc(G) = min
i∈V

{
max

Vi⊆V,i∈Vi,|Vi|≥n
c

{
min

S⊆Vi,|S|≤
|Vi|
2

ϕ(S, Vi)

}}
,

where ϕ(S, V ) is defined as

ϕ(S, V ) =

∑
i∈S,j∈V \S Pi,j

|S|

We describe the result in this section for both the syn-
chronous and asynchronous time models considered. Al-
though the IS protocol is designed to disseminate n messages
originating one at each node, we will only use it for obtaining
a spanning tree of our communication graph, while the ac-
tual information dissemination is done using algebraic gossip
(i.e., we use the TAG protocol with IS as the spanning tree
construction protocol). This is since the IS protocol sends
large messages, while the goal of algebraic gossip is to ad-
dress bandwidth concerns. The spanning tree is constructed
as follows. The information sent by a node v is an n-bit
string, characterizing the nodes from which v heard from,
whether directly or indirectly. This corresponds to empty
initial inputs, and initially the n-bit string of node v is a
unit vector, characterizing only the empty input of the node
v itself. The n-bit string maintained and sent by a node
v is monotone, in the sense that as time passes, its entries
can only change from zero to one. The spanning tree that
is created corresponds to each node v declaring its parent
as the first node u from which it received a message that
caused its most significant bit to change from zero to one.
This means that this node received the input of the node
w corresponding to the most significant bit (recall that the
input itself is an empty string).

The following theorem characterizes the time required for
the IS protocol to complete.

Theorem 6 ( [5, Theorem 4.1]). For every c > 1 and
every δ ∈ (0, 1/3c), the IS protocol obtains full information

spreading after at most O(c( log (n)+log (δ−1)
Φc(G)

+c)) rounds, with

probability at least 1− 3cδ.

In the synchronous model we can use the IS protocol in
the TAG protocol, directly obtaining the following theorem,
which shows optimality of TAG for certain families of pa-
rameters.

Theorem 7. Let c = O(logp (n)) for some p ≥ 0, let G
be a graph with weak conductance Φc = Ω( 1

logp (n)
), and let

k = Ω(log2p+1 (n)). With probability at least 1 − 1
n

, the
time for disseminating k messages using protocol TAG in
conjunction with the IS protocol is Θ(k) synchronous rounds.

We show that the IS protocol works in the asynchronous
model as well. While this is not a direct usage of the pro-
tocol due to some subtleties, we nevertheless show how to

obtain our result as for the synchronous model. Our analysis
induces an overhead of O(log2(n)) rounds.

We do not change the protocol itself to cope with asyn-
chrony, but rather analyze the time required using additional
techniques. Roughly speaking, the outline of our analysis is
showing that segments of the asynchronous execution simu-
late synchronous rounds. This allows us to use the original
analysis of the protocol for the simulated rounds, which gives
our result, as stated in the following theorem, and proved in
the appendix.

Theorem 8. Let c = O(logp (n)) for some p ≥ 0, let G
be a graph with weak conductance Φc = Ω( 1

logp (n)
), and let

k = Ω(log2p+3 (n)). With probability at least 1 − 1
n

, the
time for disseminating k messages using protocol TAG in
conjunction with the IS protocol is O(k + lmax) rounds for
the asynchronous time model, where lmax is the depth of the
spanning tree induced by the IS protocol.

For completeness, we note that, in IS, during the even-
numbered steps of each node the choice of neighbor to con-
tact is randomized. For these steps alone, adapting the anal-
ysis Mosk-Aoyama and Shah [19] for the asynchronous case
to our protocol, implies that the extra log (n) time slots can
be avoided for the purpose of partial information spreading
alone (as used in the proof of the information spreading pro-
tocol (see [5, Theorem 2.2]). However, as this cost is required
anyhow to argue about the deterministic choices, made dur-
ing the odd-numbered steps, we omit going through this
adjustment.
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