Atomic snapshots in $O\left(\log ^{3} n\right)$ steps using randomized helping

James Aspnes* Keren Censor-Hillel ${ }^{\dagger}$

January 25, 2014

Abstract

A randomized construction of unbounded snapshots objects from atomic registers is given. The cost of each snapshot operation is $O\left(\log ^{3} n\right)$ atomic register steps with high probability, where n is the number of processes, even against an adaptive adversary. This is an exponential improvement on the linear cost of the previous best known unrestricted snapshot construction $[9,10]$ and on the linear lower bound for deterministic constructions [11], and does not require limiting the number of updates as in previous sublinear constructions [4]. One of the main ingredients in the construction is a novel randomized helping technique that allows out-of-date processes to obtain up-to-date information without running into covering lower bounds.

Our construction can be adapted to implement snapshots in a message-passing system. While a direct adaptation using the Attiya-Bar-Noy-Dolev construction gives a cost of $O\left(\log ^{3} n\right)$ time and $O\left(n \log ^{3}\right)$ messages per operation with high probability, we show that exploiting the inherent parallelism of a message-passing system can eliminate the need for randomized helping and reduce the complexity to $O\left(\log ^{2} n\right)$ time and $O\left(n \log ^{2} n\right)$ messages per operation in the worst case. This implementation includes an $O(1)$-time, $O(n)$-message construction of an unbounded max register that may be of independent interest.

1 Introduction

An atomic snapshot object allows processes to obtain the entire contents of a shared array as an atomic operation. The first known wait-free imple-

[^0]mentations of snapshot from atomic registers $[1,2,7]$ required $\Theta\left(n^{2}\right)$ steps to carry out a snapshot with n processes; subsequent work $[9,10]$ reduced this cost to $O(n)$, which was shown to be optimal in the worst case for non-blocking deterministic algorithms by Jayanti et al. [11].

Limitations of the Jayanti et al. lower bound became apparent with the development of wait-free sublinear-complexity limited-use variants of objects to which the lower bound applied. These included deterministic implementations of max registers (which, when read, return the largest value written to them) and counters [3], and even snapshot objects [4], all with individual step complexity polylogarithmic in the number of operations applied to them. ${ }^{1}$ These objects still have linear cost in the worst case, but the worst case is reached only after exponentially many operations.

The dependence on the number of operations was shown to be necessary initially for max registers [3], and later for a variety of objects satisfying a perturbability condition similar to that used in the Jayanti et al. lower bound [5]. Curiously, for randomized implementations these lower bounds were not larger than $O(\log n)$ for any number of processes. This appeared to be a weakness of the particular proof technique used to obtain the randomized lower bounds.

We show that it is not the case that other techniques may produce larger lower bounds. Using a new randomized helping procedure along with a simple max register implementation, it is possible to accelerate the max register implementation of [3] so that every operation finishes in $O(\log n)$ steps with high probability, regardless of the number of previous operations, provided the max register value does not change too quickly. Applying the same techniques to the max array of [4] (a pair of max registers supporting an atomic snapshot operation) yields a max array with $O\left(\log ^{2} n\right)$ step complexity with high probability, under the same restriction. This can be used in the snapshot implementation of [4] to obtain atomic snapshots with $O\left(\log ^{3} n\right)$ step complexity with high probability. Because the use of the max array within the atomic snapshot satisfies the restriction on changes in value, the complexity of the snapshot implementation holds without restrictions. The end result is a polylogarithmic snapshot implementation in which the cost of each operation does not depend on the number of operations but only on the number of processes.

We further adapt our construction to message-passing, showing that we

[^1]can obtain an improvement in performance (compared to a naive conversion using the Attiya-Bar-Noy-Dolev construction [8]) and remove the need for randomization by exploiting the additional powers of a message-passing system. This adaptation includes a deterministic construction of an unbounded max register that runs in $O(1)$ time and $O(n)$ messages per operation.

Excluding the adaptation to message-passing, the results in this paper previously appeared in DISC 2013. [6]

1.1 Previous constructions

Before giving more detail on our construction, we give a quick review of the previous work on which it is based. The basic building block of the bounded snapshot construction in [4] is a 2-component max array. This object supports a write operation, which specifies a value and a component, and a read operation, which returns a pair of the maximal values written to the two components in all write operations linearized before it. To directly build an unbounded snapshot object we need an unbounded version of a max register, and an unbounded version of a 2 -component max array.

The max register construction of [3] is based on a tree of switches, which are one-bit registers that initially hold the value 0 and can only be set to 1. Each leaf represents a value for the register. A write operation sets the switches on the path toward the respective leaf, while a read operation follows the rightmost path of set switches to get the largest value written. The problem with an unbounded max register according to this construction is that the length of an operation reading the rightmost path in the infinite tree construction is unbounded. This is because this operation is searching for the first node on the rightmost path whose switch is 0 , and the depth of this node depends on the values that have been written, which are now unbounded. Even worse, such an operation is not guaranteed to be wait-free, as it might not terminate if new writes keep coming in with greater values, forcing it to continue moving down the tree to the right. To handle this, the tree is backstopped with a linear snapshot object that is used for larger values in order to bound the number of steps. Formally, this means that at some threshold level, the node on the rightmost path of switches no longer points to an infinite subtree of switches but rather to a single linear-time snapshot object, and all write operations set the switch at this node after writing their value to the snapshot object, and all read operations accessing this node continue by reading the snapshot object. In total, this gives a complexity of $O(\min (\log v, n))$ steps per operation that reads or writes the value v.

The max array construction of [4] builds upon the above max register construction by combining the trees of the two components in a subtle manner. The data structure consists of a main tree, corresponding to the tree of the first component. The tree of the second component is embedded in the main tree at every node. That is, each switch of the main tree is associated with a separate copy of the tree of the second component. Writing to the first component is done by writing to the main tree, ignoring the copies of the second component at the switches. Writing to the second component is done by writing to the copy associated with the root of the main tree. The coordination between the pairs of values is left for the read operations. Such an operation travels the main tree in order to read the value of the first component, while dragging down the maximal value it reads for the second component along its path. It is proven in [4] that this implementation gives a linearizable 2 -component max array.

1.2 Our Contributions

Our first contribution is an $O(\log n)$ construction of an unbounded max register, which overcomes the obstacle of the construction of [3] by combining a max-register with a novel technique of randomized helping. In essence, this technique allows an operation that is traveling down the tree to the right (we refer to the rightmost path of the tree as the spine of the tree) for too long to jump farther ahead to a point on the spine that is the correct one, that is, the first point on the spine for which the switch is unset. This is done by adopting a location in the spine used by another operation, with the challenge of making sure that this value is fresh-recent enough that the first operation can use it without violating linearizability. The only condition we place on the usage of the max register in order for this to work is that operations write values that are not increasing too fast. We need this condition in order to argue that once the operation found the correct node on the spine, it can safely continue to the left subtree without the worry that a new write operation is now writing a much larger value that is placed farther down the spine. While at first glance this might seem as a strong restriction, this is actually a very reasonable condition in applications that use max registers, and in particular it is satisfied by our implementation of an unbounded snapshot object.

Our second contribution is a 2-component max array that is unbounded, and whose cost per operation does not depend on the number of operations. The natural thing to try is embedding the unbounded max register construction in the 2-component max array construction of [4]. However, this does
not work directly, since the main insight there is that values of the second component need to be propagated down while traveling the tree of the first component in order to guarantee that returned pairs are comparable. This cannot be done within our randomized helping technique because operations may jump down the spine without accessing each node along the way. We address this problem by restructuring the 2-component max array implementation such that operations that go right on the spine re-read the value of the second component that is located at the root. The main observation here is that a single re-reading of the root is inexpensive, and that we do not care that this information skips the nodes between the root and the target node since the second component of these nodes will never be accessed again (because their switches are either set or skipped).

Plugging these two contributions into the snapshot implementation of [4] gives an implementation of an unbounded snapshot object with an $O\left(\log ^{3} n\right)$ step complexity (with high probability) for updating or scanning the object.

Finally, we adapt our implementation to a message-passing system, obtaining a snapshot implementation with $O\left(\log ^{2} n\right)$ time and $O\left(n \log ^{2} n\right)$ messages per operation. While a direct use of ABD gives a complexity of $O\left(\log ^{3} n\right)$ time and $O\left(n \log ^{3} n\right)$ messages per operation, we show how to leverage the capability of a message-passing system to consolidate multiple messages into a single one in order to reduce the complexity, by simply collecting all elements of an n-element array in $O(1)$ time and $O(n)$ messages as for a single read/write register, instead of sampling an n^{3}-element array.

2 Unbounded max registers with bounded increments

A max register [3] supports operations $\operatorname{WriteMax}(v)$ and $\operatorname{ReadMax}()$, where WriteMax (v) writes the value v to the max register and ReadMax () returns the largest value previously written. The purpose of a max register is typically to avoid lost updates, by ensuring that old values (tagged with smaller timestamps) cannot obscure newer values, regardless of the order in which they are written. In this section, we show how to construct an unbounded max register that is linearizable in all executions and wait-free with $O(\log n)$ step complexity with high probability in executions with bounded increments.

2.1 Bounded max registers

We begin by reviewing the max register implementation of Aspnes et al. [3]. The idea is to implement the register as a fixed binary tree of one-bit atomic registers, referred to as switch bits. Initially these bits are all 0, which is interpreted as pointing to the left child of the register, while a 1 points to the right child. Each value of the max register corresponds to a leaf of the tree (which does not get a register). A ReadMax operation follows the path determined by the values of the switch bits until it reaches a leaf; the number of leaves to the left of this leaf (its rank) gives the return value. (See Algorithm 1.)

```
Shared data:
switch: a single bit multi-writer register, initially 0
left: a MaxRegister \({ }_{m}\) object, where \(m=\lceil k / 2\rceil\), initially 0 ,
right: a MaxRegister \({ }_{k-m}\) object, initially 0
procedure WriteMax \((r, v)\)
    if \(v<m\) then
        if \(r\).switch \(=0\) then
                WriteMax ( \(r\).left, \(v\) )
    else
        WriteMax (r.right, \(v-m)\)
        \(r\).switch \(\leftarrow 1\)
procedure ReadMax \((r)\)
    if \(r\).switch \(=0\) then
        return ReadMax(r.left)
    else
        return \(\operatorname{ReadMax}(r\) r.right \()+m\)
```

Algorithm 1: Implementation of $\operatorname{WriteMax}(r, v)$ and ReadMax (r) for a MaxRegister ${ }_{k}$ object called r.

Because a ReadMax reads one register for each node on the path, the cost of a ReadMax is just the depth of the leaf it reaches. For an m-valued max register implemented as a balanced tree, this will be at most $\lceil\log m\rceil$. Unbalanced trees can be used to obtain adaptive costs; it is shown in [3] that using an appropriate unbalanced tree backstopped by a linear-time snapshot implementation gives a cost of $O(\min (\log v, n))$ for an operation that reads
or writes the value v.
A WriteMax (v) operation must set the switch bits so that subsequent ReadMax operations will be directed to the leaf with rank v, unless some larger v^{\prime} has already been written. This is implemented as two passes through the path from the root to leaf v : first, a downward pass starting at the root looks for larger values; these correspond to 1 bits in nodes where v 's path would contain a 0 bit. If a larger value exists, the WriteMax exits immediately. Next, an upward pass starting at v writes a 1 to each switch bit whose right child is on the path to v. (See Algorithm 1.) It is shown in [3] that this procedure gives a linearizable execution even with concurrent ReadMax and WriteMax operations.

The number of steps for a $\operatorname{WriteMax}(v)$ operation is at most twice the depth of the corresponding leaf. This gives a cost for WriteMax that is asymptotically equal to ReadMax, and that depends on the structure of the tree.

Aspnes et al. [3] show that $O(\min (\log v, n))$ is optimal for deterministic obstruction-free max register implementations from atomic registers. For randomized implementations, they show a weaker lower bound of $O(\log n / \log \log n)$ steps for n-bounded max registers. This lower bound is obtained as a trade-off between the complexities of ReadMax and WriteMax operations.

We will show that with randomization, the dependence on v can be eliminated. It is possible to build a snapshot object (and thus a max register), whose cost is polylogarithmic in n with high probability for all operations, regardless of the size of the values it contains.

2.2 An unbounded max register implementation

We now show how to extend the results of [3] to allow an unbounded max register that nonetheless has fixed cost per operation with high probability. The first step is to bound the cost of WriteMax operations. We will do this under the assumption of k-bounded increments, which we will define by the rule that each new WriteMax operation writes a value v that is at most k more than the largest input to any previously initiated WriteMax operation. ${ }^{2}$ This assumption will be justified later by the details of our unbounded snapshot construction.

As in a standard max register, the core of our unbounded max register is a binary tree of switch bits. But now the tree is infinite, consisting of an

[^2]infinite spine forming the rightmost path through the tree, each node of which has an m-valued max register (implemented as a balanced $\lceil\log m\rceil$ depth tree), where m is an integer that will be chosen later, rooted at its left child (see Figure 1). Using this tree with the original algorithm, a $\operatorname{WriteMax}(v)$ operation must walk all the way from the root of the tree to the corresponding leaf, which will be found in the $\lceil v / m\rceil$-th m-valued max register. It must then walk back up to the root, setting switch bits as needed, giving a cost of $O(v / m+\log m)$.

In our algorithm, we assume that the tree is packed in memory so that a $\operatorname{WriteMax}(v)$ operation can access the root of the $\lceil v / m\rceil$-th max register directly. Within this subtree, it executes the standard algorithm; but along the spine, it sets only as many switch bits as are needed to guarantee that all ancestors are set; this is checked by performing an embedded ReadMax operation. This optimization does not affect correctness, because setting switches that are already set farther up the spine has no effect. What it does give is an improvement to the step complexity under the assumption of k-bounded increments, since between the n processes v can have increased by at most $k n$ above the value of the last complete WriteMax, meaning that only $k n / m$ steps up the spine are needed.

Setting aside for the moment the cost of the ReadMax, this gives a cost for the WriteMax of $O(\log m)$ for updating the m-valued max register plus $O(k n / m)$ for updating the segment of the spine. We will later choose k and m in a way for which the above results in $O(\log n)$ steps per WriteMax operation. Note that assuming bounded increments, this procedure gives this complexity for WriteMax operations without dependence on the value being written and that this implementation is deterministic.

However, the ReadMax operations still suffer from the problem mentioned earlier: they are not wait-free in the presence of concurrent WriteMax operations with increasing values. For this we add an additional mechanism of randomized helping. Algorithm 2 is a pseudo-code of our implementation, where $W r a p W r i t e M a x_{i}$ and $W r a p R e a d M a x ~ a r e ~ t h e ~ o p e r a t i o n s ~ f o r ~ p r o c e s s ~ i, ~$ which invoke WriteMax and ReadMax operations as in [3] on the m-values max registers (in which the process id does not matter).

We now provide a high-level description of the helping mechanism. Each WriteMax operation is wrapped with a WrapWriteMax procedure, as follows. $_{\text {pren }}$ WrapWriteMax ${ }_{i}$ operations by process i cycle over the PIDs, helping one process at a time. The operation then reads the timestamp, TS $[s]$, associated with the current helped process, s, written to $\mathrm{TS}[s]$ by a WrapReadMax ${ }_{s}$ operation. It then reads the value v^{\prime} of the max register, and if the value v it needs to write is larger than v^{\prime} it goes ahead and writes it into the
max register. It then records the maximum between v and v^{\prime} into a helping array, along with the timestamp it saw for s, and updates a random location in a pointer array with its pid. A WrapReadMax ${ }_{i}$ operation first increments its timestamp and then takes a certain amount of steps reading the max register. If it does not finish within that number of steps, it tries to get help from a random process chosen from a random location in the pointer array. Getting help is done by checking whether the chosen helping process, j, holds the current timestamp of process i, performing the WrapReadMax ${ }_{i}$ operation, and if so, taking its value from its helping array.

The idea behind the proof is that if a ReadMax operation takes too many steps trying to read the max register without finishing, it must be that there are many concurrent WriteMax operations that keep sending it down the spine. But in such a case, the WrapReadMax ${ }_{i}$ operation finds a value in one of the helping arrays that it may use, in the sense that it was updated by one of these concurrent WrapWriteMax ${ }_{j}$ operations - specifically, after the $\mathrm{WrapReadMax}{ }_{i}$ operation started.

Figure 1: An unbounded max register
Next, we proceed with the formal proof. Let spine be the array induced by the switch bits on the spine of the tree. Let M_{i} be the m-valued max register whose root is spine $[i]$.

We linearize a WrapWriteMax $_{i}$ operation writing a value v at the first time in which all the relevant switches on the path from the root to the leaf corresponding to v are set. We linearize a WrapReadMax ${ }_{i}$ operation that returns in Line 24 at the time the corresponding original ReadMax is linearized. We linearize a WrapReadMax ${ }_{i}$ operation that returns in Line 28 at the linearization point of the WrapReadMax $_{j}$ operation by p_{j} that is part of the WrapWriteMax ${ }_{j}$ operation that wrote to help $[j] . T S[i]$ the value read by WrapReadMax ${ }_{i}$ in Line 27.

```
    Shared Data:
    array \(\mathrm{TS}[1 . . n]\) where \(T S[i]=\) timestamp for process \(i\)
    array pointer \(\left[1 . . n^{3}\right]\); each entry is a pid
    array help \([i]\); each entry consists of
    value \(=\) integer, most recent value seen by a WrapWriteMax \({ }_{i}\)
    operation
    \(\mathrm{TS}[j]=\) integer, most recent timestamp of \(p_{j}\) seen by a
    WrapWriteMax \({ }_{i}\) operation
    procedure WrapWriteMax \({ }_{i}(v)\)
    \(s \leftarrow s+1 \bmod n / /\) initialized to 0
    \(t \leftarrow \mathrm{TS}[s]\)
    \(v^{\prime} \leftarrow\) WrapReadMax \(_{i}()\)
    if \(v>v^{\prime}\) then
        WriteMax \(\left(M_{\lfloor v / m\rfloor}, v \bmod m\right) / /\) Write to the corresponding
        \(m\)-valued max register
        for \(j=\lfloor v / m\rfloor\) to \(\left\lfloor v^{\prime} / m\right\rfloor\) do
            spine \([j] \leftarrow 1\)
        help \([i]\).value \(\leftarrow \max \left(v, v^{\prime}\right)\)
        help \([i] . \mathrm{TS}[s] \leftarrow t\)
        pointer \([\) random ()\(] \leftarrow i\)
    procedure WrapReadMax \({ }_{i}()\)
        \(\mathrm{TS}[i] \leftarrow \mathrm{TS}[i]+1\)
        while true do
            // For a constant \(c^{\prime}\), to be fixed in the step complexity proof
        for \(t=1\) to \(c^{\prime} \log m\) do
            Take a step of ReadMax () // Starting from the largest
                spine location observed in help \([j]\).value fields of previous
            accesses to Line 26
        if finished (initially false) then
            return value
        else
            \(j \leftarrow \operatorname{pointer}\left[\operatorname{random}\left(1, \ldots, n^{3}\right)\right]\)
                if help \([j]\).TS \([i]=\mathrm{TS}[i]\) then
                    return help \([j]\).value
```

Algorithm 2: Max register with randomized helping; code for process i.

It is worth mentioning that, as the proof below shows, we do not need the assumption of k-bounded increments for linearizability of the construction. This assumption is used only for bounding the step complexity.

Lemma 2.1. Algorithm 2 is a linearizable implementation of an unbounded max register.

Proof. We base our proof on the correctness proof of the max register construction in [3]. We need to address two issues that differ in our implementation. First, we need to address WrapWriteMax ${ }_{i}$ operations and show that the switches leading to a written value are indeed set by the time it terminates, showing that our linearization is well defined. The second issue is that we need to address WrapReadMax ${ }_{i}$ operations that return in Line 28.

We use an induction on the order of linearization points to prove the correctness of the linearization. We add to the inductive claim the invariant that all switches on the path from the root to a leaf corresponding to a value v written by a WriteMax operation $o p$ are set if the path descends to their right child on the tree, by the time op finishes. This clearly holds for the base case, when no operation has yet been performed.

Assume that the linearization is correct up to some operation $t-1$ in the total order it induces. Let op be the t-th operation, and assume it is a WrapWriteMax ${ }_{i}$ operation. By construction, all appropriate switches inside $M(\lfloor v / m\rfloor)$ are set in Line 12. By the induction hypothesis, all spine switches from the root down to location $\left\lfloor v^{\prime} / m\right\rfloor$, where v^{\prime} is the value read by $o p$ in Line 10, are set. The loop in Line 13 then shows that the invariant still holds.

Next, since correctness for WrapReadMax ${ }_{i}$ operations that return in Line 24 now follows from the proof in [3], let op be a WrapReadMax ${ }_{i}$ operation that returns in Line 28. Let $o p^{\prime}$ be a WrapWriteMax ${ }_{j}$ operation by p_{j} that writes to help $[j]$.TS $[i]$ the timestamp read by op in Line 27. Let $o p^{\prime \prime}$ be the WrapReadMax ${ }_{j}$ operation performed by $o p^{\prime}$ in Line 10. Since $o p^{\prime \prime}$ is performed after $o p$ writes to $\mathrm{TS}[i]$ and before $o p^{\prime}$ writes to help $[j] . \mathrm{TS}[i]$, the linearization point of $o p^{\prime \prime}$ is within the execution interval of $o p$. By the correctness of the linearization points of the construction in [3], the value returned by $o p$, which is the maximum between the value returned by $o p^{\prime \prime}$ and the value written by $o p^{\prime}$, is the largest value written by operations that are linearized before $o p$.

Having shown that this implementation is linearizable, we turn to prove its logarithmic step complexity. Here we choose $m=3 c n^{3} \log n \leq O\left(n^{4}\right)$ and $k=O\left(n^{2} \log ^{2} n\right)$ for some fixed constant c that is required by the proof.

Lemma 2.2. The step complexity of operations in Algorithm 2 is $O(\log n)$ with high probability, when taking $m=O\left(n^{3} \log n\right)$ and assuming k-bounded increments for $k=O\left(n^{2} \log ^{2} n\right)$.

Proof. Let $m=3 c n^{3} \log n^{3}$, where the constant c is taken such that with high probability m random coupons are enough to cover n^{3} distinct coupons, by a coupon collector argument (see, e.g., [12, Chapter 2]).

For every time τ, let w_{τ} be the number of WriteMax operations that have been linearized before time τ. Let t be a time for which $w_{t} \geq m$, and denote by W_{t} the set of m WriteMax operations whose inputs are the largest among those linearized before time t.

We claim that at any such time t, with high probability, all elements of the pointer except at most $2 n$, are among the values written by operations in W_{t}. This is because, by a coupon collector argument, with high probability the operations in W_{t} cover all elements of the pointer array, at most n of them may be pending to write to the pointer array, and at most n values may be overwritten by smaller values. The last observation holds since for a value v in pointer to be overwritten by a smaller value v^{\prime} it has to be the case that the WriteMax operation that writes v^{\prime} starts before the WriteMax operation that writes v, but finishes after it. For $n+1$ values among those written by operations in W_{t} to be overwritten with values that are smaller than those written by operations in W_{t}, there has to be a process p which performs a WriteMax operation $o p_{1}^{\prime}$ with input v_{1}^{\prime} smaller than the values in W_{t}, that starts before a WriteMax operation $o p_{1}$ with an input v_{1} but finishes after it, and then performs another WriteMax operation $o p_{2}^{\prime}$ with input v_{2}^{\prime} that starts before a WriteMax operation $o p_{2}$ with an input v_{2} but finishes after it. However, the operation $o p_{2}^{\prime}$ with input v_{2}^{\prime} starts after the operation $o p_{1}$ with input v_{1} finishes, and hence the value that it writes to the pointer array is among the values written by operations in W_{t}, since it performs an embedded WrapReadMax operation.

Now, let $o p_{i}$ be a WrapReadMax ${ }_{i}$ operation by p_{i}. We show that there is a constant c^{\prime} such that $o p_{i}$ finishes after $2 c^{\prime} \log m$ steps with high probability.

The operation first starts reading down the spine for $c^{\prime} \log m$ steps, according to the loop in Line 21, where the constant is such that the number of steps is enough to read a spine segment and an m-valued max register covering 2 km values. Assume $o p_{i}$ does not finish within this loop. For this to happen, opi takes at least $O\left(\left(c^{\prime}-1\right) \log m\right)$ steps down the spine (otherwise, it goes down some m-valued max register and terminates within another $O(\log m)$ steps). By the k-bounded increments assumption, there are at least $2 m$ values being written for this to happen. This implies that
by the time t in which $o p_{i}$ accesses the pointer array in Line 26, it holds that $w_{t} \geq m$, hence the pointer array contains at least $n^{3}-2 n$ values that are among the values written by operations in W_{t}. Therefore, with probability at least $1-2 n / n^{3}=1-O(1 / n)$, when p_{i} accesses the pointer array it obtains a value v that is rooted in the spine at a location which is at most $c^{\prime} \log m$ away from the largest switch value along the spine that is set.

We say that a process p_{j} is current for operation $o p_{i}$ if help $[j]$. TS $[i]=$ $\mathrm{TS}[i]$, where $\mathrm{TS}[i]$ is the timestamp written by op. Every process p_{j} can perform at most n WrapWriteMax ${ }_{j}$ operations before it becomes current for $o p_{i}$, since j iterates over the processes to help.

If v was not a value of an operation that is current for p_{i}, then p_{i} performs another $c^{\prime} \log m$ steps of the loop in Line 21, starting from the spine location where v is rooted. If p_{i} does not finish within this loop, then there are at least m WriteMax operations that started after p_{i} and have been linearized by this time, i.e., they begin after $\operatorname{TS}[i]$ is incremented. Then, at most n^{2} of these operations are by processes that are not current for $o p_{i}$. There can be at most n^{2} different locations in the pointer array written by such process, plus at most $n-1$ locations that have operations by current processes pending to write them, but still contain previous values. The rest of the $\Theta\left(n^{3}\right)$ locations hold values written by processes that are current for $o p_{i}$. This implies that the probability of $o p_{i}$ choosing a random location in pointer that holds a value written by a process that is current for it is at least $1-\left(n+n^{2}\right) / n^{3}=1-O(1 / n)$. Therefore, with high probability, opi finishes within $O(\log m)=O(\log n)$ steps.

Finally, a WrapWriteMax ${ }_{i}$ operation $o p_{i}$ takes $O(\log m+k n / m)$ steps in addition to calling WrapReadMax ${ }_{i}$. We choose $k=O\left(n^{2} \log ^{2} n\right)$ such that $k n / m=O(\log n)$ and therefore the number of steps required for this operation is also $O(\log n)$, completing the proof.

3 Unbounded max arrays with bounded increments

To present our unbounded 2-component max array, we first describe the implementation in [4] and then show how to overcome the obstacles that arise when embedding our unbounded max register in that construction. The [4] 2 -component max array roughly works as follows. It has a main tree for the max register of the first component, where each of the switches is associated with a MaxRegister variable tail, that holds copy of the max register of the second component. A write operation to the first component simply ignores
these copies, and travels up the main tree from the relevant leaf to the root, setting the required switches along the way. A write operation to the second component writes only to the tail copy associated with the root of the main tree. A read operation travels down the main tree reading the first component, while reading the tail copy of the second component at every switch and updating it if it saw a greater value earlier up the tree.

Propagating the values of the second component down the main tree is the key ingredient in guaranteeing that returned pairs are comparable. The main invariant that needs to be maintained is that a reader does not go right at a switch of the main tree returning a value for the second component that is smaller than that returned by a reader who goes left at that switch. In [4], this is guaranteed by having the reader re-read the tail copy of a switch that is set, and propagating this fresher value down to the right subtree.

However, embedding our max register in this construction does not work: in our max register implementation, a read operation does not travel all the way down from the root to the leaf, therefore it cannot drag the value of the second component with it. This causes gaps in the values of the tail copies of the second component along the tree, violating the required invariant.

To solve this, our observation is that we can re-read the tail copy of the second component associated with the root of the main tree, instead of reading the tail component of the current spine node, which may not have been updated. This guarantees that the value returned for the second component is always updated to the largest one written. Notice that we can only do this with read operations that go down the rightmost path of the main tree, that is, the spine. Otherwise, an operation that started early and goes left at some switch of the main tree might read a value for the second component that is too large: larger than the one read by a quicker operation that goes right. But the fact that we can do this only for the spine is exactly what we need, and our approach to handle the above issue is indeed to re-read the tail variable at the root only when traveling the spine. At other switches the reader copies the values down the tree as in the original construction, which is unaffected by our max register implementation since gaps in switches can only occur on the spine, as a process going down some m-valued max register travels an entire path from its root to a leaf. Algorithms 3 and 4 show the pseudo-code.

Instead of repeating the linearizability proof of the 2-component max array in [4] (denoted by Alg hereafter), we reduce the algorithm in Algorithms 3 and 4 to Alg. In particular, we show that any execution of the algorithm can be translated to an execution of Alg in a way which preserves returned values, implying that the linearization of Alg also applies

```
Shared Data:
switch: a 1-bit multi-writer register, initially 0
left, right: two MaxArray objects with an unbounded second
component, initially \((0,0)\); at the spine, left has an \(m\)-bounded first
component and right has an unbounded first component; at a
MaxArray with a \(b\)-bounded first component for any integer \(b\), the
first component of both left and right is \(b / 2\)-bounded
tail: an unbounded MaxRegister object, initially 0
array TS \([1 . . n]\) where \(\mathrm{TS}[i]=\) timestamp for process \(i\)
array pointer \(\left[1 . . n^{3}\right]\); each entry is a pid
array help \([i]\); each entry consists of
    value \(=\) most recent value seen by \(p_{i}\)
    \(\mathrm{TS}[j]=\) most recent timestamp seen by \(p_{i}\) for \(p_{j}\)
procedure \(\operatorname{WriteMaxArray} 0(r, v) / /\) Write to the first component
    \(s \leftarrow s+1 \bmod n / /\) initialized to 0
    \(t \leftarrow \mathrm{TS}[s]\)
    \(\left(v^{\prime}, v^{\prime \prime}\right) \leftarrow \operatorname{ReadMaxArray}(r)\)
    if \(v>v^{\prime}\) then
        \(\operatorname{WriteMax}\left(M_{\lfloor v / m\rfloor}, v \bmod m\right)\)
        for \(j=\lfloor v / m\rfloor\) to \(\left\lfloor v^{\prime} / m\right\rfloor\) do
            spine \([j] \leftarrow 1\)
    help \([i]\).value \(\leftarrow \max \left(v, v^{\prime}\right)\)
    help \([i] . \mathrm{TS}[s] \leftarrow t\)
    pointer \(\left[\right.\) random \(\left.\left(1, \ldots, n^{3}\right)\right] \leftarrow i\)
procedure WriteMaxArray1 \((r, v) / /\) Write to the second component
    WrapWriteMax \({ }_{i}(r\). tail,\(v)\)
```

Algorithm 3: Writing to the 2-component max array; code for process i.
to the algorithm in Algorithms 3 and 4. The intuition is that whenever a ReadMaxArray operation goes down the spine of the main tree, just before it is about to read the copy of the second component again before going right, we imagine that a very quick ReadMaxArray operation in Alg starts and runs solo, going down the spine of the main tree, propagating the value of the second component that is at the copy of the second component associated with the root. If we then let the first ReadMaxArray operation do its read then it gets exactly the value associated with the root at that time. Hence,

```
procedure ReadMaxArrayDirect \((r)\)
    \(x \leftarrow \operatorname{WrapReadMax}_{i}(r\).tail \()\)
    if \(r\).switch \(=0\) then
        WrapWriteMax \({ }_{i}(r\).left.tail, \(x)\)
        return ReadMaxArrayDirect(r.left)
    else
        if on spine then
            \(x \leftarrow\) WrapReadMax \(_{i}(\) root.tail \()\)
        else
            \(x \leftarrow \operatorname{WrapReadMax}_{i}(r\).tail \()\)
        WrapWriteMax \(_{i}(r\) right.tail, \(x)\)
        return ReadMaxArrayDirect \((r\). right \()+(m, 0)\)
procedure ReadMaxArray \((r)\)
    \(\mathrm{TS}[i] \leftarrow \mathrm{TS}[i]+1\)
    while true do
        for \(t=1\) to \(c^{\prime} \log m / /\) For a constant \(c^{\prime}\) as in Algorithm 2 do
            Take a step of ReadMaxArrayDirect \((r)\)
        if finished then
            return pair
        else
            \(j \leftarrow \operatorname{pointer}\left[\operatorname{random}\left(1, \ldots, n^{3}\right)\right]\)
            if help \([j]\).TS \([i]=\mathrm{TS}[i]\) then
                firstComponent \(\leftarrow\) help[ \(j\) ].value
                return ReadMaxArrayDirect(spine[firstComponent/m])
```

Algorithm 4: Reading the 2-component max array; code for process i.
it cannot distinguish between these two executions, and we can take its linearization point as that of its corresponding operation in Alg. Following is the formal proof of the above argument.

Theorem 3.1. The algorithm in Algorithms 3 and 4 is a linearizable implementation of a 2-component max array. It has a step complexity of $O\left(\log ^{2} n\right)$ per operation with high probability, when taking $m=O\left(n^{3} \log n\right)$ and assuming k-bounded increments for $k=O\left(n^{2} \log ^{2} n\right)$.

Proof. Let α be an execution of the algorithm in Algorithms 3 and 4
with processes $\left\{p_{0}, \ldots, p_{n-1}\right\}$. We construct a sequence of executions $\alpha=\alpha_{0}, \alpha_{1}, \ldots, \alpha_{\ell}=\alpha^{\prime}$, which ends in an execution α^{\prime} of Alg , for which the return values of all operations are the same as in α. The length of the sequence is such that ℓ is the umber of times that ReadMaxArray operations re-read root.tail in α.

Every execution α_{j} in the sequence is an execution with $n+1$ processes, such that every process $p_{i} \in\left\{p_{0}, \ldots, p_{n-1}\right\}$ invokes the same operations as in α, and process p_{n} is an extra process that performs only ReadMaxArray operations. If in α the process p_{i} reads the copy of the second component associated with the root in Line 8 , then starting from some α_{j} it reads the copy associated with the current switch (notice that this difference only occurs when reading locations on spine).

Even though p_{i} reads different locations in α and α_{j}, steps by p_{n} are used to make it obtain the same values. We define the behavior of p_{n} by induction. In α_{0} the process p_{n} is not used, therefore it is the execution described above. Assume executions $\alpha_{0}, \ldots, \alpha_{j}$ are defined and define execution α_{j+1} as follows. Let p_{i} be the first process in α_{j} that reads root.tail in Line 8 corresponding to some location x on the spine. Denote $\alpha_{j}=\alpha_{j}^{\prime} s_{i} \alpha_{j}^{\prime \prime}$ such that s_{i} is that step of p_{i} (note that we can assume an operation on a max register is an atomic operation). We define $\alpha_{j+1}=\alpha_{j}^{\prime} \sigma s_{i}^{\prime} \alpha_{j}^{\prime \prime}$, where in σ process p_{n} performs a read operation and s_{i}^{\prime} is a step by p_{i} reading the copy of the second component associated with location x.

Our claim is that all operations return the same values in α_{j} and in α_{j+1}. The reason is that p_{n} reads the copy of the second component associated with the root of the main tree and copies it down the spine at least until location x since it starts after p_{i} reaches x and hence all switches toward it are set. Therefore, when p_{i} reads the copy in x in s_{i}^{\prime} in α_{j+1} it gets the same value it reads from the root in s_{i} in α_{j}. Finally, for some j we reach an execution $\alpha^{\prime}=\alpha_{j}$ of Alg, for which all returned values of processes $\left\{p_{0}, \ldots, p_{n-1}\right\}$ are the same as in α. This execution α^{\prime} is linearizable by the proof of [4]. Because p_{n} performs only ReadMaxArray operations, removing these operations from the linearization of α^{\prime} does not affect the return values of any other operations; this reduced linearization is thus a linearization of α.

4 Unbounded snapshots

Given our unbounded 2-component max array implementation, we can now obtain an unbounded snapshot object.

We use the construction from [4], which for convenience we restate here in Algorithm 5.

The shared data is:

- leaf ${ }_{j}$, for $j \in\{0, \ldots, n-1\}$: the leaf node corresponding to process j, with fields:
- parent: the parent of this leaf in the tree
$-\operatorname{view}[0,1, \ldots]$: an infinite array, each of whose entries contains a partial snapshot, view [0] contains the initial value of component j and view $[\ell]$ contains the ℓ-th value of component j
- root: the root of the tree
- Each internal node has the fields:
- left: the left child of the node in the tree
- right: the right child of the node in the tree
$-\operatorname{view}[0,1, \ldots]$: an infinite array, each of whose entries contains a partial snapshot, view [0] contains the concatenation of leaf j_{j}.view $[0]$ for all leaves leaf ${ }_{j}$ in the subtree rooted at this node, and view $[\ell]$ contains the concatenation of views of the leaves after ℓ updates
- ma: an infinite MaxArray object, initially (0,0)
- The root also has the field mr: an infinite MaxRegister object, initially 0
- Each non-root internal node also has the field parent: the parent of the node in the tree

We use this algorithm with our implementations of unbounded max registers and unbounded max arrays from the previous sections. Loosely speaking, the construction is based on a balanced binary tree with n leaves, one for each process. Each intermediate node holds a 2-component max array object for its two children, that counts the number of update operations performed on each. It also stores the (unique) view corresponding to this number. A process that updates its location does so by updating the nodes from its leaf to the root, and a process scans the object by reading the view held by the root. We emphasize that correctness is always guaranteed in the above implementation, therefore the proof from [4] shows that this gives an unbounded snapshot object.

```
procedure Update \((s, i, v)\)
    \(\operatorname{count}_{i} \leftarrow\) count \(_{i}+1\)
    \(u \leftarrow\) leaf \(_{i}\)
    \(\mathrm{ptr} \leftarrow\) count \(_{i}\)
    \(u\).view \([\mathrm{ptr}] \leftarrow v\)
    while \(u \neq\) root do
        if \(u=u\).parent.left then
            WriteMaxArray0(u.parent.ma, ptr)
        if \(u=u\).parent.right then
            WriteMaxArray1(u.parent.ma, ptr)
        \(u \leftarrow u\).parent
        \((\) lptr, rptr\() \leftarrow \operatorname{ReadMaxArray}(u . \mathrm{ma})\)
        Iview \(\leftarrow u\).left.view[lptr]
        rview \(\leftarrow u\).right.view[rptr]
        \(\mathrm{ptr} \leftarrow \operatorname{lptr}+\mathrm{rptr}\)
        \(u\).view \([\mathrm{ptr}] \leftarrow\) Iview • rview
    WriteMax(root.mr, ptr)
procedure \(\operatorname{Scan}(s)\)
    ptr \(\leftarrow\) ReadMax (root.mr)
    return root.view[ptr]
```

Algorithm 5: Unbounded snapshot object; code for process i.

It remains to show the step complexity of our construction. For this, we only need to show that the k-bounded increment assumption holds, and use the complexity analysis of the previous sections. Intuitively, this is because every MaxRegister is used only to store the number of operations observed in the subtree of processes that it represents. If the difference between two values written to a MaxRegister is more than n, then some processes completed a WriteMax operation between these two WriteMax operations, implying that the maximal difference was smaller to begin with. Formally, we prove this claim in the following lemma.

Lemma 4.1. In Algorithm 5, all MaxRegister and MaxArray objects are accessed according to the n-bounded increments assumption.

Proof. A process that performs WriteMaxArray on u.ma for some node u writes the value of its ptr variable. We show that ptr holds a value which is at most the number of Update operations invoked by processes corresponding
to this subtree, hence a value being written to u.ma is larger by at most n than the largest value previously written to it. The claim follows by a simple induction on the height of the node that holds the object. When accessing a leaf, ptr holds the value of count ${ }_{i}$, which is the number of operations performed by process p_{i}. For an intermediate node u, ptr holds the sum of the values of its two children, which, by the induction hypothesis are the number of Update operations invoked by processes corresponding to these subtrees, which proves the claim. Finally, the same holds for the value of ptr when the root is accessed, implying the claim also for the MaxRegister object there.

Combining Lemma 4.1 with Theorem 3.1 gives our main theorem.
Theorem 4.2. Algorithm 5 is an implementation of an unbounded snapshot object, with a step complexity of $O\left(\log ^{3} n\right)$ per operation with high probability.

5 Extension to message passing

Our algorithm can be adapted to give an implementation of a snapshot object in an asynchronous message-passing system with fewer than $n / 2$ crash failures. A direct adaptation using the classic Attiya-Bar-Noy-Dolev (ABD) register simulation [8] would require $O\left(\log ^{3} n\right)$ time and $O\left(n \log ^{3} n\right)$ messages on average for each operation, where one time unit is the maximal message delay in the execution. This is because ABD implements a read/write register operation in $O(1)$ time and $O(n)$ messages, and our max register implementation uses $O\left(\log ^{3} n\right)$ accesses to read/write registers.

By taking advantages of the message-passing model, we can improve this to $O\left(\log ^{2} n\right)$ time and $O\left(n \log ^{2} n\right)$ messages, while eliminating the need for randomization. The key idea is that the inherent parallelism of a messagepassing system and the ability to consolidate multiple concurrent messages into one allows operations like max register reads or collects to be implemented at no greater cost than the $O(1)$ time and $O(n)$ needed for a simple atomic register.

We begin by describing our implementation of an unbounded max register using message passing; this gives the log-factor reduction in complexity. We then show how the procedures WriteMaxArray and ReadMaxArray can be simplified by eliminating the pointer array in favor of performing collects on the help array directly; this eliminates the need for randomization. Substituting these new implementations into Algorithm 5 gives the full result.

5.1 Message-passing max registers

An unbounded max register can be implemented directly in an asynchronous message-passing system with $t<n / 2$ crash failures using a straightforward adaptation of the classic atomic register simulation of Attiya, Bar-Noy, and Dolev [8].

Pseudocode is given in Algorithm 6. Each process stores a local value maxValue for the max register. The WriteMax and ReadMax operations are both implemented using a core Update subroutine. This obtains a maximum value from a majority of processes, possibly replaces it with the argument to WriteMax, and transmits the new value to a majority of processes. As in the ABD register, this second round is needed to ensure linearizability when the maximum value obtained in the first round is not in fact stored in a majority of the processes.

```
local data: maxValue, initially \(\perp ; t\), initially 0
upon receiving Update \((t, v)\) from \(j\) do
    \(\operatorname{maxValue} \leftarrow \max (\operatorname{maxValue}, v)\)
    Send respond \((t, \max\) Value) to \(j\)
procedure Update \((v)\)
    \(t \leftarrow t+1\)
    Send Update \((t, \perp)\) to all processes.
    Wait to receive respond \(\left(t, v_{i}\right)\) from a majority of processes \(i\).
    Let \(v^{\prime}=\max \left(v, \max _{i}\left(v_{i}\right)\right)\).
    \(t \leftarrow t+1\)
    Send Update \(\left(t, v^{\prime}\right)\) to all processes.
    Wait to receive respond \((t,-)\) from a majority of processes.
    return \(v^{\prime}\).
procedure WriteMax \((v)\)
    Update ( \(v\) )
procedure ReadMax()
    return Update \((\perp)\)
```

Algorithm 6: Max register in message passing using ABD

Theorem 5.1. Algorithm 6 gives a linearizable implementation of a max register.

Proof. Given an execution of Algorithm 6, construct an explicit linearization ordering, by first ordering all operations by the value v^{\prime} obtained in Line 8,
then by observable execution order (order of non-overlapping operations) within each group of operations with the same value of v^{\prime}, finally by putting WriteMax operations before ReadMax operations and breaking any remaining ties arbitrarily.

To show that this is consistent with the observed execution order, suppose that some operation A finishes before B starts. Let v_{A}^{\prime} and v_{B}^{\prime} be the values of v^{\prime} computed by A and B, respectively. Then A broadcasts v_{A}^{\prime} to a majority of processes before it finishes, and at least one of these processes is also in the majority that later respond to B 's Update (t, \perp) message. So the calculation of v_{B}^{\prime} includes either v_{A}^{\prime} or a larger value, giving $v_{B}^{\prime} \geq v_{A}^{\prime}$. If $v_{B}^{\prime}=v_{A}^{\prime}$, then B is ordered after A by the execution ordering; if $v_{B}^{\prime}>v_{A}^{\prime}$, then B is ordered after A by the v^{\prime} ordering.

Next we argue that the linearized execution is a sequential execution of a max register. Since the only operations that return values are ReadMax operations, it is enough to show that these values are equal to the largest input to any previous WriteMax operation in the linearized execution.

Let us begin with a simple invariant: In any prefix of an execution of the algorithm, any value other than \perp that appears as maxValue ${ }_{p}$ in some process p, or appears as the value in an Update or respond message, appears as the input to some WriteMax operation that starts in this prefix. The proof is a straightforward induction: examination of the code shows that new values can appear only when a WriteMax emits its second Update message, and such values will either be the input to the WriteMax or a value that previously appeared in a respond message to the process carrying out the WriteMax operation. It follows that any value returned by a ReadMax corresponds to some value written in a WriteMax.

The computation in Line 8 ensures that any $\operatorname{WriteMax}(v)$ operation W computes $v_{W}^{\prime} \geq v$; in the other direction, any ReadMax operation R returns v_{R}^{\prime}. So for any given ReadMax operation R, only WriteMax operations with input less than or equal to v_{R}^{\prime} can be linearized before R. From the preceding argument, there exists at least one WriteMax operation W with input v_{W}^{\prime} that is equal to v_{R}^{\prime}. This operation linearizes before R. It follows that v_{R}^{\prime} is in fact the largest input to any WriteMax operation linearized before R, and the sequential specification is satisfied.

5.2 Eliminating the pointer array

A collect object is a weak version of a snapshot that does not guarantee that values read from distinct register appear to be read atomically. It is equivalent to an array of n single-writer registers, with a write operation for
each register and a collect operation that returns a value for each register that is current at some time between the start and finish of the collect.

The trivial implementation of a collect is to have the reader read each register directly. This gives a cost of $O(1)$ steps per write and $O(n)$ steps per collect. In a message-passing system, we can use the standard ABD simulation for each register and combine the messages for the n read operations used in the collect. This gives a cost of $O(1)$ time and $O(n)$ messages for both write and collect, making a collect no more expensive than reading a single simulated register.

Using this message-passing collect, we can rewrite the WriteMaxArray0 procedure from Algorithm 3 and the ReadMaxArray procedure from Algorithm 4 to bypass the pointer array. The revised procedures are given in Algorithm 7. We omit the pseudocode for WriteMaxArray1 and ReadMaxArrayDirect as these procedures are unchanged from the sharedmemory implementation.

To demonstrate correctness of Algorithm 7, observe that when ReadMaxArray uses help $[j]$ in Line 21, the effect is the same as if it found help $[j]$ using the pointer array in the original algorithm. As this is the only place where the change to the algorithm affects the output, the same argument as for the previous algorithm goes through.

For complexity, observe that each operation on a spine bit costs $O(1)$ time and $O(n)$ messages, as does each max register operation. In the worst case, we carry out $O(\log n)$ such operations for each operation on the max array, giving a complexity of $O(\log n)$ time and $O(n \log n)$ messages for max array operations, under the assumptions of Theorem 3.1. We summarize these results in the following lemma.

Lemma 5.2. Under the assumptions of Theorem 3.1, replacing appropriate components of Algorithms 3 and 4 with the procedures in Algorithm 7 gives a linearizable message-passing implementation of an unbounded max array that finishes each operation in $O(\log n)$ time and $O(n \log n)$ messages.

5.3 The full snapshot algorithm

To complete the algorithm, implement Algorithm 5 using the max arrays from Section 5.2. We then have:

Theorem 5.3. Using message-passing max arrays, Algorithm 5 is an implementation of an unbounded snapshot object, with a time complexity of $O\left(\log ^{2} n\right)$ and message complexity of $O\left(n \log ^{2} n\right)$ for each operation.

```
procedure WriteMaxArray \(0(r, v) / /\) Write to the first component
    \(s \leftarrow s+1 \bmod n / /\) initialized to 0
    \(t \leftarrow \mathrm{TS}[s]\)
    \(\left(v^{\prime}, v^{\prime \prime}\right) \leftarrow \operatorname{ReadMaxArray}(r)\)
    if \(v>v^{\prime}\) then
        WriteMax \(\left(M_{\lfloor v / m\rfloor}, v \bmod m\right)\)
        for \(j=\lfloor v / m\rfloor\) to \(\left\lfloor v^{\prime} / m\right\rfloor\) do
            spine \([j] \leftarrow 1\)
    help \([i]\).value \(\leftarrow \max \left(v, v^{\prime}\right)\)
    help \([i] . \mathrm{TS}[s] \leftarrow t\)
procedure ReadMaxArray \((r)\)
    \(\mathrm{TS}[i] \leftarrow \mathrm{TS}[i]+1\)
    while true do
        for \(t=1\) to \(c^{\prime} \log m / /\) For a constant \(c^{\prime}\) as in Algorithm 2 do
            Take a step of ReadMaxArrayDirect \((r)\)
        if finished then
            return pair
        else
            perform a collect on help
            if help \(\mathrm{p} j] . \mathrm{TS}[i]=\mathrm{TS}[i]\) for some \(j\) then
                firstComponent \(\leftarrow\) help \([j]\).value
                return ReadMaxArrayDirect(spine[firstComponent/ \(m\) ])
```

Algorithm 7: Revised procedures for message-passing max array

6 Discussion

This paper gives the first sub-linear unbounded snapshot implementation from atomic read/write registers. It is a randomized algorithm, with a step complexity of $O\left(\log ^{3} n\right)$ with high probability for each operation, where n is the number of processes. The main component of the construction is a new randomized implementation of an unbounded max register with a complexity of $O(\log n)$ steps per operation with high probability. The novelty of the construction is a randomized helping technique, which allows slow processes to obtain fresh information from other processes.

The use of randomization avoids in most cases the linear worst-case
lower bound based on covering arguments of Jayanti et al. [11], because the adversary cannot predict what locations a process will read from the helper array and thus cannot guarantee to cover those locations with old values. Conversely, the lower bound shows that some use of randomization is necessary.

Curiously, randomization does not appear to be necessary in a messagepassing implementation. Here we exploit the fact that we can read n Attiya-Bar-Noy-Dolev registers in parallel at no additional cost to allow the algorithm to read the entire helper array directly. Together with an $O(1)$-time deterministic unbounded max register based on the ABD construction, this gives a cost per operation of $O\left(\log ^{2} n\right)$ time and $O\left(n \log ^{2} n\right)$ messages using message-passing. It would be interesting to see if a more sophisticated use of the powers of a message-passing system could reduce this cost further.

Acknowledgements

The authors thank the anonymous reviewers of the conference version of this paper for careful comments and suggestions that helped improve the presentation of this work.

References

[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic snapshots of shared memory. J. ACM, 40(4):873-890, 1993.
[2] James H. Anderson. Multi-writer composite registers. Distributed Computing, 7(4):175-195, 1994.
[3] James Aspnes, Hagit Attiya, and Keren Censor-Hillel. Polylogarithmic concurrent data structures from monotone circuits. J. ACM, 59(1):2:12:24, March 2012.
[4] James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith Ellen. Faster than optimal snapshots (for a while). In 2012 ACM Symposium on Principles of Distributed Computing, pages 375-384, July 2012.
[5] James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Danny Hendler. Lower bounds for restricted-use objects. In Twenty-Fourth ACM Symposium on Parallel Algorithms and Architectures, pages 172-181, June 2012.
[6] James Aspnes and Keren Censor-Hillel. Atomic snapshots in $O\left(\log ^{3} n\right)$ steps using randomized helping. In Yehuda Afek, editor, Distributed Computing: 27th International Symposium, DISC 2013, Jerusalem, Israel, October 14-18, 2013. Proceedings, volume 8205 of Lecture Notes in Computer Science, pages 254-268. Springer Berlin Heidelberg, 2013.
[7] James Aspnes and Maurice Herlihy. Wait-free data structures in the asynchronous PRAM model. In Second Annual ACM Symposium on Parallel Algorithms and Architectures, pages 340-349, July 1990.
[8] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing systems. Journal of the ACM, 42(1):124142, 1995.
[9] Hagit Attiya and Arie Fouren. Adaptive and efficient algorithms for lattice agreement and renaming. SIAM J. Comput., 31(2):642-664, 2001.
[10] Michiko Inoue and Wei Chen. Linear-time snapshot using multi-writer multi-reader registers. In WDAG '94: Proceedings of the 8th International Workshop on Distributed Algorithms, pages 130-140, London, UK, 1994. Springer-Verlag.
[11] Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower bounds for nonblocking implementations. SIAM Journal on Computing, 30(2):438-456, 2000.
[12] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.

[^0]: *Yale University, Department of Computer Science. Supported in part by NSF grant CCF-0916389.
 ${ }^{\dagger}$ Technion, Department of Computer Science. Shalon Fellow.

[^1]: ${ }^{1}$ In the case of snapshot, this requires both registers large enough to hold a complete snapshot and the cooperation of updaters. The assumption of large registers may be avoidable for some applications of snapshot where only summary information is needed.

[^2]: ${ }^{2}$ Note that we do not require that this previous WriteMax operation finished.

