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Abstract In this paper we show how linear network coding can reduce the
number of queries needed to retrieve one specific message among k distinct
ones replicated across a large number of randomly accessed nodes storing one
message each. Without network coding, this would require k& queries on aver-
age. After proving that no scheme can perform better than a straightforward
lower bound of 0.5k average queries, we propose and asymptotically evalu-
ate, using mean field arguments, a few example practical schemes, the best of
which attains 0.82k queries on average. The paper opens two complementary
challenges: a systematic analysis of practical schemes so as to identify the
best performing ones and design guideline strategies, as well as the need to
identify tighter, nontrivial, lower bounds.
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1 Introduction

This paper introduces a new problem, which we call one-out-of-k retrieval.
Supose there are k distinct messages X = {1, ..., 2}, where z; € 0,1™ Vi €
[1, k]. A receiver wishes to learn all m bits of one specific target message, x, €
X. We can produce some new set of messages Y = {y1, 42, ...} of arbitrary
size and contents. Each round, the receiver can request a message selected
over a pre-determined probability distribtution from Y. We wish to come up
with a set of linearly coded messages for Y and a probability distribution
over these such that the average number of rounds in which a message must
be requested by the receiver from Y to learn all m bits of x, is minimized.

This scenario is practically encountered in Delay Tolerant Networks (DTN).
In such networks, data replication across the moving terminals is at the core
of most proposed data access or data delivery solutions, as the likelihood that
a user interested in a specific data item ”physically” meets only the single
data producer becomes rapidly negligible as the network size scales.
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Contribution

Most network coding research has focused on retrieving and decoding all
the messages instead of a specific subset Even for the case of k = 2, schemes
exist which take an average of ~ 1.828 coded messages from Y, outperforming
the naive average of 2. This raises some questions: how much reduction in
average numbers of messages from Y can we gain? And with which practical
constructions?

In the paper, we present a lower bound of 0.5k for the average number
of rounds the receiver must request messages. Then, we propose some initial
example schemes where the selection of the probability distribution over Y
results in a lower average number of requests than the naive average of k
messages needed from the set Y.

Moreover, we provide a general methodology to analyze such schemes. We
specifically show how to apply mean field arguments to derive the asymptotic
performance of the proposed approaches. We concretely apply our method-
ology to two example schemes, the best of which attains an average of 0.82k
rounds of communication.

Previous Work

Previous work on network coding in DTNs has not considered the problem
of solving for ome out of k messages. In our model, the protocol does not
allow for the receiver to request the specific information it wants and nor
do we treat it as wanting all information. For instance, LT codes [6] are
designed with the different goal of optimizing the decoding procedures. Many
papers [8], [7], [10], [3] investigate routing protocols in DTNs. These papers
attempt to decode all messages , as opposed to just one of k. Yoon and Hass
consider application of linear network coding to DTNs but, unlike this work,
investigate the case of sparse networks [9].

2 Network Model and Problem Statement

In our model there are k messages X = {z1,..., 2k}, each of which is a can
be represented by a binary vector of length m bits. There is a receiver node,
r, which wants to know the contents of the one message, we will call this
message x,. The receiver, r, travels throughout the network and will receive
messages from the nodes it contacts in close proximity. We model this as
r contacting a random node, which transmits its output. These contacts
cannot be commanded so messages may be repeated and r can not query
for a particular message. In each round, the receiver node r receives exactly
one coded message, y, from one of the transmitting nodes. Each round has a
constant duration. The nodes in this network can store linear combinations
of messages over some field FY.

Definition 1. The type (or degree) of a coded message is the number of
message linearly combined in that data message.
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These linear combinations are stored with header data that specifies which
messages were summed with what multiplicative constants.

Definition 2. Solving for message x; means determining all m bits in the
message ;.

Definition 3. The one-out-of-k retrieval problem is determining what coding
scheme produces the lowest expected time for 7 to solve for x,. where a coding
scheme is the proportion pi, ps...px of the codeword degrees distributed in the
networks.

In other words, we want to find p; - - - pr that minimize the time for re-
trieving only one message, given that the receiver collects at each round an
uncoded message with probability p;, a “pair” (codeword with degree 2) with
probability po, a “triplet” with probability ps etc.

Thus, Y is the set of all linear combinations of the k messages in X. Each
coded message ,y € Y, is a linear combination of n messages and has a
probability 22 of being sent to the receiver.

()

2.1 A trivial example: k = 2

Consider the simple case where we have only two kind of different message
that we call A and B. If we do not use coding (p; = 1,py = 0) it is triv-
ial to show that the average time spent from the receiver for collecting A
(or equivalently B) is 2, i.e. k. Similarly if all nodes carry a random linear
combination of both A and B (p; = 0,p2 = 1) the expected retrieval time is
ezxactly 2 encounters, so once again the average is 2. Now let AB be the linear
combination of A and B so that at each encounter the receiver can collect A
with probability p/2, B with probability p/2, and AB with probability 1 —p.
The average delay to retrieve item A is:

Delayzl—p-i-m

Then it is trivial to show that when p = 2 — /2 the expected time to retrieve
A is minimized and equals to 2v/2 1=~ 1.828, i.e. about 9% lower than both

previous cases. Hence this problem is solved adopting the coding scheme
p1=2— \@, po = V2 —1. The delay versus p is shown in figure 1.
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Fig. 1 Average retrieval delay for the case of k = 2
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2.2 Lower bound

For the problem of determining the contents of one message out of k we prove
that 0.5k messages is the lowest achievable average cost.

Intuitively level to solve for ¢ messages we must receive at least ¢ coded
messages.

Lemma 1. On average there are greater than %kz messages solved for before
or in the same round as .

Proof. First let us define m; as the number of messages solved before or at the
same time that z; is solved. If a message x; never has its contents solved then
define m; = k. For convenience, let m, be the number of messages solved
before or at the same time as the message of interest z,. x, is randomly
selected from {z;|j € [1,k]}. Thus, the average number of message solved

k .
before or at the same round as z, is the average vale of m; i.e. #

If all the values of m; are distinct then the minimum value they can have
is the integers from 1 to k thus the average value of m; is:

(k+1Dk  k+1
2k 2 7

If some messages are solved at the same time (in the same round) then
this sum is strictly greater because having multiple messages solved at the
same time causes double counting.

Thus, on average there are greater than %k messages solved before or in
the same time step as z,.. B

Next we use this lemma to prove a lower bound on the average number of
rounds needed.

Theorem 1. There exists no scheme in our model such that the contents
of a message x, selected at random can be solved with fewer than %k coded
messages on average.

Proof. Given lemma 1 when the receiver, r, has solved for z,., having received
t, coded messages, r has also solved for more than %k messages.

To solve for m; messages the reciever must receive at least m; coded
messages. Thus the average number of coded messages needed to solve for
x, must be greater than or equal to the average value of m;. Thus a lower
bound for the average number of coded messages needed is k/2. B

3 Methodology

Determining whether the set of received messages fully specifies the target
one-out-of-k message, is the major difficulty. Since messages are retrieved
at random, differently coded messages are collected (e.g. uncoded messages,
linear combination of two messages, linear combination of all £ messages,
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and so on depending on the construction). The set of collected messages also
depends on time, requireing a transient stochastic process to model a chosen
strategy, which usually exhibits a non-trivial space state.

To avoid such stochastic modeling complexity, the methodology employed
hereafter consists of three steps: i) model a proposed coding strategy via a
discrete time (vector) stochastic process; this is arguably the most complex
step, as discussed later on; ii) approximate the proposed coding strategy’s
transient solution with the deterministic mean trajectory specified by the drift
(vector) differential equation of a conveniently rescaled stochastic process,
and iii) derive the average number of queries needed to retrieve the target
message from a relevant probability distribution, which is derived from the
knowledge of the drift equation solutions.

The approximation in step (ii) above is motivated by by the fact that prac-
tical values of k are relatively large. It consists of using mean field techniques
widely established in the literature since [5], which have been successfully
applied to a variety of problems [2, 4], and which guarantee asymptotic con-
vergence to ezact results for finite state space systems under mild assumptions
(see e.g., [4]). Our own results show a very accurate matching with simulation
even for relatively small values of k.

Details and a simple example of the proposed methodology are presented
in appendix 1 of the technical annex [1].

4 Practical Example Cases

In order to understand the asymptotic nature of the gain, and show how
the proposed methodology can be concretely applied we show two example
constructions. In both cases, we compare analytical results with simulation.

All-or-nothing scheme
This scheme is extremely simple in terms of states, permits a simple analysis,

and can be used as a reference to gauge the improvements brought about
by more complex schemes. The all-or-nothing scheme comprises only two
possible types of messages, defined below.

Definition 4. A singleton is a message z; for ¢ € [1, k] sent in plain text.

Definition 5. A fully coded message is a random linear combination E?Zl Q;T;
of all k£ messages over a large field size F, with o; € F.

We assume that all messages x;, with ¢ € [1,k], are equiprobable. Under
this assumption, the all-or-nothing scheme is characterized by a single pa-
rameter p, where p is the singleton reception probability and 1 — p is the
complementary fully coded message reception probability. The state space
thus comprises two state variables: i) the number of singletons received at a
given time, and ii) the number of fully coded messages received at the same
time.
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Theorem 2. The all-or-nothing scheme achieves a best possible performance
of 0.86k; which corresponds to the value p ~ 0.6264.

Proof. Using the methodology presented above, let we define the following
two density processes:

e 5(t) € (0,1) is the fraction of singletons accumulated until time ¢;
e d(t) € (0,1) is the fraction of fully coded messages accumulated until time
t.

In this case, the drift differential equation reduces to two independent or-
dinary differential equations. For the case of singletons, operating in a similar
way to the example in Appendix 1 of [1], we have:

s'(t) =1—ps(t), (1)
which, when solved with initial conditions s(0) = 0, yields
s(t)=1—e P (2)
For the case of fully coded messages, we have:
d'(t) = (1 —p)d(t) with d(0)=0. (3)

Therefore
a(t) = (1 - p)t. (4)

We now note that a target message is decoded when either the correspond-
ing singleton is received, or when the number of received singletons plus the
number of fully coded messages is equal to the total number k of distinct
messages. In terms of density processes, this latter condition is expressed by
the equation

st)+dt)y=1 — e P +t=1. (5)
Let us call t* the solution of this transcendental equation. By introducing the
Lambert W function, we can express t* in closed form as t* = %%").

Finally, the average number of messages E[X] needed to decode the target

message can be computed:

B[X] :/O s(r)dr = -5 (6)

This expression is minimized when p = 0.626412, and yields a minimum
(normalized) number of retrieved messages F[X] = 0.859834. W

In order to verify the correctness of the analysis, Figure 2-a shows that
simulations vary the number of messages from k=2 to k=70. Note that the
theoretical results have an asymptotic nature, hence our choice of running
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Fig. 2 Average retrieval delay varying the number of messages: mean field approximation
vs simulation.

simulations with small values of k. Every point in the figure is the delay to
retrieve a data message averaged on 50000 samples. Even though the proposed
methodology obtains an exact solution only for large values of k, already after
k=20 the error is below 1%.

Pairs-only scheme
This scheme shows how the state space can become extremely complex (ac-

tually an infinite set of state variables) even when considering an apparently
very simple approach. Moreover, it can be solved using an alternative method-
ology, because its emerging decoding structure can be cast as an Erdos-Rényi
random graph; thus it permits us to verify that our methodology, despite
being extended to the case of infinite state variables (hence violating the as-
sumptions in [4]), nevertheless yields the same results derived in the relevant
random graph literature.

As the name suggests, the pairs-only scheme includes only one type of
coded message, namely the random linear combination of two randomly cho-
sen messages. This type of message is called pair and is formally defined as
follows.

Definition 6. A pairis a random linear combination of two randomly chosen
messages over a large field size in the form {(ax;+8z;)|i # j and 4,5 € [1,k]}
where a, 5 € F and F is a large field.

In analyzing this scheme, the difficulty lies in defining an appropriate state
space. Once this is done, the remaining analysis reduces to the conceptually
straightforward application of our methodology. The state space definition
and justification is presented in Appendix 2 [1], along with the proof of the
following theorem:

Theorem 3. The pairs-only scheme achieves a performance of’lr—;k ~ 0.8224k.

Our results confirm those found in random graphs literature. However, our
approach can be extended to coding schemes which cannot be directly cast as
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a random graph problem, such as, the combination of singletons and pairs,
which yields a performance slightly below 0.8k (we postpone analysiss to
a later extended version of this work). Comparison with simulation results
averaged over 50.000 realizations is reported in Figure 2-b. Again, results
show that convergence to the asymptotic result is very fast, with an error
lower than 1% for k& > 20.

5 Conclusion

In this work we explore efficient solutions to one-out-of-k retrieval.-We prove
a lower bound of 0.5k and upper bound of 0.8224k on the number of coded
messages needed on average to solve for the message of interest. Current sim-
ulation results suggest that the true minimum value for one-out-of-k retrieval
should be higher than 0.5k. The machinery given in Section 3 can be used
to analyze various proposed schemes to produce upper bounds. Generalizing
one-out-of-k retrieval to m-out-of-k retrieval is another interesting extension.
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