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Abstract

Disseminating information in large networks of distributed systems is a fundamental problem.
The classical randomized protocol, where in each round every node chooses a random neighbor
to exchange information with, is an attractive solution for its simplicity, robustness to failures,
and efficiency for many topologies. However, since the running time of this protocol depends
on the expansion of the network, there are topologies for which it is very inefficient, requiring
a number of rounds significantly larger than the diameter (polynomial in the number of nodes,
for networks with constant diameter). Recently, a new generation of randomized protocols have
been proposed [3,4], which provide stronger runtime guarantees achieving a number of rounds
close to the diameter. However, it seems that these protocols are less robust, even against
modest network changes or failures.

In this paper we present a randomized information spreading algorithm that has runtime
comparable to the newer algorithms, namely O(D - polylog(n)) rounds for any network with
n nodes and diameter D, and is provably robust for various random failure models, similarly
to the classical randomized protocol. Our algorithm relies on solving the Neighbor Exchange
Problem [3], where each node must learn the information stored in each of its neighbors. The
algorithm is simple and natural, and its main innovation is that nodes choose the neighbor to
contact in each round with probability that decreases with the number of messages they have
received originating from that neighbor.
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1 Introduction

A central task in large networks of distributed systems is the task of information spreading, where
each node has a piece of information that must reach all other nodes of the network. Every node
has to choose which neighbor to contact and exchange information with in each round, with the
goal that information spreads to the whole network in as few rounds as possible. Since we assume
that nodes do not know the topology of the network in advance, a natural solution is to choose
randomly. The classical randomized algorithm [8,23], where in each round every node chooses a
neighbor uniformly and independently at random and the two nodes exchange the information they
have, has been studied extensively and found various applications. Surprisingly, this simple local
protocol has proven quite efficient for a wide range of topologies. An additional important property
of the protocol is that it is naturally robust to various types of network failures.

The number of rounds required by the algorithm that uses uniform random choices depends on
how well-connected the network is. More precisely, it depends on the expansion properties of the
underlying network graph [5,6,20], rather than the diameter of the network, which is the natural
lower bound for information spreading. In particular, there are topologies for which the algorithm
is very inefficient, requiring a number of rounds significantly larger than the diameter. For example,
in the dumbbell graph, where two cliques of n/2 nodes are connected with a single edge, a linear
number of rounds in needed despite the network having constant diameter.

Recently, a new generation of randomized information spreading protocols have been proposed,
which provide stronger runtime guarantees [3,4]. These algorithms achieve fast running times under
weaker expansion properties [4], or even running times that are close to the diameter regardless
of the expansion of the graph [3]. It seems, however, that these protocols do not demonstrate the
robustness of the uniform randomized algorithm. To some degree, they all rely on constructing
sparse subgraphs of the network and spreading information on those subgraphs. As a result, it
seems that these protocols are sensitive even to modest network changes and failures.

In this paper, we present a simple and natural randomized algorithm whose running time is
close to the diameter for all graphs, similarly to the protocols in [3], but is also provably robust for
various random failure models, similarly to the uniform randomized algorithm.

Our contribution: We study a basic communication task, the Neighbor Exchange Problem,
where the goal is for each node to obtain the information of all of its neighbors [3]. Repeating a
neighbor exchange algorithm D times, where D is the diameter of the network, solves the problem
of information spreading. Our main result is a neighbor exchange algorithm with the following
runtime bound that holds for any graph.

Theorem 1. For any constant 5 > 1, our algorithm completes neighbor exchange in O(log9 n)
rounds, with probability 1 —n =P,

This implies information spreading in O(D - log® n) rounds. Unlike the uniform randomized
algorithm, our algorithm uses probabilities that are neither uniform nor fixed throughout the ex-
ecution. Instead, they are adjusted according to a new simple framework that assigns a smaller
probability to a neighbor whose message has been received many times. This gives priority to
other neighbors, resulting in a faster running time. While our algorithm is simple and natural, its
analysis is non-trivial.

In addition to being fast, our algorithm is robust to failures. Given some probability of inde-
pendent edge failures for each round, our algorithm works without change, paying only an overhead
in the runtime that depends on the failure probability g. Precisely, the running time increases by
a factor of at most O(1/(1 — q)), similarly to the uniform randomized algorithm.



Further, we consider permanent edge and node failures, where each surviving edge or node fails
in a round independently with some (small) probability. Under this failure model, we require that
a node acquires the messages of all its surviving neighbors that are still connected to it. We show
that the performance of our algorithm is not affected by this model.

As will be elaborated in Section 4, other information spreading algorithms that have been
shown to be fast [3,4], can tolerate random failures in the first of the two models above with the
use of standard error recovery mechanisms. It is not obvious how these protocols could be made
fault-tolerant in the second model with permanent failures.

Related work: Randomized information spreading algorithms have been studied in many papers,
starting with the work of Demers et al. [8] for replicated database maintenance.

The push version of the uniform randomized algorithm, where information is transmitted only
from the node that initiates a connection, was studied first. The runtime of the protocol was
analyzed precisely for the complete graph by Frieze and Grimmett [18] and Pittel [28], then for
the hypercube by Feige et al. [14] and other similar graphs by Elsésser and Sauerwald [12], and for
random graphs by Feige et al. and Fountoulakis et al. [14-16]. The robustness of this protocol was
studied by Elsésser and Sauerwald [13].

The push-pull version of uniform randomized algorithm, where information is exchanged be-
tween the pair of communicating nodes similarly to our model, was first studied by Karp et al. [23]
for the complete graph. More recently, the protocol was analyzed for preferential attachment
graphs by Chierichietti et al. and Doerr et al. [5,9], and for other graphs modeling social networks
by Fountoulakis et al [17].

Additional work considered randomized information spreading algorithms on other families of
graphs. Kempe et al. [24,25] give distance-based bounds for nodes placed with uniform density
in R?. Bradonji¢ et al. [2] analyze information spreading in random geometric graphs, Georgiou
et al. [19] study asynchronous networks, Sarwate and Dimakis [29] and Boyd et al. [1] study the
problem in wireless sensor networks, and Pettarin et al. [27] consider sparse mobile networks.

For arbitrary communication graphs, as considered in our work, a sequence of papers bound
the running time of the uniform randomized algorithm in terms of the expansion of the graph.
Mosk-Aoyama and Shah [26] showed an O(logn/¢) bound for regular graphs, where ¢ is the graph
conductance. Chierichetti et al. [6,7] proved a slightly weaker bound that holds for any graph,
and [20] improved this bound to O(logn/¢) for all graphs. Similar bounds have been shown in
terms of the vertex expansion « of the graph [21,30]. The runtime bound shown for general graphs
is roughly O(log?n/a).

Some papers have presented alternative algorithms that deviate from the paradigm of inde-
pendent random choices. In an influential work [10,11], Doerr et al. introduced the quasirandom
model, in which each node randomly chooses a starting position from its list of neighbors from
which it sequentially accesses the list. This approach reduces the amount of randomness needed
for the algorithm, without hurting the running time for many graph topologies. Further reduction
on randomness can be achieved using hashing [22].

Comparison with Recent Results: In [4], an information spreading algorithm was given, with
a runtime that depends on the weak conductance of the communication graph, a weaker notion of
expansion that is never smaller than the conductance and is larger in many cases. While for many
graphs this algorithm improves upon the randomized information spreading algorithm in terms of
the number of rounds it requires, it is highly susceptible to failures. The reason for this is that
the algorithm implicitly builds a sparse subgraph over which messages are sent. An edge that fails



may disconnect the subgraph, effectively partitioning the communication in the network despite its
remaining connected through edges that are not included in the sparse subgraph.

A recent algorithm of [3], greatly improves the running time for information spreading by
achieving O(D + polylogn) rounds. However, this algorithm is also vulnerable to failures. Its
main ingredient is a neighbor exchange algorithm that requires O(log3 n) rounds to complete.
Afterwards, it uses this as a subroutine to build an underlying sparse spanner in the graph and
send messages along that spanner. As explained for the previous algorithm, if an edge fails then it
could disconnect the spanner and prevent information from reaching all nodes, even if the original
graph is still connected. Another algorithm can be built from the neighbor exchange procedure by
simply repeating it D times, thus obtaining a runtime of O(D-log® n) rounds. However, the neighbor
exchange procedure itself cannot tolerate failures, for the following reason. The procedure heavily
relies on every pair of nodes sharing knowledge about receiving each other’s message. Formally, it
uses uniform random choices for the neighbors being contacted, and after every O(log?n) rounds
it discards all edges between neighbors that have each other’s message. It argues that at least half
of the edges are being discarded after each such iteration, requiring O(log3 n) rounds in total. To
guarantee that if a node u gets the message of a node v then v gets the message of u, a deterministic
reversal routine is used, in which at the end of the iteration all steps are repeated in reverse order.
This is the Achilles’ heel of the algorithm in terms of robustness. If edges can fail independently
with probability 1/n¢, for 0 < € < 1, then there is high probability that some of these reversed
paths are broken, implying that the symmetry is not preserved.

2 Neighbor Exchange Algorithm

We denote by m,, the message of u that must be disseminated to all its neighbors. Our algorithm
runs in phases with r» = ¢ - log® (n) rounds in each phase, for some constant ¢. Each copy of m,,
that u sends during a phase ¢ has timestamp ¢. For every neighbor v € N(u), node u has a counter
Cy,» that counts the phases ¢ during which it receives some copy of m, with timestamp ¢ (i.e., the
copy was sent by v during the current phase). Formally, let C,, ,,(t) denote the value of the counter
after phase t. Then, C,, ,(t) = Cyo(t — 1) + 1 if u receives a copy of m, with timestamp ¢ during
phase t, and C,, ,(t) = Cy(t — 1) otherwise, with C,, ,(0) = 0.

For every ¢t > 0, we define for each node u a total order over its counters C,, ,(t) by increasing
order, where ties are broken arbitrarily, say by the node IDs. We define R, () to be the rank of
v at u after phase ¢, that is, the place of Cy () in the total order. In every round of phase ¢t > 1,
node u chooses to contact neighbor v with probability p,.(t) = 1/(Ruu(t — 1) - h|n(a)), Where
hgq is the normalizing constant 2?21 1/i, which yields }° ¢ n(y) Pup(t) = 1. We have In(d + 1) <
hq < In(d) + 1. When a node contacts some other node in a round, the two nodes exchange all
the information they had at the beginning of that round. If a node receives multiple copies of a
message my,, it keeps only the copy with the most recent timestamp.

The following theorem states that our algorithm is fast, and is our main result. Section 3 is
dedicated to its proof.

Theorem 1. For any constant 5 > 1, our algorithm completes neighbor exchange in O(log9 n)
rounds, with probability 1 —n=?.



3 Analysis

Before we present the formal proofs, we give an overview of the analysis. By definition of the
neighbor exchange problem, the goal of our algorithm is to reach a time where all the counters
are positive, implying that every node has received at least one copy of the message of each of
its neighbors. To show this, we prove two properties that hold with high probability. The first
is that the counters Cy, and C,, at two neighboring nodes u and v do not differ by more than
p = O(log®n), unless both counters are greater than £ = ©(log® n) (Corollary 4 of Lemma 3). The
second property is that for every pair of neighbors at least one of the counters is larger than p after
O(¢ -logn) = O(log® n) phases.

For the second argument, we examine the counters after each phase ¢ by defining a threshold
T; and bounding the number of counters that are below this threshold (Lemma 6). This threshold
is initially Tp = ¢, and it decreases by 6 = ©(¢/logn) whenever a constant fraction of the counters
that are below T} are also above T3 — §. (The constants in the definition of § ensure that 7} cannot
decrease below p.) To compute the rate at which the number of counters below the threshold
decreases (either because counters exceed T; or because they exceed T; — 4, causing T; to drop),
we argue that a constant fraction of the counters that are below the threshold at the end of a
phase increase in the next phase (Lemma 7). It follows that in O(7;) = O({) phases the number of
counters that are below the threshold decreases by a constant fraction (proving Lemma 6).

To prove that a constant fraction of the counters that are below the threshold increase in a phase
(Lemma 7), we study the spread of messages along a subgraph of the original graph. We define a
virtual coloring procedure that we call Red-Blue Coloring, which colors edges in red while initially
all edges are blue. We show that wuniform random spreading in the blue subgraph (with some
imposed failure probability) is dominated by the real algorithm, i.e., the probability for choosing a
blue edge is not larger than the probability of choosing it in the real algorithm (Lemma 8). Then,
by analyzing the uniform random spreading process, we show that at least a constant fraction of
the blue edges have a counter that increases in the next phase (Lemma 9). To prove that, we use a
graph decomposition theorem into components of large conductance from [3], and the conductance-
based bound of [20]. Last, using a potential argument we show that the counters that are below
T; — 0 in our analysis, and thus most of the counters that are below T}, are indeed blue in the
virtual procedure (Lemma 10). The last two results give that a constant fraction of edges whose
counters are below T} increase in the next phase (completing the proof of Lemma 7).

We are now ready for the formal analysis. As explained, the first key ingredient in our analysis
is showing that the counters of two neighbors do not differ by much, with high probability. We will
use the following symmetry lemma, the proof of which is the same as that of [6, Lemma 3].

Lemma 2. The probability that in phase t node u receives a copy of m, with timestamp t is the
same as the probability that v receives a copy of m, with timestamp t.

The intuition is that the probability of a message traveling along a path is the same as the
probability of traveling along the reverse path. We remark that although the two events in Lemma 2
have the same probability, they are not independent. Also, these probabilities are not the same for
different phases t.

The next lemma bounds the difference between the counters of two neighbors at all phases ¢
until the sum of the two counters increases above some threshold A. Using Lemma 2 it is easy
to see that this difference is a martingale, and a direct application of Azuma’s Inequality yields a
bound on this difference in terms of the number of phases. The next lemma gives a more refined
bound, in terms of the values of the counters rather than the number of phases.



Lemma 3. For every two neighbors u,v € V and any a, A > 0,
Pr [Vt (Cun(t) + Coult) €A = [Cun(t) = Cou()] < aVX)| = 12072

Proof. In every phase t, each counter either increases or remains the same. Further, from Lemma 2,
the probability that C,, increases is the same as the probability that C, , increases. For some ¢,
and for k =1,...,/, let t; be the k-th phase ¢ in which exactly one of the two counters increases,
ie., Cyuy(t) +Cyult) = Cyp(t —1) 4+ Cyu(t — 1) + 1. Two observations are in place: First, in phase
ty, each of the two counters Cy ,(t;) and C, ,(t;) increases with the same probability, 1/2, thus
the sequence { X} of the differences Xy, = C, 4 (tx) — Cyu(tx) is a random walk on the integer line.
By a simple Chernoff bound, it follows that for any k,

Pr(|X| > aVA] < 2"V (k) (1)

The second observation is that Cy,, (t5) +Cyu(tx) > k, and thus Cy, ,(t) +Cy . (t) < X implies t < ).
Therefore, the event described in the statement of the lemma supersedes the event: Vi € [1..t)]
(|Cuw(t) — Cou(t)] < av/N), which is equivalent to the event: V& € [1..\] (|Xk| < av/)). From (1)
and the union bound, it follows that the last event holds with probability at least 1 — We*/2. O

Define ¢, §, p such that

£ =30-logyzn 0 = 2p-logs(3n) p=+2-(B+3)-3C Inn.

As will be seen later, the number of phases the algorithm requires is O(¢-log n), which for a constant
3 is in the order of log®n, implying O(log9 n) rounds. The next results follows from Lemma 3.
Define the event

H: V{u, v} Vit (min{Cuu(t), Cou(t)} <€ = [Cun(t) — Coult)] < p).

Corollary 4. Pr[H] =1 — o(n™?).

Proof. By applying Lemma 3 for A = 3¢ and a = p/V3( = \/2- (B8 + 3) - Inn, we obtain a lower
bound of 1 — 6¢ - n~#~3 on the probability of the event that |Cy () — Cyu(t)| < p for all ¢ for
which Cy, ,(t) + Cy 4 (t) < 3¢. This event implies also that |Cy, ,(t) — Cy . (t)| < p for all ¢ for which
min{Cy, ,(t), Cyu(t)} < €. This is because otherwise, for the first ¢ for which it does not hold we
have that max{C,, ,(t), Cypu(t)} = min{Cy ,(t), Cyu(t)} + p+ 1, implying that C\, ,(t) + Cy () =
2min{Cy(t), Cpu(t)} +p+1 <20+ p+1 < 3(. But if the first event holds then this implies that
|Cuw(t) — Cyu(t)] < p, which is a contradiction.

Applying now the union bound over all the at most n? edges {u,v}, yields the claim. O

We next consider the values of the counters among all pairs of nodes. Let E(¢,i) denote the
set of edges {u,v} for which max{C,,(t), Cypu(t)} < i. Further, let M(t,i) = |E(t,7)| denote the
number of those edges.

We consider the sequence Ty, 17, ... of random variables, where Ty = £, and for ¢t > 1, T; is
defined as follows: Initially let 7" «<— T;_;, and while M (¢,T —¢6) < (3/4) - M (¢,T) set T < T — 6.
Then T; is equal to the final value of T

Define E; = E(t,T;) and M; = M (t,T;) = |E;|. Since My < n?, and M; decreases by a factor
of at least 1/4 each time T} decreases by d, and also T; does not decrease further after M; = 0, it
follows that for all ¢, we have Ty > £ — 4 - logy /3 n?=4- logy/zn > p.

Observation 5. For allt, T; > p.



The next lemma bounds the rate at which M; decreases. Its proof, which is described later,
constitutes the largest part of our analysis.

Lemma 6. Fort=4-((+1), E[M.] < (4/5) - E[My].

Combining this lemma with the results presented earlier, we can easily derive Theorem 1.
Roughly speaking, once M; reaches zero, at least one endpoint of each pair of neighbors has the
message of the other. Moreover, its corresponding counter is above the threshold, implying that if
all the differences between pairs of counters at neighbors are bounded then all neighbors have each
other’s messages. Lemma 6 shows that M; decreases fast enough, implying the stated runtime.

Proof of Theorem 1. Applying Lemma 6 repeatedly yields E[M;] < (4/5)%/7) . My, and thus for
P = (148)- (1 +logyun?) -7,
we get E[M;<] < n~28. Markov’s inequality then gives Pr[M > 1] < n =28 and thus
Pr[Mp = 0] >1—n"2°, (2)

i.e., with this probability, we have for very edge {u,v} that max{Cy ,(t*), Cp.(t*)} > Ti + 1.
Since Observation 5 yields T3+ > p, the last inequality implies max{C,, ,(t*), Cpu(t*)} > p + 1.
Now, if event H occurs as well, then |Cy, ,(t*) — Cy (%) < p, and thus min{C,, ,(t*), Cy . (t*)} > 1.
Therefore, if both My« = 0 and event H occurs, all nodes have received at least one copy of the
message of each of their neighbors by the end of phase t* = O(7 - logn) = O(¢ - logn). By (2),
Corollary 4, and the union bound, this happens with probability 1 — o(n‘ﬁ ). ]

In the remainder of the analysis we describe the proof of Lemma 6. The idea is that in order
to show that M; decreases fast enough, we show that a constant fraction of the counters that are
below the threshold at some phase increase in the next phase.

Lemma 7. With probability 1 — 1/n, at least 3/8 of the counters C.,,, {u,v} € Ey, increase in
phase t + 1.

Before we describe the proof of Lemma 7, we show how we can use it to prove Lemma 6.

Proof of Lemma 6. For 0 < k < 7, let & be the event that at least 3/8 of the counters C,,,
{u,v} € Ei4y, increase in phase (t + k) + 1. Further, let £ =y, &. From Lemma 7, we have
Pr[€;] > 1 — 1/n, and by the union bound, Pr[f] > 1 — 7/n. We will argue below that if event
& occurs then we have M, < (3/4) - M;. Thus, My, is bounded by (3/4) - M; with probability
1 — 7/n, and since with the remaining probability it is bounded by M;, we have

E[M:.] < (3/4) - E[M;] - (1 - 7/n) + B[M,] - (v/n) < (4/5) - E[M],

for large enough n.

To complete the proof it remains to show that £ implies My, < (3/4) - M;. Suppose towards a
contradiction that event £ occurs but My, > (3/4) - My. We bound the sum Z{u,v}eEHT (Cuﬂ, (t+
T) + Cyult + 7')) of the counters for every edge in E;, after phase ¢t + 7. This sum is bounded
from below by the difference between the following two quantities:

(i) The sum of the increase in the counters for the edges in E; during phase (¢ + k) + 1, for all
0 < k < 7. Because of events &, this is at least > o, .(3/8) - 2M;p > 7 - (3/4) - My1,; minus
(ii) The sum of the counters for each {u, v} € Ey— Eyy, after the first phase ¢’ for which {u,v} ¢ Ey.



This sum is st most 2(My; — Myir) - (Ty + 1).
Thus,

Z (Cu,v(t + ’7') + Cv,u(t + 7_)) >T- (3/4) : MtJrT - 2(Mt - MtJrT) : (Tt + 1)
{u,v}EFE 1+

Further, the sum on the left side is at most 2My; - Tir < 2Myy, - T;. Thus
2Myir - Ty > 7+ (3/4) - Myyr — 2(My — Myyr) - (T3 + 1).
Solving for 7 and using the assumption that M, > (3/4) - M, yields
T < (4/3) - 2(My/Myy,) - (Tr +1) < (4/3)-2(4/3) - (Ty+1) <4- (T, +1) <4- (L +1) < T,
which is a contradiction. O

To prove Lemma 7 we argue about how messages spread on a subgraph of the original graph.
We define this subgraph by an edge coloring procedure, which assigns one of the two colors blue
and red to each edge. We run this procedure after each phase, and then we study the spread of
messages through the blue subgraph during the next phase. We emphasize that this is a virtual
procedure that is used only for the analysis and not by the real algorithm.

The coloring after phase t is determined by the following procedure, based on the counter values
Cy(t) and threshold T;.

Red-Blue Coloring: Initially the edges in F; are colored blue, and the edges in ' — FE; red.
Some of the blue edges may turn red later on. For each node u, we have a variable L(u) which
contains always the largest value C,, ,(t) over all edge {u,v} incident to u that are currently blue.
We say that the color-changing condition holds for w if there is some [ < L(u) for which more than
3/4 of the edges {u,v} with Cy,(t) € [I..L(u)] are red. If the color-changing condition holds for
some u, then we choose the largest [ for which it holds, and switch to red all the blue edges {u, v}
with Cy, ,(t) € [l..L(u)]. We repeat this step for all nodes v until the color-changing condition does
not hold for any node.

The motivation for changing to red the color of some blue edges of node u in case there are many
red edges with smaller counter values at v (and thus smaller ranks) is that we will later argue about
the probabilities of node u contacting blue edges alone, and will need the ranks of blue edges to be
bounded with proportion to the number of blue edges. This will be made clear later. The reason
we may have to repeat this several times is that once an edge {u, v} becomes red at node u, it may
cause additional edges to turn red at its neighbor v.

Let G¢ be the coloring of the graph after phase . We say that node v is a blue (or red) neighbor
of node u if edge {u,v} is a blue (resp. red) edge in G;. Let Bi(u) be the total number of blue
neighbors of u in G. First, we prove that for each node u, the largest rank of any blue neighbor of
u is at most 4 times the number of these neighbors.

Lemma 8. For every node u and every blue neighbor v of u in Gy, Ry (t) < 4B (u).

Proof. Let v be the blue neighbor of w in G with the largest rank R, ,(t). Then v has also the
largest counter value Cy, ,(t) = L(u) among the blue neighbors of u. Assume towards a contradiction
that Ry, (t) > 4B¢(u). Then there are more than 3B;(u) red neighbors v’ of u that have ranks
that are smaller than R, ,(t), and thus have C,, v/ (t) < Cy(t) = L(u). But in this case, the color-
changing condition holds for u, and thus the Red-Blue Coloring procedure would have colored the
edge {u,v} red, which is a contradiction. dJ



Lemma 8 implies that the probability 1/(Ry,(t) -k (w))) With which u contacts a blue neighbor
v in each round of phase t + 1 is at least 1/(4B¢(u) - hy,). We can now show that at least half of the
counters for blue edges increase in the next phase, with high probability (note that we have two
counters for each blue edge, and we do not require both to increase in the following lemma).

Lemma 9. With probability 1 — 1/n, at least half of the counters C.,,, for the blue edges {u,v} of
Gy increase in phase t + 1.

Proof. We couple the algorithm with a process R in which a node u contacts each of its B;(u) blue
neighbors with probability 1/(4B¢(u) - hy,). With the remaining probability ¢ =1—1/(4- hy,,), node
u does not contact any neighbor. As follows from Lemma 8, in the real algorithm, u contacts each
blue neighbor with probability at least 1/(4B¢(u) - hy,), thus we can couple the two processes such
that for any two neighbors u and v, if u contacts v in a given round of R then the same happens in
the real algorithm. Therefore, it suffices to prove the lemma using R instead of the real algorithm.

From the decomposition theorem of [3, Corollary 3.4] we get that at least half of the blue edges
of G belong to well connected components of conductance 2(1/logn). We observe that the proof

of the conductance-based bound of [20] yields an upper bound of O (1—iq - (logn)/ qﬁ(S)) on the

number of rounds of process R that suffice to spread a message from any node in a set S C V, to
all other nodes in S with probability 1 —n®, for any constant «. It follows that there is an edge set
E' C E containing at least half of the blue edges of G, such that with probability at least 1 —1/n,
all pairs of nodes that correspond to these edges get each other’s message (timestamped with the
current phase number) after O((4 - hy,) - log?n) = O(log®n) rounds. Therefore, for an appropriate
constant ¢, during the r = ¢ - log® n rounds of phase t + 1 all pairs of nodes in E’ get each other’s
message, and thus increase their counters, with probability 1 — 1/n. ]

The last piece we need for proving Lemma 7 is that at least 3/4 of the edges in E; are blue; we
show this next. (Recall that at least 3/4 of the edges in E; belong to E(t,T; —§).) Define the event

He: V{u,v} (min{Cu,v(t), Cou(t)} <Ll — [Cuop(t) — Cpu(t)] < ,o).
Note that the event H described before Corollary 4 is the same as J, H;.
Lemma 10. Conditioned on the event Hy, all edges {u,v} € E(t,T; — J) are blue in G.

Proof Sketch. We introduce a potential function that assigns values to a subset of the red edges.
Precisely, every red edge {u,v} for which there is a blue edge {u,v'} such that C,,(t) < Cy (1),
is assigned a potential value of ®,, = 3Ti=Cun(®))/p We bound the value of the total potential
at the beginning of the Red-Blue Coloring procedure (when all edges in E; are blue), and then we
show that we cannot have a red edge in E(t,T; — §), unless at some point the potential increases
above that initial value. The main claim of the proof is that the potential function does not ever
increase, which proves the lemma. The full proof appears in the Appendix. ]

We can now complete the proof of Lemma 7.

Lemma 7 (repeated). With probability 1 — 1/n, at least 3/8 of the counters C, ,, {u,v} € Ey,
increase in phase t + 1.

Proof of Lemma 7. From the definition of T3, at least 3/4 of the edges in E; are in E(t,T; — 9).
Thus, Lemma 10 gives that 3/4 of the edges in E; are blue in G, if event H; occurs. Using the
bound Pr[H] = 1 — o(n~?) from Corollary 4, we obtain that 3/4 of the edges in F; are blue with
probability 1 — o(n™?). Further, Lemma 9 says that 1/2 of the counters for blue edges increase in
phase t+ 1 with probability 1 —1/n. (All blue edges of G; are in E;.) Therefore, 3/8 of the counters
for edges in E; increase in phase ¢ + 1 with probability 1 — 1/n — (n~?), by the union bound. [



4 Robustness Against Failures

In this section we consider different failure models and show that our algorithm is robust, thus pre-
serving this important property of the uniform randomized algorithm while significantly decreasing
the required running time.

Random Transmission Faults: We assume that each edge (link) is faulty independently in
each round with some fixed probability 0 < p < 0. (Different edges can have different failure
probabilities, in which case p is an upper bound on these probabilities.) If an edge is faulty in
some round then all messages transmitted through that edge in that round are lost. Alternatively,
we can assume that messages transmitted thought the same edge in the same round are lost with
independent probabilities. More precisely, if in some round two nodes u and v try to exchange
information with each other, then the two events that the information transmitted from u to v
is lost and that the information from v to u is lost occur independently each with (the same)
probability p.

Our algorithm is robust against this failure model. It does not attempt to repeat failed trans-
missions. In fact, it does not even need to detect failures.

Failures come into play in our analysis in two places. The first is the proof of Lemma 3, which
bounds the discrepancy between two counters at the endpoints on an edge. This proof relies on the
symmetry of Lemma 2, which states that the probability a message from w reaches v is the same
as the probability that a message from v reaches u, in a failure-free phase. The proof of this result,
as found, e.g., in [6, Lemma 3], carries through without changes to the failure model above. (Note
that the independence of failures across rounds is critical for this result to hold. This independence
will not hold for the model of permanent faults we will describe later.) Thus, Lemma 3 still holds.

The second place in our analysis where we must take failures into account is the proof of
Lemma 9, which gives a lower bound on the number of counters that increase in a phase. In that
proof we argue that the algorithm dominates a process R in which a node contacts each neighbor
with equal probability, and with probability ¢ = 1—0(1/logn) it does not contact any neighbor. To
account for message losses, we just need to change the above probability ¢ to 1 —(1—p)-O(1/logn).
This yields an increase by a factor of 1/(1 —p) to the bound we obtain for the length r of a phase.
Thus, to cope with message losses it suffices that phases are sufficiently long.! This gives:

Theorem 11. Under the above faults model, for any constant B > 1, our algorithm completes

neighbor exchange in O(l%p -log” n) rounds, with probability 1 — n=p.

The algorithm in [4] cannot tolerate asymmetric failures, i.e., that the information sent from
node u to node v in some round gets lost, but the information sent from v to u in the same round
is transmitted successfully. Thus for the second version of the model we presented above, the algo-
rithm in [4] needs a failure detection mechanism that informs nodes of unsuccessful transmissions.

The Neighbor Exchange algorithm in [3] needs stronger guarantees. In particular, in the reversal
phase all messages must be delivered successfully. If a bound on p is known then this can be
achieved by repeating each transmission for ©((logn)/(1 — p)) times, which results in all messages
being delivered with high probability.

In contrast, our algorithm has the advantage that it does not require error recovery mechanisms.

'In the Appendix we describe a variant of the protocol that does not use phases, and thus eliminates the issue of
choosing the phase length.



Random Permanent Faults: We assume that nodes and/or edges are subject to permanent
crash faults. In each round, each node (or edge) that has not failed yet fails with probability
bounded by p = 1/n€, for some constant 0 < ¢ < 1. We do not require that failures in the same
round occur independently. We chose the failure probability p to be small enough that not all nodes
(or edges) fail in polylog(n) rounds, and large enough that many failures occur in a round. In this
model, it only makes sense to require that each node acquires the messages of all of its non-faulty
neighbors that are connected to it via non-faulty edges.

As before, our algorithm tolerates faults in this model without changes. Instead of repeating
the majority of the proof, we only sketch the small modifications needed for the analysis to work
in this model. Lemma 2 no longer holds. Instead we have that the two probabilities differ by a
factor of at most 14 O(p - r2) = 14+ O((log®n)/n¢). The reason is that, given a failure-free run of
a phase in which a message from node u reaches node v via some path (of length at most ), the
probability that some node or edge along this path fails during the phase in our model is bounded
by p-72. Since this difference is very small, it can be easily shown that Lemma 3 continues to hold
for any \ = polylog(n).

In the proof of Lemma 9, we show that for each edge {u, v} in a set E’ containing half of the blue
edges, nodes u and v receive each other’s message w.h.p. (in a failure-free phase). By applying the
same argument as above, we can guarantee for our failure model that node u receives v’s message
with probability at least 1 — p - r2. Although this is too weak to yield a high probability bound,
it gives that with probability 1/2 at least half of the counters of the edges in E’ increase in the
phase. Thus, Lemma 9 still holds if we reduce the probability to 1/2 and the fraction from half to a
quarter. Similarly, Lemma 7 now holds with probability 1/2 instead of 1 —1/n and for 3/16 of the
counters. Since the goal of Lemma 7 is to facilitate the proof of Lemma 6, which is an expectation
result, this weaker version of Lemma 7 suffices for that goal. We just need to increase 7 by at most
a constant factor to obtain the same decrease in E[M;] as before. Thus we have:

Theorem 12. Under the above faults model, for any constant 5 > 1, our algorithm completes
neighbor exchange in O(Iog9 n) rounds, with probability 1 —n=".

It is not clear how the algorithms in [3,4] can be made fault-tolerant against this model. The
problem is that they rely on spreading information through a sparse subgraph, which can become
disconnected as several of the nodes (or edges) of this subgraph fail permanently in each round.

5 Discussion

We have shown a randomized information spreading algorithm that is based on a neighbor exchange
algorithm which requires O(log9 n) rounds to complete and is robust against various random failure
models. This highly improves upon the running time for the uniform randomized algorithm, while
maintaining high robustness.

The messages sent in our algorithm contain only the addition of timestamps to the initial
information that has to be disseminated. Since our neighbor exchange algorithm requires only a
polylogarithmic number of rounds to complete, this addition to the message size is negligible and
thus comparable to existing algorithms.

An open question arises when not all nodes have information to disseminate. In this case,
a node u without initial information still has to create a messages m, to be disseminated, since
our algorithm relies on receiving these messages in order to rank the neighbors and obtain the
probabilities for contacting them. We ask whether a better approach can be taken in such a case.
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APPENDIX

A Proof of Lemma 10

Lemma 10 (repeated). Conditioned on the event Hy, all edges {u,v} € E(t,T; — §) are blue in
G.

Proof. Conditioning on the event H; ensures that
|Cuw(t) = Cyu(t)] < p, forall {u,v} € E;.

We consider all edges as unidirectional, hence we have directions (u,v) and (v, u) for each edge.
We introduce a potential function ® that assigns a value to every unidirectional red edge (u,v)
for which C,, ,(t) < L(u). Observe that for the opposite direction (v,u) of such an edge we have
Cyu(t) > L(v), for otherwise the edge would not have been colored red (recall that the Red-Blue
Coloring procedure colors both directions of an edge when the color-changing condition holds for
at least one of its endpoints). The potential assigned to each (u,v) is

B 3(T=Cuw®)/p - if (u,v) is red and Cy,(t) < L(u);

e 0, otherwise.
The total potential is & = Z(u’v) Dy

Initially, when all edges in E} are blue, the total potential is
Pinig < 3n°,

2 is a bound on the number of red unidirectional edges with non-zero potential, and 3
is a bound on their individual potential, because for each such edge (u,v) we have Ty — Cy,(t) <
Cyu(t) — Cuu(t) < p. We will show that ® never increases, and thus ® < ®,5. From this, the
lemma follows easily: Suppose for contradiction that there is some red edge {u,v} € E(t,T; — 9).
Consider the step in the Red-Blue Coloring procedure when this edge becomes red, and suppose
without loss of generality that the step happens because the color-changing condition holds for
node w. Thus, right before that step, there is some red edge {u, v’} with C,, ./ (t) < Cy(t) < L(u).
Hence, at that time, (u,v’) has potential

because n

By > 3T Cun®)/p > 3(Ti—(Ti=0))/p — 30/p — 32logs(3n) - 352 > P, .0

which is a contradiction.

It remains to show that ® never increases. We consider the change in potential after each
coloring of edges red. Assume a step in the Red-Blue Coloring procedure which happens because
the color-changing condition holds for node u. Suppose that before the step we have L(u) = lhigh
and let [y be the largest [ for which the color-changing condition holds for u. Let R (and B) be
the set of red (resp. blue) unidirectional edges (u, v) for which Cy (%) € [liow--lhigh] before the step.
We now argue that the total potential decrease in this step is at least

S 3T Cusle _ 3 3T—Coul®p, (3)
(u,v)ER (u,v)€B

Note that in the second sum we have C,,(t) in the exponent, rather than C,,(t). The first
sum accounts for the potential before the step, of the red unidirectional edges (u,v) for which
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Cup(t) < lnigh = L(u) before the step and Cy ,(t) > liow > L(u) after; this potential is ‘lost’ in
this step. The second sum is an upper bound on the potential ‘gain’ due to the new red edges: the
potential of each (u,v) € B is zero, as Cy 4(t) > liow > L(u) after the step, but the potential of the
opposite unidirectional edges (v, u) may be non-zero.

Next we argue that we can map each unidirectional edge (u,v) € B to 3 distinct unidirectional
edges (u,v') € R with Cy v (t) < Cyu(t) (each (u,v') € R is mapped to at most one (u,v) € B).
Consider all (u,v) € B sequentially in increasing counter values, and associate with each (u,v)
the three edges (u,v') € R that are still free and have the smallest counter values (ties are broken
arbitrarily). Since |R| > 3|B|, this mapping is valid. We show that it satisfies the requirement that
Ch(t) < Cyunp(t) for the edges (u,v’) € R associated with each (u,v) € B: Suppose this is not
true. Let | € [low..lhign] be the smallest counter value such that the above condition is violated for
some (u,v) € B with Cy,(t) = [. It follows that

{(u,v") € R: Cyu(t) <1} <3 |[{(u,v) € B: Cyuo(t) <1}
Combining this with |R| > 3|B|, we obtain that I < lu;gn and
{(u,v") € R: Cyu(t) > 1} >3- |[{(u,v) € B: Cyo(t) > 1}].

This means that the color-changing condition holds for u for the counter value [ > [}, which
contradicts the rule that the Red-Blue Coloring procedure chooses the largest possible [ for which
the color-changing condition holds.

We have just shown that for each (u,v) € B there are 3 distinct (u,v’) € R with C,(t) <
Cuw(t). It follows that

Z 3T —Cun®))/p > 3. Z 3Ti=Cuv®))/p > 3. Z 3(Tt=(Co,u(®)=p))/p — Z 3(T=Cou®))/p
(u,v)ER (u,v)eB (u,v)eB (u,v)eB

where the second inequality holds because |Cy, ,(t) — Cyu(t)| < p. From the above relation and (3),
we obtain the claim that ® never increases. O

B A Version of the Algorithm with no Parameters

The algorithm we presented has one parameter, the length = clog®n of each phase. Next we
describe a variant of the algorithm that has no parameters at all. In this variant, we do not divided
rounds into phases. The idea is that we interleave the execution of logn copies of the old algorithm,
where the i-th copy has phases of length » = 2%, but all executions use the same messages.

For each round t, the copies of m(u) that u sends in that round have timestamp ¢. As before,
if a node v # wu receives multiple copies of m(u), it keeps the one with the largest timestamp. Each
node u, has now logn counters for each neighbor v, denoted C,,,[0],...,Cyy[logn — 1]. Counter
Culi] is updated every 2! rounds: it increases by one after each round ¢t = k - 2!, for k > 1, if
u has receives at least one copy of m(v) with timestamp s in the range (k — 1) -2! < s < k- 2%
otherwise C, ,[i]’s value does not change. The ranks used in round ¢ to determine the neighbor
selection probabilities are computed base on the counters C,, [t mod logn].

Our previous analysis carries through to the new version of the algorithm with just minor
modifications. To facilitate the use of the notation we defined in terms of phases, we will assume
that the new algorithm has phases of length one, that is, phase ¢ is round ¢. Briefly, the concentration
Lemma 3 holds now for each pair of counters C,, , [1] and C,, ;[i], for 0 < i < logn. To obtain a result
similar to Lemma 6, which bounds the shrinking of the set of edges, we use a lemma similar to
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Lemma 7: We show that with high probability at least 3/8 of the counters C,, ,[i], for {u,v} € Ey,
increase from round k2’ to (k + 1)2¢ + logn, for all i for which 2! > clog® n. Now, however, we do
not need to know a bound for ¢, as it is guaranteed that 2° > clog®n will hold for at least some i.

16



