
Help!

Keren Censor-Hillel, Erez Petrank, Shahar Timnat
Department of Computer Science, Technion
{ckeren,erez,stimnat}@cs.technion.ac.il

August 2, 2015

Abstract

A fundamental challenge in designing concurrent data structures is obtaining efficient wait-free im-
plementations, in which each operation completes regardless of the behavior of other operations in the
system. The most common paradigm for guaranteeing wait-freedom is to employ a helping mechanism,
in which, intuitively, fast processes help slow processes complete their operations. Curiously, despite its
abundant use, to date, helping has not been formally defined nor was its necessity rigorously studied.

In this paper we initiate a rigorous study of the interaction between wait-freedom and helping. We
start with presenting a formal definition of help, capturing the intuition of one thread helping another
to make progress. Next, we present families of object types for which help is necessary in order to
obtain wait-freedom. In other words, we prove that for some types there are no linearizable wait-free
help-free implementations. In contrast, we show that other, simple types, can be implemented in a
linearizable wait-free manner without employing help. Finally, we provide a universal strong primitive
for implementing wait-free data structures without using help. Specifically, given a wait-free help-free
fetch&cons object, one can implement any type in a wait-free help-free manner.

Keywords: Parallel Algorithms, Concurrent Data Structures, Progress Guarantees, Wait-Freedom, Helping.



1 Introduction

The era of multi-core architectures has been having a huge impact on software development: exploiting par-
allelism has become the main challenge of today’s programming. With multiple processors communicating
by accessing shared memory, the behavior of concurrent algorithms is measured by both safety/correctness
and progress conditions.

Most of the code written today is lock-based, but this is shifting towards codes without locks [14]. The
holy grail of designing concurrent data structures is in obtaining efficient wait-free implementations, with
research dating back to some of the most important studies in distributed computing [10, 17, 21]. Wait-
freedom refers to implementations in which each operation terminates in a finite, preferably small, number
of steps and, in particular, without dependence on the behavior of other processes in the system.

While the goal is fundamental [4, 14], wait-free implementations are often more complicated than non
wait-free designs such as lock-free implementations, which only require that some operation makes progress
but not necessarily all. In practice, sometimes all processes complete their operations in a timely manner
despite following a code that only guarantees lock-freedom. A line of work orthogonal to the one in this
paper attempts to explain this behavior by the fact that the worst-case adversarial schedules are of low
probability in practice. Such studies describe benevolent adversaries under which it is sufficient to design
lock-free algorithms [2, 9, 15].

Nevertheless, wait-freedom captures progress against the worst possible behavior, and as such is vital for
real-time systems. Previous work identifies relations of other properties of implementations to the possibility
of being wait-free. For example, no universal construction can be wait-free and satisfy disjoint-access
parallelism [6].

One common approach used in order to guarantee wait-freedom is to employ some helping mecha-
nism [8, 12–14, 17, 19, 20, 23, 25, 26]. Loosely speaking, in helping mechanisms, apart from completing
their own operation, processes perform some additional work whose goal is to facilitate the work of others.
Curiously, despite being a crucial ingredient, whether explicitly or implicitly, in many implementations of
concurrent data structures, the notion of helping has been lacking thorough study as a concept.

Intrigued by the tools needed in order to achieve wait-freedom, we offer in this work a rigorous study
of the interaction between the helping paradigm and wait-freedom. In particular, we are interested in the
following question: Does wait-freedom require help? To this end, we start by proposing a formal definition
of help. The proposed definition is based on linearization order of histories of an implementation rather than
on a semantic description. We give evidence that the proposed definition matches the intuitive notion. We
then present and analyze properties of types for which any wait-free implementation necessitates help. Such
types includes popular data structures such as the stack and the queue. In contrast, we show that other types
can be implemented in a wait-free help-free manner. A natural example is an implementation of a set (with
the INSERT, DELETE, and CONTAINS operations) with a bounded range of possible values.

1.1 Our Contributions

Our first contribution is definitial: we propose a formal definition of the existing intuitive concept of helping
in Definition 3.3. Roughly speaking, a process p helps an operation of another process q if a step of p
determines that q’s operation is linearized before some other operation.

We note that there is some ambiguity in the literature regarding the concept of help; it is used informally
to describe two different things. One usage of help is in the common case where processes of lock-free
algorithms coordinate access to a shared location. Here, one process p1 completes the (already ongoing)
operation of another process p2 in order to enable access to shared data and to allow p1 to complete its

1



operation. Barnes [5] uses this practice as a general technique to achieve lock-freedom. This is also the case
for the queue of [22], where processes sometimes need to fix the tail pointer to point to the last node (and
not the one before last) before they can execute their own operation. Loosely speaking, the purpose of the
above practice is not “altruistic”. A process fixes the tail pointer because otherwise it would not be able to
execute its own operation.

This is very different from the usage of help in, e.g., UPDATE operations in [1], which perform embedded
scans for the sole “altruistic” purpose of enabling concurrent SCAN operations. It also differs from reading
a designated announcements array, whose sole purpose is to allow processes to ask other processes for help,
such as in [17]. In [17], a process could have easily completed its operation without helping any other
operation (by proposing to the consensus object used in this build a value that consists only the process’s
own value, without values of other processes viewed in the announcements array). Our definition of help
deliberately excludes the former concept (where a process simply enables data access for its own operation),
and captures only the latter “altruistic” form of help.

Having a formal notion of helping, we turn to study the interaction between wait-freedom and help. We
look into characterizing properties of types that require help in any wait-free implementation. We define and
analyze two general types of objects. The first type, which we call Exact Order Types, consists of types in
which the order of operations affects the result of future operations. That is, for some operations sequences,
every change in the order of operations influences the final state of the object. Natural examples of exact
order types are FIFO queues and LIFO stacks.

We note that exact order types bear some similarity to previously defined objects, such as perturbable
objects [18] and class G objects [7], since all definitions deal with an operation that needs to return different
results in several different executions. However, these definitions are not equivalent. For example, queues
are exact order types, but are not perturbable objects, while a max-register is perturbable but not exact order.
We mention perturbable objects in Section 9.

The second type, which we call Global View Types, consists of types which support an operation that
obtains the entire state of the object. Examples of global view types are snapshot objects, increment objects,
and fetch&add. For instance, in an increment object that supports the operations GET and INCREMENT,
the result of a GET depends on the exact number of preceding INCREMENTS. However, unlike the queue
and stack, the result of an operation is not necessarily influenced by the internal order of previous opera-
tions. Notice that global view types are not equivalent to readable objects as defined by Ruppert [24], since
for some global view types any applicable operation must change the state of the object. For example, a
fetch&increment object is a global view type, but is not a readable object.

We prove that every wait-free implementation of any exact order type and any global view type requires
help. Furthermore, when the CAS primitive is not available, we show that a max register [3] requires help
even in order to provide lock-freedom.

Theorems 4.18, 5.23, 6.6 (rephrased): A linearizable implementation of a wait-free exact order type or
a wait-free global view type using READ, WRITE, and CAS, or a lock-free max register using READ and
WRITE, cannot be help-free.

We prove the above by constructing infinite executions in which some operation never completes unless
helping occurs. This is done by carefully combining the definition of help with the attributes of the type.

We then show positive results, i.e., that some types can be implemented in a wait-free help-free manner.
This is trivial for a vacuous type whose only operation is a NO-OP, but when CASes are available this also

2



holds for a max register and for a set type, which supports the operations INSERT, DELETE and CONTAINS1.
The proof that these types have wait-free help-free implementations can be generalized to additional

types, provided they have an implementation in which every operation is linearized in a specific step of the
same operation. Intuitively, these are implementations in which the result of an operation “does not depend
too strongly” on past operations.

Naturally, the characterization of types which require help depends on the primitives being used, and
while our results are generally stated for READ, WRITE, and CAS, we discuss additional primitives as well.
In particular, we show that exact order types cannot be both help-free and wait-free even if the FETCH&ADD

primitive is available, but the same statement is not true for global view types. Finally, we show that a
fetch&cons primitive is universal for wait-free help-free objects. This means that given a wait-free help-free
fetch&cons object, one can implement any type in a wait-free help-free manner.

1.2 Additional Related Work

Helping mechanisms come in different forms. Many wait-free implementations use a designated
announcement array, with a slot for each process. Each process uses its slot to describe the operation it
is currently seeking to execute, and other processes read this announcement and help complete the opera-
tion. This is perhaps the most widely used helping mechanism, appearing in specific designs, as well as in
universal constructions [17], and in general techniques, such as for converting any lock-free data structure
to a wait-free data structure [26].

But other forms of help exist. Consider, for example, the form of help that is used for the double-collect
snapshot algorithm of [1]. In this wait-free snapshot object, each UPDATE operation starts by performing an
embedded SCAN and adding it to the updated location. A SCAN operation op1 that checks the object twice
and sees no change can safely return this view. If a change has been observed, then the UPDATE operation
op2 that caused it also writes the view of its embedded SCAN, allowing op1 to adopt this view and return it,
despite the object being, perhaps constantly, changed. Thus, intuitively, the UPDATES help the SCANS.

2 Model and Definitions

We consider a standard shared memory setting with a fixed set of processes P . In each computation step, a
process executes a single atomic primitive on a shared memory register, possibly preceded with some local
computation. The set of atomic primitives contains READ, WRITE primitives, and usually also CAS. Where
specifically mentioned, it is extended with the FETCH&ADD primitive.

A CAS primitive is defined by a triplet, consisting of a target register, an expected-value, and a new-value.
When a CAS step is executed, the value stored in the target register is compared to the expected-value. If
they are equal, the value in the target register is replaced with the new-value, and the Boolean value true
is returned. In such a case we say that the CAS is successful. Otherwise, the shared memory remains
unchanged, and false is returned. We stress that a CAS is executed atomically.

A FETCH&ADD primitive is defined by a target register and an integer value. An execution of the
FETCH&ADD primitive atomically returns the value previously stored in the target register and replaces it
with the sum of the previous value and the FETCH&ADD’s integer value.

A type (e.g., a FIFO queue) is defined by a state machine, and is accessed via operations. An operation
receives zero or more input parameters, and returns one result, which may be null. The state machine of a

1A degenerated set, in which the INSERT and DELETE operations do not return a boolean value indicating whether they succeeded
can also be implemented without CASes.

3



type is a function that maps a state and an operation (including input parameters) to a new state and a result
of the operation.

An object, is an implementation of a type using atomic primitives. An implementation specifies the
primitives and local computation to be executed for each operation. The local computation can influence the
next chosen primitive step. When the last primitive step of an operation is finished, the operation’s result is
computed locally and the operation is completed.

In the current work, we consider only executions of objects. Thus, a program of a process consists of
operations on an object that the process should execute. The program may include local computations, and
results of previous operations may affect the chosen future operations and their input parameters. A program
can be finite (consisting of a finite number of operations) or infinite. This may also depend on the results of
operations.

A history is a log of an execution (or a part of an execution) of a program. It consists of a finite or infinite
sequence of computation steps. Each computation step is coupled with the specific operation that is being
executed by the process that executed the step. The first step of an operation is also coupled with the input
parameters of the operation, and the last step of an operation is also associated with the operation’s result.
A single computation step is also considered a history (of length one).

A schedule is a finite or infinite sequence of process ids. Given a schedule, an object, and a program
for each process in P , a unique matching history corresponds. For a given history, a unique schedule
corresponds. Given two histories, h1, h2, we denote by h1 ◦h2 the history derived from the concatenation of
history h2 after h1. Given a program prog for each process in P , and a history h, for each p ∈ P we denote
by h ◦ p the history derived from scheduling process p to take another single step following its program
immediately after h.

The set of histories created by an object O is the set that consists of every history h created by an
execution of any fixed set of processes P and any corresponding programs on object O, in any schedule S.

A history defines a partial order on the operations it includes. An operation op1 is before an operation
op2 (denoted: op1 ≺ op2) if op1 is completed before op2 begins. A sequential history is a history in which
this order is a total order. A linearization [16] L of a history h is a sequence of operations (including their
input parameters and results) such that 1) L includes all the operations that are completed in h, and may
include operations that are started but are not completed in h, 2) the operations in L have the same input
parameters as the operations in h, and also the same output results for operations that are completed in h,
3) for every two operations op1 and op2, if op1 ≺ op2 in h, and op2 is included in L, then op1 ≺ op2 in L,
and 4) L is consistent with the type definition of the object creating history h. An object O is a linearizable
implementation of type T if each history in the set of histories created by O has a linearization.

Lock-freedom and wait-freedom are forms of progress guarantees. In the context of our work, they apply
to objects (which are, as mentioned above, specific implementations of types). An object O is lock-free if
there is no history h in the set of histories created by O such that 1) h is infinite and 2) only a finite number
of operations is completed in h. That is, an object is lock-free if at least one of the executing processes must
make progress and complete its operation in a finite number of steps. Wait-freedom is a strictly stronger
progress guarantee. An object O is wait-free if there is no history h in the set of histories created by O such
that 1) h includes an infinite number of steps by some process p and 2) the same process p completes only
a finite number of operations in h. That is, O is wait-free if every process that is scheduled to run infinite
computation steps must eventually complete its operation, regardless of the scheduling.

4



3 What is Help?

The conceptual contribution of this work is in establishing that many types cannot be implemented in a
linearizable wait-free manner without employing a helping mechanism. To establish such a conclusion, it
is necessary to accurately define help. In this section we discuss help intuitively, define it formally, and
consider examples showing that the formal definition expresses the intuitive concept of help. Additionally,
we will establish two general facts about help-free wait-free implementations.

3.1 Intuitive Discussion

Many wait-free algorithms employ an array with a designated entry for each process. A process announces
in this array what operation it wishes to execute, and other processes that see this announcement might help
and execute this operation for it. Such mechanisms are used in most wait-free universal constructions, dating
back to [17] and many other constructions since. These mechanisms are probably the most explicit way to
offer help, but not the only one possible. Considering help in a more general form, we find it helpful2 to
think of the following scenario.

Consider a system of three processes, p1, p2, p3, and an object that implements a FIFO queue. The
program of p1 is ENQUEUE(1), the program of p2 is ENQUEUE(2), and the program of p3 is DEQUEUE().
First consider a schedule in which p3 starts running solo until completing its operation. The result of the
dequeue, regardless of the implementation of the FIFO queue, is null. If before scheduling p3, we schedule
p1 and let it complete its operation, and only then let p3 run and complete its own operation, p3 will return 1.
If we schedule p1 to start executing its operation, and stop it at some point (possibly before its completion)
and then run p3 solo until completing its operation, it may return either null or 1. Hence, if we consider
the execution of p1 running solo, there is (at least) one computation step S in it, such that if we stop p1
immediately before S and run p3 solo, then p3 returns null, and if we stop p1 immediately after S and run
p3 solo, p3 returns 1.

Similarly, if we consider the execution of p2 running solo, there is (at least) one computation step
that “flips” the value returned by p3 when running solo from null to 2. We now consider a schedule that
interleaves p1 and p2 until one of them completes. In any such execution, there is (at least) one computation
step that “flips” the result of p3 from null to either 1 or 2. If a step taken by p2 “flips” the result of p3 and
causes it to return 1 (which is the value enqueued by p1) we say that p2 helped p1. Similarly, if a step taken
by p1 “flips” the result of p3 and causes it to return 2, then p1 helped p2.

This is the intuition behind the help notion that is defined below. Some known lock-free queue algo-
rithms do not employ help, such as the lock-free queue of Michael and Scott [22]. However, we prove in
Section 4 that any wait-free queue algorithm must employ help.

3.2 Help Definition

We say that an operation op belongs to history h if h contains at least one computation step of op. Note that
op is a specific instance of an operation on an object, which has exactly one invocation, and one result. We
say that the owner of op is the process that executes op.

Definition 3.1 (Linearization Function.) We say that f is a linearization function over a set of histories
H , if for every h ∈ H , f(h) is a linearization of h.

2Pun intended.

5



Definition 3.2 (Decided Operations Order.) For a history h in a set of histories H , a linearization
function f over H , and two operations op1 and op2, we say that op1 is decided before op2 in h with respect
to f and the set of histories H , if there exists no s ∈ H such that h is a prefix of s and op2 ≺ op1 in f(s).

Definition 3.3 (Help-Free Implementation.) A set of histories H is without help, or help-free, if there
exists a linearization function f over H such that for every h ∈ H , every two operations op1, op2, and a
single computation step γ such that h ◦ γ ∈ H it holds that if op1 is decided before op2 in h ◦ γ and op1 is
not decided before op2 in h, then computation step γ is a step in the execution of op1 by the owner of op13.

An object is a help-free implementation, if the set of histories created by it is help-free.

To better understand this definition, consider an execution of an object. When considering two concur-
rent operations, the linearization of these operations dictates which operation comes first. The definition
considers the specific step, γ, in which it is decided which operation comes first. In a help-free implemen-
tation, γ is always taken by the process whose operation is decided to be the one that comes first.

Consider the wait-free universal construction of Herlihy [17]. One of the phases in this construction is
a wait-free reduction from a fetch-and-cons list to consensus. A fetch-and-cons (or a fetch-and-cons list) is
a type that supports a single operation, fetch-and-cons, which receives a single input parameter, and outputs
an ordered list of the parameters of all the previous invocations of fetch-and-cons. That is, conceptually,
the state of a fetch-and-cons type is a list. A fetch-and-cons operation returns the current list, and adds
(hereafter, cons) its input operation to the head of the list.

The reduction from fetch-and-cons to consensus is as follows. A special announce array, with a slot for
each process, is used to store the input parameter of each ongoing fetch-and-cons operation. Thus, when a
process desires to execute a fetch-and-cons operation, it first writes its input value to its slot in the announce
array.

Next, the process reads the entire announce array. Using this information, it calculates a goal that
consists of all the operations recently announced in the array. The process will attempt to cons all of these
operations into the fetch-and-cons list. It reads the current state of the fetch-and-cons list, and appends this
list to the end of its own goal (removing duplications.) Afterwards, the process starts executing (at most) n
instances of consensus (n is the number of processes). In each instance of consensus, a process proposes its
own process id.

The goal of the process that wins the consensus represents the updated state of the fetch-and-cons list.
Thus, if the process wins a consensus instance, it returns immediately (as its own operation has definitely
been applied). If it loses a consensus, it updates its goal again to be its original goal (minus duplications
that already appear it the updated state) followed by the new list, which is the goal of the last winner. After
participating in n instances of consensus, the process can safely return, since at least one of the winners in
these instances already sees the process’s operation in the announces array, and includes it in its goal.

This is a classic example of help. Wait-freedom is obtained due to the fact that the effect of process
p winning an instance is adding to the list all the items it saw in the announce array, not merely its own
item. To see that this algorithm is not help-free according to Definition 3.3 consider a system of three
processes. Each process first announces its wanted item in the ANNOUNCE array, and then reads all of the
array. Assume p1’s place in the array is before p2’s, but that p2 writes to the announce array first. p3 then
reads the announce array and sees p2’s item. Then p1 writes to the announce array, and afterwards continue
to read the entire array.

3For readers familiar with the concept of strong linearization [11], we note that a set of histories can be strongly linearizable yet
not help-free, and can also be help-free yet not strongly linearizable.

6



At this point p2 is stalled, while p1 and p3 start competing in consensus. If the winner is p1, then p1’s
item is added to the list before p2’s item (since p1’s place in the list is before p2’s). If the winner is p3, then
the item of p2 is added to the list, but the item of p1 not as yet. Thus, a step of p3 can decide that the item of
p2 is before that of p1, and thus the fetch-and-cons operation of p2 comes before that of p1. This contradicts
help-freedom.

A system of two processes. In general, help is not required in a system with only two processes. The
universal construction of [17] is help-free in such a system, and can be used to implement any type in a
help-free wait-free manner. Accordingly, we concentrate on proving that help is required for systems with
at least three processes.

3.3 General Observations

In this subsection we point out two facts regarding the decided operations order (Definition 3.2) that are
useful to prove that some types cannot be both wait-free and help-free. The first fact is true for non help-free
implementations as well, as it is derived directly from the linearizability criteria. It states that for completed
operations, the decided order must comply with the partial order a history defines, and for future operations,
the decided order cannot contradict partial orders that may apply later on.

Observation 3.4 In any history h:
(1) Once an operation is completed it must be decided before all operations that have not yet started.
(2) While an operation has not yet started it cannot be decided before any operation of a different process.
(3) In particular, the order between two operations of two different processes cannot be decided as long as
neither of these operations have started.

The second fact is an application of the first observation for help-free implementations.

Claim 3.5 In a help-free implementation in a system that includes at least three processes, for a given
history h and a linearizarion function f , if an operation op1 of a process p1 is decided before an operation
op2 of a process p2, then op1 must be decided before any future (not yet started) operation of any process.

Proof: Immediately following h, allow p2 to run solo long enough to complete the execution of op2. By
Observation 3.4, op2 must now be decided before any future operation. Thus, by transitivity, op1 must be
decided before any future operation as well. In a help-free implementation, op1 cannot be decided before a
different operation as a result of a step of p2. Thus, op1 must be decided before future operations already at
h.

4 Exact Order Types

In this section we prove that some types cannot be implemented in a linearizable, wait-free, and help-free
manner. Simply put: for some types, wait-freedom requires help. We first prove this result for systems that
support only READ, WRITE, and CAS primitives. We later extend the proof to hold for systems that support
the FETCH&ADD primitive as well. This section focuses on exact order types. Roughly speaking, these
are types in which switching the order between two operations changes the results of future operations. An
intuitive example for such a type is the FIFO queue. The exact location in which an item is enqueued is
important, and will change the results of future dequeues operations.

7



In what follows we formally define exact order types. This definition uses the concept of a sequence of
operations. If S is a sequence of operations, we denote by S(n) the first n operations in S, and by Sn the
n-th operation in S. We denote by (S + op?) a sequence that contains S and possibly also the operation
op. That is, (S + op?) is in fact a set of sequences that contains S, and also sequences that are similar to S,
except that a single operation op is inserted in somewhere between (or before or after) the operations of S.

Definition 4.1 (Exact Order Types.) An exact order type t is a type for which there exists an operation op,
an infinite sequence of operations W , and a (finite or an infinite) sequence of operations R, such that for
every integer n ≥ 0 there exists an integer m ≥ 1, such that for at least one operation in R(m), the result it
returns in any execution in W (n + 1) ◦ (R(m) + op?) differs from the result it returns in any execution in
W (n) ◦ op ◦ (R(m) +Wn+1?).

Examples of such types are a queue, a stack, and the fetch-and-cons used in [17]. To gain some intuition
about the definition, consider the queue. Let op be an ENQUEUE(1) operation, W be an infinite sequence
of ENQUEUE(2) operations, and R be an infinite sequence of DEQUEUE operations. The queue is an exact
order type, because the (n + 1)-st dequeue returns a different result in any execution that starts with n + 1
ENQUEUE(2) operations compared to any execution that starts with n ENQUEUE(2) operations and then an
ENQUEUE(1).

More formally, let n be an integer, and set m to be n + 1. Executions in W (n + 1) ◦ (R(m) + op?)
start with n + 1 ENQUEUE(2) operations, followed by n + 1 DEQUEUE operations. (There is possibly
an ENQUEUE(1) somewhere between the dequeues, but not before any of the ENQUEUE(2).) Executions
in W (n) ◦ op ◦ (R(m) + Wn+1?) start with n ENQUEUE(2) operations, then an ENQUEUE(1) operation,
and then n + 1 DEQUEUE operations. (Again, there is possibly an ENQUEUE(2) somewhere between the
dequeues.) From the specification of the FIFO queue, the last DEQUEUE must return a different result in the
first case (in which it must return 2) than in the second case (in which it must return 1).

We now turn to prove that any exact order type cannot be both help-free and wait-free. Let Q be a
linearizable, help-free implementation of an exact order type. The reader may find it helpful to consider
a FIFO queue as a concrete example throughout the proof. We will prove that Q is not wait-free. For
convenience, we assume Q is lock-free, as otherwise, it is not wait-free and we are done. Let op1, W , and
R be the operation and sequences of operations, respectively, guaranteed in the definition of exact order
types. Consider a system of three processes, p1, p2, and p3. The program of process p1 is the operation op1.
The program of process p2 is the infinite sequence W . The program of process p3 is the (finite or infinite)
sequence R. The operation of p1 is op1, an operation of p2 is denoted op2, and the first operation of p3 is
denoted op3.

We start by proving two claims that are true for any execution of Q in which p1, p2, and p3 follow their
respective programs. These claims are the only ones that directly involve the definition of exact order types.
The rest of the proof considers a specific execution, and builds on these two claims.

Claim 4.2 Let h be a history such that the first n operations are already decided to be the first n operations
of p2 (which are W (n)), and p3 has not yet taken any step. (Denote the (n+ 1)-st operation of p2 by op2.)
(1.) If in h op1 is decided before op3, then the order between op1 and op2 is already decided.
(2.) Similarly, if in h op2 is decided before op3, then the order between op1 and op2 is already decided.

Proof: For convenience, we prove (1). The proof of (2) is symmetrical. Assume that in h op1 is decided
before op3, and let m be the integer corresponding to n by the definition of exact order types. Immediately
after h, let p3 run in a solo execution until it completes exactly m operations. Denote the history after this
solo execution of p3 by h′, and consider the linearization of h′.

8



The first n operations in the linearization must be W (n). The linearization must also include exactly m
operations of p3 (which are R(m)), and somewhere before them, it must also include op1. The linearization
may or may not include op2. There are two cases. If the (n+1)-st operation in the linearization is op1, then
the linearization is in W (n) ◦ op1 ◦ (R(m) +Wn+1?), while if the n+ 1-st operation in the linearization is
op2, then the linearization must be exactly W (n+1) ◦ op1 ◦R(m) which is in W (n+1) ◦ (R(m)+ op1?).
We claim that whichever is the case, the order between op1 and op2 is already decided in h′.

To see this, consider any continuation h′ ◦x of h′. Consider the linearization of h′ ◦x. This linearization
must also start with W (n), must also include R(m), and somewhere before R(m) it must include op1. It
may or may not include op2 somewhere before Rm. All the rest of the operations in h′ ◦x must be linearized
after Rm, because they where not yet started when Rm was completed. Thus, the linearization of h′ ◦x must
begin with a prefix that belongs to either W (n) ◦ op1 ◦ (R(m) +Wn+1?) or W (n + 1) ◦ (R(m) + op1?).
Mark this prefix as Prefix(Lin(h′ ◦ x)).

So far we have obtained that for every x such that h′ ◦ x is a continuation of h′, Prefix(Lin(h′ ◦ x))
belongs to either W (n) ◦ op1 ◦ (R(m) +Wn+1?) or W (n+ 1) ◦ (R(m) + op1?). The next step is to show
that for every x, Prefix(Lin(h′ ◦x)) belongs to the same one of these sets. To do this, we consider the results
of R(m) in h′.

In h′, the operations R(m) are already completed, and their results are set. By definition of exact order
types, these results cannot be consistent with both W (n)◦op1 ◦ (R(m)+Wn+1?) and W (n+1)◦ (R(m)+
op1?). Thus, if the linearization of h′ is in W (n) ◦ op1 ◦ (R(m) +Wn+1?), then the results of R(m) mean
that for every x, Prefix(Lin(h′ ◦ x)) cannot be in W (n + 1) ◦ (R(m) + op1?), and thus must belong to
W (n) ◦ op1 ◦ (R(m) +Wn+1?). Similarly, if the linearization of h′ is in W (n+ 1) ◦ (R(m) + op1?), then
for every x, Prefix(Lin(h′ ◦ x)) must be in W (n+ 1) ◦ (R(m) + op1?) as well.

Since the order between op1 and op2 is the same for each continuation of h′, it follows by definition that
the order between op1 and op2 is already decided in h′. Since Q is a help-free implementation, then the
order between op1 and op2 cannot be decided during the solo execution of p3 which is the delta between h
and h′. Thus, the order between op1 and op2 is already decided in h.

Claim 4.3 Let h, h′, and h′′ be three histories, such that in all of them the first n operations are already
decided to be the first n operations of p2 (which are W (n)), and p3 has not yet taken any step. (Denote the
(n + 1)-st operation of p2 by op2.) Furthermore, in h the order between op1 and op2 is not yet decided, in
h′ op1 is decided before op2, and in h′′ op2 is decided before op1.
(1.) h′ and h′′ are distinguishable by p3.
(2.) h and h′ are distinguishable by at least one of p2 and p3.
(3.) h and h′′ are distinguishable by at least one of p1 and p3.

Remark 4.4 (3.) is not needed in the proof, but is stated for completeness.

Proof: Let m be the integer corresponding to n by the definition of exact order types. We start by proving
(1). Since in h′ op1 is decided before op2, then in h′ op1 must also be decided before op3 by Claim 3.5.
Assume that immediately after h′ p3 is run in a solo execution until it completes exactly m operations. The
linearization of this execution must start with W (n), followed by op1. This linearization must also include
the first m operations of p3 (which are R(m), and it may or may not include op2. Thus, the linearization
must be in W (n) ◦ op1 ◦ (R(m) +Wn+1?).

Now assume that immediately after h′′ p3 is run in a solo execution until it completes exactly m opera-
tions. This time, the linearization must be in W (n + 1) ◦ (R(m) + op1?). By the definition of exact order
types, there is at least one operation in R(m), that is, at least one operation of p3, which returns a different
result in these two executions. Thus, h′ and h′′ are distinguishable by process p3.

9



1: h = ϵ;
2: op1 = the single operation of p1;
3: while (true) ◃ main loop
4: op2 = the first uncompleted operation of p2;
5: while (true) ◃ inner loop
6: if op1 is not decided before op2 in h ◦ p1
7: h = h ◦ p1;
8: continue; ◃ goto line 5
9: if op2 is not decided before op1 in h ◦ p2

10: h = h ◦ p2;
11: continue; ◃ goto line 5
12: break; ◃ goto line 13
13: h = h ◦ p2; ◃ this step will be proved to be a CAS

14: h = h ◦ p1; ◃ this step will be proved to be a failed CAS

15: while (op2 is not completed in h) ◃ run p2 until op2 is completed
16: h = h ◦ p2;

Figure 1: The algorithm for constructing the history in the proof of Theorem 4.18.

We turn to prove (2). Assume that immediately after h′ p2 is run until it completes op2, and then p3 is
run in a solo execution until it completes exactly m operations. The linearization of this execution must be
exactly W (n) ◦ op1 ◦Wn+1 ◦R(m) which is in W (n) ◦ op1 ◦ (R(m) +Wn+1?).

Now assume that immediately after h p2 is run until it completes op2 and then p3 is run in a solo
execution until it completes exactly m operations. At the point in time exactly after op2 is completed, and
exactly before p3 starts executing op3, op2 is decided before op3 (Observation 3.4). Thus, by Claim 4.2, the
order between op1 and op2 is already decided. Since the order is not decided in h, the implementation is
wait-free, and p1 has not taken another step since h, it follows that op2 must be decided before op1.

In other words, in the execution in which after h p2 completes op2 and then p3 completes exactly m
operations, op2, which is Wn+1, is decided before both op3 and op1. Thus, the linearization of this execution
must be in W (n+ 1) ◦ (R(m) + op1?).

By the definition of exact order types, there is at least one operation in R(m), that is, at least one
operation of p3, which returns a different result in these two executions. Thus, h and h′ are distinguishable
by at least one of the processes p2 and p3. The proof of (3) is similar.

In the rest of the proof of the main theorem we build an infinite history h, such that the processes p1, p2, and
p3 follow their respective programs, and p1 executes infinitely many (failed) CAS steps, yet never completes
its operation, contradicting wait-freedom. The algorithm for constructing this history is depicted in Figure
1. In lines 5–12, p1 and p2 are scheduled to run their programs as long as it is not yet decided which of
their operations comes first. Afterwards, the execution of Q is in a critical point. If p1 were to take a step,
then op1 will be decided before op2, and if p2 were to take a step, then op2 will be decided before op1. We
prove using indistinguishability arguments, that the next step by both p1 and p2 is a CAS (and that both steps
access the same target register). Next (line 13), p2 executes its CAS, and then (line 14) p1 attempts a CAS

as well, which is going to fail. Afterwards, p2 is scheduled to complete its operation, and then the above is
repeated with p2’s next operation.

It is shown that in iteration n + 1 of the algorithm for constructing h, the n first operations are already
decided to be the first n operations of p2 (that is, W (n)), and iteration n + 1 is a “competition” between
op1 and Wn+1. Exact order types are used to show that the two possible results of this competition must be
distinguishable from one another.

10



We prove a series of claims on the execution of history h, which is a history of object Q. Most claims
refer to the state of the execution of Q in specific points in the execution, described by a corresponding line
in the algorithm given in Figure 1. These claims are proved by induction, where the induction variable is
the iteration number of the main loop (lines 3–16). The induction hypothesis is that claims (4.5–4.16) are
correct. Claim 4.5 is the only one to use the induction hypothesis directly. The other claims follow from
Claim 4.5.

Claim 4.5 Immediately after line 4, it holds that 1) the order between op1 and op2 is not yet decided, and
2) all the operations of p2 prior to op2 are decided before op1.

Proof: For the first iteration of the main loop, this is trivial because h is empty (Observation 3.4). For
iteration i ≥ 2, it follows from the induction hypothesis, Observation 4.13, and Claim 4.16.

Observation 4.6 The order between op1 and op2 cannot be decided during the inner loop (lines 5–12).

This follows from the fact that Q is help-free, and from inspecting the conditions in lines 6 and 9.

Observation 4.7 Process p3 never takes a step in h.

Claim 4.8 The order between op1 and op2 must be decided before any one of op1 and op2 is completed.

Proof: If op1 is completed, then op1 must be decided before all future operations of p3 (Observation 3.4).
All the operations of p2 prior to op2 are already decided before op1 (Claim 4.5), and by Observation 4.7, p3
hasn’t taken any steps. Thus, by Claim 4.2, the order between op1 and op2 is already decided.

Similarly, if op2 is completed, then op2 must be decided before all future operations of p3 (Observa-
tion 3.4). Again, all the operations of p2 prior to op2 are already decided before op1 (Claim 4.5), and by
Observation 4.7, p3 hasn’t taken any steps. Thus, by Claim 4.2, the order between op1 and op2 is already
decided.

Claim 4.9 The execution of the inner loop (lines 5–12) is finite.

Proof: By combining Observation 4.6 and Claim 4.8, no operation in Q is completed in h during the
execution of the inner loop. Since Q is lock-free, and each loop iteration adds a single step to h, this cannot
last infinitely.

Observation 4.10 Immediately before line 13 op1 is decided before op2 in h ◦ p1, op2 is decided before op1
in h ◦ p2, and, hence, the order of op1 and op2 is not decided in h.

From observing the code, the inner loop exits and line 13 is reached only if the next step of either p1 or p2
will decide the order. Since the queue algorithm is help-free, in h ◦ p1, op1 is decided before op2, and in
h ◦ p2, op2 is decided before op1.

Claim 4.11 Immediately before line 13 the following holds.
(1.) The next primitive step in the programs of both p1 and p2 is to the same memory location.
(2.) The next primitive step in the programs of both p1 and p2 is a CAS.
(3.) The expected-value of both the CAS operations of p1 and p2 is the value that appears in the designated
address.
(4.) The new-value of both the CAS operations is different than the expected-value.

11



Proof: By Observation 4.10, in h ◦ p1, op1 is decided before op2. It follows that op1 is decided before
op2 in h ◦ p1 ◦ p2 as well. Similarly, op2 is decided before op1 in h ◦ p2 ◦ p1. By Claim 4.3 (1), it follows
that h ◦ p1 ◦ p2 must be distinguishable from h ◦ p2 ◦ p1 by process p3. It immediately follows that the
next primitive step of both p1 and p2 is to the same memory location. Furthermore, the next step of both p1
and p2 cannot be a READ primitive. Also, it cannot be a CAS that does not change the shared memory, i.e.,
a CAS in which the expected-value is different than the value in the target address, or a CAS in which the
expected-value and new-value are the same.

Thus, the next step by both p1 and p2 is either a WRITE primitive or a CAS which satisfies conditions
(3) and (4) of the claim. It remains to show the next step is not a WRITE. Assume by way of contradiction
the next step by p1 is a WRITE. Then, h ◦ p1 is indistinguishable from h ◦ p2 ◦ p1 to all process excluding
p2, again contradicting Claim 4.3 (1). A similar argument also shows that the next step of p2 cannot be a
WRITE.

Claim 4.11 immediately implies:

Corollary 4.12 The primitive step p2 takes in line 13 is a successful CAS, and the primitive step p1 takes in
line 14 is a failed CAS.

Observation 4.13 Immediately after line 13, op2 is decided before op1.

This follows immediately from Observation 4.10, and from line 13 of the algorithm for constructing h. Next,
for convenience, we denote the first operation of p3 as op3.

Claim 4.14 Immediately before line 13, the order between op1 and op3 is not yet decided.

Proof: Process p3 has not yet taken any steps (Observation 4.7), and thus its operation cannot be decided
before op1 (Observation 3.4). Assume by way of contradiction that op1 is decided before op3. All the
operations of p2 prior to op2 are already decided before op1 (Claim 4.5) and thus by Claim 4.2, the order
between op1 and op2 is already decided. But the order between op1 and op2 is not yet decided before line
13 (Claim 4.5 and Observation 4.6), yielding contradiction.

Claim 4.15 Immediately after completing line 16, the order between op1 and op3 is not yet decided.

Proof: By Claim 4.14, the order between op1 and op3 is not yet decided before line 13. Steps by p2
cannot decide the order between op1 and op3 in a help-free algorithm, and thus the only step which could
potentially decide the order until after line 16 is the step p1 takes in line 14. Assume by way of contradiction
this step decides the order between op1 and op3.

If this step decides the order between op1 and op3 then after this step op1 must be decided before op3.
By Corollary 4.12, this step is a failed CAS. Thus, the state immediately before this step and the state
immediately after this step are indistinguishable to all processes other than p1. This contradicts Claim 4.3
(2).

Claim 4.16 Immediately after line 16, the order between op1 and the operation of p2 following op2 is not
yet decided.

Proof: The operation of p2 following op2 has not yet begun, and thus it cannot be decided before op1
(Observation 3.4). Assume by contradiction that op1 is decided before the next operation of p2. Thus, by
Claim 3.5, op1 must be decided before all future operations of p3, including op3. But by Claim 4.15, op1 is
not yet decided before op3, yielding a contradiction.

12



Corollary 4.17 Q is not wait-free.

Proof: By Claim 4.9, each execution of the inner loop is finite. Thus, there are infinitely many executions
of the main loop. In each such execution, p1 takes at least a single step in line 14. Thus p1 takes infinitely
many steps. Yet, by combining Claims 4.5, and 4.8, op1 is not completed in any iteration of the main loop,
which implies it is never completed. Thus, Q is not wait-free.

Since the assumptions on Q were that it is linearizable, help-free, and lock-free, we can rephrase Corol-
lary 4.17 as follows.

Theorem 4.18 A wait-free linearizable implementation of an exact order type cannot be help-free.

It is interesting to note that in history h built in this proof, process p3 never takes a step. Nevertheless,
its existence is necessary for the proof. History h demonstrates that in a lock-free help-free linearizable
implementation of an exact order type, a process may fail a CAS infinitely many times, while competing
processes complete infinitely many operations. This is indeed a possible scenario in the lock-free help-free
linearizable queue of Michael and Scott [22], where a process may never successfully ENQUEUE due to
infinitely many other ENQUEUE operations.

4.1 Generalizing the Proof To Cover the Fetch&Add Primitive

In the proof of Theorem 4.18, we assumed the allowed primitives were READ, WRITE, and CAS. Another
primitive, not as widely supported in real machines, is the FETCH&ADD primitive. As we shall see in Section
5, when it comes to the question of wait-free help-free types, the FETCH&ADD primitive adds strength to
the computation, in the sense that some types that cannot be implemented in a wait-free help-free manner
using only the READ, WRITE, and CAS primitives, can be implemented in a wait-free help-free manner if
the FETCH&ADD primitive is allowed (An example for such a type is the fetch&add type itself). However,
in this subsection we claim that types such as the queue and stack cannot be implemented in a linearizable,
help-free, wait-free manner, even if FETCH&ADD is available. In what follows we give this proof.

If we allow the FETCH&ADD primitive, yet leave the proof of Theorem 4.18 unchanged, the proof fails
since Claim 4.11 fails. Originally, Claim 4.11 shows that immediately before line 13, the next steps in the
programs of both p1 and p2 are CAS primitives to the same location. Furthermore, the claim shows that each
of these CAS operations, if executed immediately, will modify the data structure. That is, the expected-value
is the same as the value in the target address, and the new-value is different than the expected-value. Claim
4.11 proves this by elimination: it proves that the next steps of both p1 and p2 cannot be a READ, a WRITE,
or a CAS that doesn’t modify the data structure. This remains true when FETCH&ADD is allowed. However,
a CAS that changes the data structure ceases to be the only remaining alternative.

We claim that immediately before line 13, it is impossible that the next steps of both p1 and p2 are
FETCH&ADD, because then h ◦ p1 ◦ p2 is indistinguishable from h ◦ p2 ◦ p1 by p3. After any of these two
sequences, the order between op1 and op2 must be decided, and thus the first one of them must also be
decided before all the future operations of p3 (Claim 3.5). Thus, a long enough solo execution of p3 will
reveal which of one of op1 and op2 is linearized first, and the indistinguishability yields a contradiction.

Thus, immediately before line 13 it is impossible that the next steps of both p1 and p2 are FETCH&ADD.
However, it is possible indeed that one of them is FETCH&ADD, and the other is a CAS. This foils the rest
of the proof. To circumvent this problem, we add an extra process, denoted p0. The program of p0 consists
of a single operation, denoted op0.

A solo execution of p3 should return different results if op0 is executed, op1 is executed, or op2 is
executed. For instance, in the case of the FIFO queue, op0 can be ENQUEUE(0), op1 ENQUEUE(1), and

13



op2 ENQUEUE(2). As before, the program of p2 is an infinite sequence of ENQUEUE(2) operations. The
program of p3 is an infinite sequence of DEQUEUE operations. In these settings, three process (p0, p1, p2)
“compete” to linearize their operation first in each iteration of the main-loop.

The inner loop (originally lines 5–12) is modified to advance the three processes. The conditions in
lines 6 and 9 need not be changed; it is enough to check for each operation that it is not decided before one
of the other two: at the first time an operation of op0, op1 and op2 is decided before another one of these
three operations, it is also decided before the last one. To see this, assume without loss of generality that
at the first time such a decision is made, op1 is decided before op2. By Claim 3.5, it must also be decided
before future operations of p3. Run p3 long enough, and see which operation comes first. Since op0 is not
yet decided before op1, and cannot be decided to be before it during a solo execution of p3, then p3 must
witness that op1 is the first linearized operation, which implies that op1 is decided before op0 as well.

Thus, after the inner loop, the order between op0, op1, and op2 is not yet decided, but if any of the
processes p0, p1 or p2 takes a step, its operation will be decided before the other two. As before, the next
step of all of them must be to the same memory location. As before, their next steps cannot be a READ,
a WRITE, or a CAS that does not change the memory. It is possible that the next step of one of them is
FETCH&ADD, but as shown above, it is impossible that the next step of two of them is FETCH&ADD. Thus,
the next step of at least one out of p0 and p1 must be a CAS. Next, we schedule p2 to take a step, and
afterwards we schedule p0 or p1 (we choose the one whose next step is a CAS) to take is step. This step must
be a failed CAS.

The proof continues similarly as before. The failed CAS cannot decide an operation before op3 because
of indistinguishability. Process p2 runs to complete op2, and the above is repeated with the next operation
of p2. In each iteration of the main loop, at least one of p0 and p1 takes a single step, but neither op0 or op1
is ever completed, and thus the data structure is not wait-free. The conclusion is that a queue (or a stack)
cannot be linearizable, help-free, and wait-free, even if the FETCH&ADD primitive as available.

To generalize this result to a family of types, we need to slightly strengthen the requirements of exact
order types. The current definition of exact order types implicitly implies a repeated “competition” between
two threads, the result of which can be witnessed by a third thread. Extending this definition to imply a
repeated competition of three threads yields the following definition.

Definition 4.19 (Extended Exact Order Types.) An extended exact order type T is a type for which there
exist two operations op0 and op1, an infinite sequence of operations W , and a (finite or an infinite) sequence
of operations R, such that for every integer n ≥ 0 there exists an integer m ≥ 1, such that for at least one
operation in R(m), the value it returns in any execution in W (n+1)◦ ((R(m)+op0?)+op1?) differs from
the value it returns in any execution in W (n) ◦ op0 ◦ ((R(m) +Wn+1?) + op1?), and both differ from the
value it returns in any execution in W (n) ◦ op1 ◦ ((R(m) +Wn+1?) + op0?).

5 Global View Types

In this section we investigate a different set of types, that can also not be obtained in a wait-free manner
without using help. These are types that support an operation that returns some kind of a global view. We
start by addressing a specific example: a single-scanner snapshot. We later identify accurately what other
types belong to this group. The technique of the proof used here is similar to that of Section 4, but the details
are different and more complicated.

The single scanner snapshot type supports two operations: UPDATE and SCAN. Each process is asso-
ciated with a single register entry, which is initially set to ⊥. An UPDATE operation modifies the value of

14



the register associated with the updater, and a SCAN operation returns an atomic view (snapshot) of all the
registers. This variant is referred to as a single-writer snapshot, unlike a mulit-writer snapshot object that
allows any process to write to any of the shared registers. In a single scanner snapshot, only a single SCAN

operation is allowed at any given moment4.
Let S be a linearizable, help-free implementation of a single scanner snapshot. We prove that S is not

wait-free. For convenience, we assume S is lock-free, as otherwise, it is not wait-free and we are done.
Consider a system of three processes, p1, p2, and p3. The program of p1 is a single UPDATE(0) operation,
the program of p2 is an infinite sequence alternating between UPDATE(0) and UPDATE(1) operations, and
the program of process p3 is an infinite sequence of SCAN operations.

Again, we build an infinite history h, such that processes p1, p2, and p3 follow their respective programs.
This time, we show that in h either p1 executes infinitely many (failed) CAS steps, yet never completes its
operation (as before), or alternatively, that starting at some point, neither p1 nor p2 complete any more
operations, but at least one of them executes infinitely many steps.

The algorithm for constructing this history is depicted in Figure 2. In every iteration, the operations of
p1, p2, p3 are denoted op1, op2, op3 respectively. In lines 6–13, processes p1 and p2 are scheduled to run
their programs as long as neither op1 nor op2 is decided before op3. After the loop is ended, if p1 takes
another step op1 will be decided before op3, and if p2 takes another step then op2 will be decided before op3.

Then, in lines 14–15, p3 is run as much as possible without changing the property achieved at the end of
the previous loop. That is, when the loop of lines 14–15 is stopped, it is still true that 1) if p1 takes another
step then op1 will be decided before op3, and 2) if p2 takes another step then op2 will be decided before op3.
However, if p3 will take another step, then at least one of (1) and (2) will no longer hold.

Now, the execution is divided into two cases. The first possibility is that if p3 takes another step, both (1)
and (2) will cease to hold simultaneously. In this case, similarly to the proof of Theorem 4.18, we show that
both the CAS operations of p1 and p2 are to the same address, we allow p2 to successfully executes its CAS,
and let p1 attempt its CAS and fail. Afterwards both op2 and op3 are completed, and we repeat the process
with the next operations of p2 and p3.

The other possibility is that the next step of p3 only causes one of the conditions (1) and (2) to cease
to hold. Then, we allow p3 to take the next step, and afterwards schedule the process (either p1 or p2) that
can take a step without causing its operation to be decided before op3. We prove this step is not a “real”
progress, and cannot be the last step in the operation. Afterwards we allow op3 to be completed, and repeat
the process with the next operation of p3.

Throughout the proof we avoid using the fact that a SCAN (op3) returns a different result when it is
linearized after op1 and before op2 compared to when it is linearized before op2 and after op1. We rely only
on the fact that op3 returns three different results if it is linearized before both UPDATE operations, before
one of them, or after both. This more general approach slightly complicates the proof in a few places, but
it makes the proof hold for additional types. In particular, this way the proof also holds for an increment
object.

We use a similar inductive process as we did when proving Theorem 4.18: we prove a series of claims
on the execution of history h, which is a history of object S. These claims are proved by induction, where
the induction variable is the iteration number of the main loop (lines 2–27). The induction hypothesis is that
claims (5.1–5.16) are correct. Claim 5.1 is the only one to use the induction hypothesis directly, while the
other claims follow from it.

4Formally, the type is a snapshot, and a single-scanner implementation is a constrained implementation of it, in the sense that
its correctness is only guaranteed as long as no two SCAN operations are executed concurrently.

15



1: h = ϵ;
2: while (true) ◃ main loop
3: op1 = the first uncompleted operation of p1;
4: op2 = the first uncompleted operation of p2;
5: op3 = the first uncompleted operation of p3; ◃ scan operation
6: while (true) ◃ first inner loop
7: if op1 is not decided before op3 in h ◦ p1
8: h = h ◦ p1;
9: continue; ◃ goto line 6

10: if op2 is not decided before op3 in h ◦ p2
11: h = h ◦ p2;
12: continue; ◃ goto line 6
13: break; ◃ goto line 14
14: while (op1 is decided before op3 in h ◦ p3 ◦ p1 and op2 is decided before op3 in h ◦ p3 ◦ p2) ◃ second inner loop
15: h = h ◦ p3
16: if (op1 is not decided before op3 in h ◦ p3 ◦ p1 and op2 is not decided before op3 in h ◦ p3 ◦ p2)
17: h = h ◦ p2; ◃ this step will be proved to be a CAS

18: h = h ◦ p1; ◃ this step will be proved to be a failed CAS

19: while (op2 is not completed in h) ◃ run p2 until op2 is completed
20: h = h ◦ p2;
21: else
22: Let k ∈ {1, 2} satisfy opk is not decided before op3 in h ◦ p3 ◦ pk
23: Let j ∈ {1, 2} satisfy opj is decided before op3 in h ◦ p3 ◦ pj
24: h = h ◦ p3;
25: h = h ◦ pk;
26: while (op3 is not completed in h) ◃ run p3 until op3 is completed
27: h = h ◦ p3;

Figure 2: The algorithm for constructing the history in the proof of Theorem 5.19.

16



Claim 5.1 Immediately after line 5, it holds that 1) the operation op3 has not yet started, 2) the order
between op1 and op3 is not yet decided, 3) the order between op2 and op3 is not yet decided.

Proof: For the first iteration, none of the operations has started, thus the claim holds by Observation 3.4.
For iteration i ≥ 2, the claim follows from the induction hypothesis and Claim 5.16.

Claim 5.2 Immediately before line 14, it holds that 1) the operation op1 is not decided before any operation
by either p2 or p3, 2) the operation op2 is not decided before any operation by either p1 or p3, and 3) the
operation op3 is not decided before any operation by either p1 or p2.

Loosely speaking, this claim states that no new ordering is decided during the execution of the first inner
loop (lines 6–13).
Proof: By Claim 5.1(1), op3 has not yet started after line 5. Since p3 never advances in lines 6–13 then
op3 has not yet started immediately before line 14. Thus, op3 cannot be decided before any operation of a
different process (Observation 3.4), and we obtain (3).

We now turn to prove (1). First, we observe that before line 14, op1 is not decided before op3: by Claim
5.1(2), the operation op1 is not decided before op3 after line 5; the condition in line 7 guarantees that op1 is
not decided before op3 as result of line 8, and the fact that the algorithm is help-free guarantees op1 is not
decided before op3 as result of line 11.

Second, we claim op1 is not decided before any operation of p2. Assume by way of contradiction that
op1 is decided before an operation op of p2. Thus, op1 must be decided before all future operations of p3
(Claim 3.5), including op3. We just proved that op1 is not decided before op3, yielding a contradiction.
Therefore, op1 cannot be decided before any operation of p2.

Finally, we claim that op1 is not decided before any future operation of p3. Assume by way of contra-
diction that op1 is decided before an operation op of p3. Using again Claim 3.5, op1 must be decided before
all future operations of p2, yielding contradiction.

Thus, we have shown that immediately before line 14, the operation op1 is not decided before op3, not
decided before any operation of p2, and not decided before any (future) operation of p3 as well, and (1) is
proved. Condition (2) is proven the same way as (1).

Claim 5.3 No operation in h is completed during the execution of the first inner loop (lines 6–13).

Proof: By Claim 5.2, neither op1 nor op2 are decided before op3 immediately before line 14. However,
at the same point, op3 has not yet begun (by Claim 5.1 and observing the code). If op1 (or op2) were
completed immediately before line 14, then by Observation 3.4, it must have been decided before the future
operation op3. Thus, neither op1 nor op2 are completed immediately before line 14. Since only p1 and p2
take steps during the first inner loop and they do not complete their operations, it follows that no operation
is completed.

Claim 5.4 No operation in h is completed during the execution of the second inner loop (lines 14–15).

Proof: By Claim 5.2, neither op1 nor op2 are decided before op3 immediately before line 14. The
operation op3 itself has not yet begun before line 14. The condition in line 14 guarantees that op3 will not
be decided before op1 or op2 during the execution of the second inner loop, since after the second inner
loop is over, a single step by p1 (p2) will decide op1 (op2) before op3. Thus, after the second inner loop, the
order between op3 and op1 and the order between op3 and op2 are not yet decided. In what follows we show

17



that op3 cannot be completed before these orders are decided, and thus reach the conclusion that op3 cannot
complete during the execution of the second inner loop.

The result of op3 depends on the orders between op3 and op2, and between op3 and op1: the operation
op3 returns a certain result if op3 is linearized before both op1 and op2, a different result if op3 is linearized
after both the other operations, and yet a different result than both previous results if op3 is linearized before
only one of op1 and op2.

It follows that if the result of op3 is consistent with none of op1 and op2 linearized before it, then op3
must already be decided before both op1 and op2. If the result is consistent with both op1 and op2 being
linearized after op3, then both must already be decided before op3. Next, we claim that if the result is
consistent with op3 being linearized before exactly one of op1 and op2, then it must already be decided
before each one. Assume by way of contradiction op3 is not yet decided before either op1 or op2, but returns
a result consistent with being linearized before exactly one of them.

According to the condition of line 14, after the second loop is completed, at least one of op1 and op2 will
be decided before op3 if its owner process will take one step. Let the owner take this step, and its operation
(either op1 or op2) is now decided before op3. Thus, op3 must now be decided before the other operation (one
of op1 and op2). However, in a help-free implementation op3 cannot be decided before another operation as
a result of a step taken by a process other than p3, and thus op3 must have been decided before either op1 or
op2 before the second inner loop was completed, which yields a contradiction.

To conclude, op3 cannot be completed before the order is decided, which means op3 cannot be completed
during the second inner loop. No other operation can be completed during the second inner loop as p3 is the
only process that advances in that loop.

Claim 5.5 The executions of the first inner loop (lines 6–13) and second inner loop (lines 14–15) are finite.

Proof: In each iteration of the first and second inner loops, a process advances a step in h. The history
h is a history of the lock-free object S, and thus an infinite execution without completing an operation is
impossible. By Claims 5.3 and 5.4, no operation is completed in these two loops, and thus their execution
must be finite.

Claim 5.6 Immediately before line 16, it holds that 1) the operation op1 is not decided before any operation
by either p2 or p3, and 2) the operation op2 is not decided before any operation by either p1 or p3.

Proof: These conditions have already been shown to hold before line 14 (Claim 5.2). The only process
that takes steps in the second inner loop (lines 14–15) is p3. In a help-free algorithm, steps by p3 can only
decide an operation of p3 before any other operation.

Observation 5.7 If the condition in line 16 is true, then immediately before line 17, the operation op1 is
decided before op3 in h ◦ p1, the operation op1 is not decided before op3 in h ◦ p3 ◦ p1, the operation op2 is
decided before op3 in h ◦ p2, and the operation op2 is not decided before op3 in h ◦ p3 ◦ p2.

Claim 5.8 If the condition in line 16 is true, then immediately before line 17 the following holds.
(1.) The next primitive step in the programs of p1, p2, and p3 is to the same memory location.
(2.) The next primitive step in the programs of both p1 and p2 is a CAS.
(3.) The expected-value of both the CAS operations of p1 and p2 is the value that appears in the designated
address.
(4.) The new-value of both the CAS operations is different than the expected-value.

18



Proof: By Observation 5.7, in h ◦ p1 ◦ p3, the operation op1 is decided before op3, while in h ◦ p3 ◦ p1,
the operation op1 is not decided before op3. Thus, in an execution in which p3 runs solo and completes op3
immediately after h ◦ p1 ◦ p3 it must return a different result than in an execution in which p3 runs solo and
completes op3 immediately after h ◦ p3 ◦ p1 (because each operation by p1 changes the return value of op3).
Thus, h ◦ p3 ◦ p1 and h ◦ p1 ◦ p3 must be distinguishable, and thus the next primitive step in the programs
of both p1 and p3 must be to the same memory location. Similarly, the next primitive step in the programs
of both p2 and p3 must be to the same memory location, and (1) is proved.

As mentioned, op3’s result is different if p3 completes op3 solo immediately after h◦p1 than op3’s result
if p3 completes op3 solo immediately after h ◦ p3 ◦ p1. Thus, the next primitive step by the program of p1
cannot be a READ, otherwise the two executions will be indistinguishable by p3. Similarly, the next primitive
step of p1 cannot be a CAS that does not change the shared memory (i.e., a CAS in which the expected-value
is different from the value in the target address, or a CAS in which the expected-value and the new-value are
the same.) The symmetric argument for p2 demonstrates that the next step in the program of p2 cannot be a
READ or a CAS that does not change the shared memory as well.

Thus, the next steps of both p1 and p2 are either a WRITE, or a CAS that satisfies (3) and (4). It remains
to show the next steps are not a WRITE. Assume by way of contradiction that the next step by p1 is a WRITE.
Thus, h ◦ p2 ◦ p1 is indistinguishable from h ◦ p1 to all processes excluding p2. Assume that after either
one of these two histories, p1 runs solo and completes the execution of op1, and immediately afterwards,
p3 runs solo and completes the execution of op3. If p2 executes the next step following h, then op3 should
return a result consistent with an execution in which both op1 and op2 are already completed. In the other
case, in which the step following h is taken by p1, op3 should return a result consistent with an execution
in which op1 is completed and op2 is not. Since both of these results are different, but the histories are
indistinguishable to p3, we reach a contradiction. Thus, in h, the next step by p1 is not a WRITE, and
similarly, the next step by p2 is also not a WRITE.
Claim 5.8 immediately implies:

Corollary 5.9 If the condition in line 16 is true, then the primitive step p2 takes in line 17 is a successful
CAS, and the primitive step p1 takes in line 18 is a failed CAS.

Claim 5.10 If the condition in line 16 is true, then immediately after line 18, the operation op1 is not decided
before any operation of p3.

Proof: Immediately before line 16, the operation op1 is not decided before any operation of p3 by claim
5.6. In a help-free implementation such as S, an operation can only be decided before another operation
following a step of its owner process. Following this rule, the only step which could potentially decide op1
before any operation of p3 is the step p1 takes at line 18. By Corollary 5.9, this step is a failed CAS. Thus
the state before this step and after this step are indistinguishable to all processes excluding p1. Assume by
way of contradiction that this failed CAS decides op1 to be before an operation op of p3. If p3 is run solo
right before the failed CAS of p1, and this run is continued until op is completed, the result of op should be
consistent with op1 not yet executed (since op1 cannot be decided before op in a help-free implementation
during a solo execution of p3); If p3 is run solo right after the failed CAS of p1, and this run is continued
until op is completed, the result of op should be consistent with op1 already executed. These two scenarios
are indistinguishable by p3, yet the results are different according to the semantics of the specification and
the respective programs, yielding a contradiction.

Corollary 5.11 If the condition in line 16 is true, then immediately after line 18, the operation op1 is not
yet completed.

19



Proof: Immediately after line 18, the operation op1 is not decided before any operation of p3 (Claim 5.10).
Were op1 completed, then by Observation 3.4, it must have also been decided before all future operations of
p3 that have not started yet.

Claim 5.12 If the condition in line 16 is false, then immediately after line 25, the order between opj and
op3 is not yet decided. Furthermore, the order between opj and any of the future operation by p3 is not
decided as well.

Proof: Immediately before line 14 the order between opj and op3, or between opj and any future operation
of p3 is not yet decided (Claim 5.2). In lines 14–15, p3 is the only process to advance. By the condition
in line 14, op3 is not decided before neither op1 or op2 during the execution of the second inner loop.
Furthermore, by the condition in line 16, and by the definition of opj , op3 is not decided before opj after
line 24. pj did not make any step since line 14, and thus opj cannot be decided before op3 or any future
operation of p3.

Observation 5.13 If the condition in line 16 is false, then immediately after line 25, opj is not yet completed.

The above is true because opj did not execute a step since line 14, and was not completed at the time (Claim
5.3).

Claim 5.14 If the condition in line 16 is false, then immediately after line 25, opk is not decided before any
operation of p3.

Proof: According to the condition of line 16 and the definition of k, after line 25 opk is not decided
before op3. Immediately after line 25, the order between op3 and opj is not yet decided (Claim 5.12). Thus,
opk is not decided before opj (because opj may still be before op3, which in turn may still be before opk).
Assume by contradiction that after line 25, opk is decided before some operation op of p3. Note that opj is
not decided before op at this point (Claim 5.12). Let p3 run solo until op is completed.

We claim that after such a run, op is decided before opj . It is already assumed (contradictively) that
opk is decided before op; no future operations of pk (operations not yet started) can be decided before the
already completed op (Observation 3.4); all operations of pj before op were completed before op has begun,
and are thus before it.

Thus, for every operation O ̸= opj the order between O and op is already decided. According to the
semantics of the specification, op returns a different result if opj is before op than if opj is after op, given
that the relative order between op and all other operations is fixed. Consequently, once op is completed,
the order between opj and op must also be decided. However, opj cannot be decided before op: it was not
decided before op immediately after line 25 and pj has not taken a step since. The only remaining possibility
is that op is decided before opj .

If op is indeed decided before opj then by transitivity opk is decided before opj . However, since p3 is
not the owner of opk, then a solo execution of p3 cannot decide opk to be before opj in the help-free S,
yielding a contradiction.

Corollary 5.15 If the condition in line 16 is false, then immediately after line 25, opk is not yet completed.

Proof: Immediately after line 25, the operation opk is not decided before any operation of p3 (Claim
5.14). Were opk completed, then by Observation 3.4 it must have been decided before all future operations
of p3 that have not started yet.

20



Claim 5.16 Immediately after exiting the loop of lines 26–27, it holds that 1) the operation p3 has completed
operation op3 and has not yet started the next operation, 2) the operation op1 has not yet completed, 3) the
order between op1 and any future operation of p3 is not yet decided, and 4) the order between the first
uncompleted operation of p2 and any future operation of p3 is not yet decided.

Proof: By Claim 5.4, op3 is not completed in lines 14–15. In lines 16–25, p3 takes at most one step
(line 24), because op3 is not completed in lines 14–15, the step must be a step of op3, and not of the next
operation of p3. The code of lines 26–27 ensures p3 will complete op3 if it is not yet completed, but will not
start the next operation, guaranteeing (1).

Now, divide into two cases. If the condition in line 16 is true, then op2 is completed in lines 19–20.
Thus, the first uncompleted operation of p2 has not yet begun. The order between two operations that have
not yet begun cannot be decided (Observation 3.4), and we get (4). The operation op1 has not yet completed
by Corollary 5.11, giving (2). The operation op1 was not decided before any operation of p3 after line 18
(Claim 5.10). Process p1 did not take another step since line 18 and S is a help-free implementation, thus
op1 is not decided before any operation of p3. Any future operation of p3 cannot be decided before op1 by
Observation 3.4, and thus we get (3).

If the condition in line 16 is false, then op1 and op2 are opj and opk (not necessarily in that order).
Immediately after line 25, opk is not decided before any operation of p3 (Claim 5.14), opk is not completed
(Corollary 5.15), opj is not decided before any operation of p3 (Claim 5.12), and opj is not completed
(Observation 5.13)). In lines 26–27 only p3 may progress, thus both op1 and op2 cannot be completed
(guaranteeing (2)), and cannot be decided before any other operation since S is help-free (guaranteeing (3)
and (4)).

Claim 5.17 Every iteration of the main loop (lines 2–27) is finite.

Proof: In every iteration of the main loop, the executions of the first inner loop (lines 6–13) and second
inner loop (lines 14–15) are finite (Claim 5.5). The other two inner loops (lines 19–20 and 26–27) run a
single process exclusively until it completes its operation, which always takes a finite number of execution
steps in a lock-free algorithm. Thus, each execution of an inner loop is finite, as every iteration of the main
loop is finite.

Claim 5.18 S is not wait-free.

Proof: By Claim 5.17, each iteration of the main loop is finite. It follows that when history h is con-
structed following the algorithm in Figure 2 the main loop is run infinitely many times. Thus, we consider
two cases. The first case is that the condition in line 16 is true only a finite number of times (in a finite
number of iterations of the main loop). In this case, We consider the part of history h created since after the
last iteration in which the condition in line 16 is true. If the condition is never true, we consider the entire
history h. In this part of the history, neither p1 nor p2 complete any operation: in each iteration these oper-
ations are not completed until after line 25 (Corollary 5.15, Observation 5.13), and only p3 makes progress
in lines 26–27. On the other hand, in each iteration at least one of p1 and p2 takes at least one step - in line
25. This contradicts wait-freedom.

The second case is that the condition in line 16 is true infinitely many times. In this case, op1 is never
completed (Claim 5.16 (2)), yet p1 takes infinitely many steps: each time the condition in line 16 is true, p1
takes a step in line 18, also contradicting wait-freedom.

Since the assumptions on S were that it is linearizable, help-free, and lock-free, we can rephrase Claim
5.18 as follows.

Theorem 5.19 A wait-free linearizable single-scanner snapshot implementation cannot be help-free.

21



5.1 From Single Scanner Snapshot to Global View Types

The first natural observation is that if a wait-free linearizable single-scanner snapshot cannot be implemented
without help, then this conclusion holds for more general snapshot variants as well, such as the multiple-
scanner snapshot object, or simply the snapshot object. However, we can generalize the result further. The
proof relies on the fact that for every SCAN, its result changes if it is linearized before op1 and op2, compared
to when it is linearized after the first of op1 and op2, and compared to when it is linearized after both.

In what follows, we generalize this result to global view types. Similarly to the proof above, we think
of a single operation op (similar to op1 of p1), an infinite sequence of operations Modifiers (similar to the
infinite UPDATE sequence of op2, and an infinite sequence of operations Views (similar to the infinite SCAN

sequence of p3).
Next, a certain property that holds for every modifier and every view operation is needed. Specifically,

this property states that the view returns a different result if another (either modifier or the op operation) is
added before it, and yet a different result if both the modifier and op are added before it. For this purpose,
we define three sets of sequential histories for each pair of modifier and view. Set0 is histories in which the
view is after the specified modifier, but not after any other modifier, and not after op either. Set1 is histories
in which either op or one more modifier is before the view, and Set2 is the histories in which both the one
more modifier and op are before the view. The definition follows.

Definition 5.20 (Modifiers-Viewers Sets.) Given a single operation denoted op, an infinite sequence of
operations denoted Modifiers, and an infinite sequence of operations denoted Views, for every pair of
integers i ≥ 0 and j ≥ 1 we define the following three modifier-i-view-j sets.

Set0 is the set of all sequential histories h that include the first i Modifiers operations in their relative
order, include the first j Views operations in their relative order, include no other operation and the last
operation in h is in Views.

Set1 is the set of all sequential histories h that include the first i Modifiers operations in their relative
order, include the first j Views operations in their relative order, include op or include the (i + 1)-st
operation of Modifiers somewhere after the first i operations of Modifiers but not both, include no other
operations, and the last operation in h is in Views.

Set2 is the set of all sequential histories h that include the first i + 1 operations of Modifiers in their
relative order, include the first j operations of Views in their relative order, include op, include no other
operations, and the last operation in h is in Views.

The interests we have in these sets relies in the result of the last (view) operation in each history. Specif-
ically, for our proof to hold, if two histories h and h′ belong to two different modifier-i-view-j set, then the
results of their last operation should be different. We use the following definition to help formalize this.

Definition 5.21 (Modifiers-Viewers Result Sets.) Given a single operation denoted op, an infinite se-
quence of operations denoted Modifiers, and an infinite sequence of operations denoted Views, for every
pair of integers i ≥ 0 and j ≥ 1 we define the following three modifier-i-view-j-results sets as follows:
RSi = {r|r is the returned value of the last (view) operation in a history h ∈ Seti }

Definition 5.22 (Global View Types.) A type t, for which there exists an operation op, an infinite sequence
of operations Modifiers and an infinite sequence of operations Views, such that for every pair of integers
i ≥ 0 and j ≥ 1 the three modifier-i-view-j-results sets are disjoint sets, is called a Global View Type.

Using this definition, Theorem 5.19 is generalized as follows:

22



Theorem 5.23 A global view type has no linearizable, wait-free, help-free implementation.

Both snapshot objects and increment objects are such types.5 Another interesting type is the
fetch&increment type, which is sometimes used as a primitive. This type supports only a single opera-
tion, which returns the previous integer value and increments it by one. In the type of the fetch&increment,
op, the Modifiers sequence, and the Views sequence, all consists only fetch&increment operations. Its easy
to see that for every pair i and j, the three results sets are disjoint, because each set contains histories with
a different number of operations. Finally, the fetch-and-cons object, used in [17], is another example of a
type that satisfies the condition in theorem 5.23.

6 Max Registers

In this section we turn our attention to systems that support only the READ and WRITE primitives, (without
the CAS primitive). We prove that for such systems, help is often required even to enable lock-freedom.
We prove this for the max-register type [3]. A max-register type supports two operations, WRITEMAX

and READMAX. A WRITEMAX operation receives as an input a non-negative integer, and has no output
result. A READMAX operation returns the largest value written so far, or 0, if no WRITEMAX operations
were executed prior to the READMAX. If the CAS primitive is allowed, then there is a help-free wait-free
max-register implementation. (See Subsection 7.2.)

Assume by way of contradiction that M is a linearizable, help-free, lock-free max-register implementa-
tion. Consider a system of five processes, p1, p2, p3, p4, and p5. The programs of processes p1, p2, and p3 all
consists of a single operation, which is WRITEMAX(1), WRITEMAX(2), and WRITEMAX(3) respectively.
The programs of processes p4 and p5 are both a single READMAX operation. We denote the operations
of p1, p2, and p3 by W1, W2, and W3 respectively. We denote the operations of p4 and p5 by R1 and R2

respectively.
In the proof we build a history h, such that processes p1, p2, p3, p4, and p5 follow their respective

programs. We show this yields a contradiction to help-freedom. The algorithm for constructing this history
is depicted in Figure 3. Processes p1, p2 are scheduled to run their programs as long as their operations are
not decided before R1. Process p4 is scheduled to run its program as long is it can make a step without
deciding its operation before W1, or alternatively, without deciding its operation before W2. We prove that
during the execution of the main loop, no operation is ever decided before any other operation. We also
prove that the execution of the main loop must be finite.

Afterwards, the execution of M is in a critical point. If p1 were to take a step, then W1 will be decided
before R1; if p2 were to take a step, then W2 will be decided before R1; and if p4 were to take a step, then
R1 will be decided before both W1 and W2. We will prove using indistinguishability arguments that this
yields a contradiction.

Claim 6.1 During the execution of the main loop (lines 2–15), no operation is decided before any other
operation.

Proof: The proof is by induction on the iteration number of the main loop. The induction hypothesis
for iteration i is that no operation is decided before another operation during the execution of the first i− 1
iterations. For the first iteration this is trivial. We assume that the hypothesis is correct for iteration i, and
prove that it holds for iteration i+ 1 as well. That is, we prove that given that no operation is decided in the
first i− 1 iterations, no operation is decided in iteration i.

5An increment object supports two operations, INCREMENT and GET.

23



1: h = ϵ;
2: while (true) ◃ main loop
3: if W1 is not decided before R1 in h ◦ p1
4: h = h ◦ p1;
5: continue; ◃ goto line 2
6: if W2 is not decided before R1 in h ◦ p2
7: h = h ◦ p2;
8: continue; ◃ goto line 2
9: if R1 is not decided before W1 in h ◦ p4

10: h = h ◦ p4;
11: continue; ◃ goto line 2
12: if R1 is not decided before W2 in h ◦ p4
13: h = h ◦ p4;
14: continue; ◃ goto line 2
15: break; ◃ goto line 16
16: Contradiction ◃ reaching this line immediately yields contradiction.

Figure 3: The algorithm for constructing the history in the proof of Theorem 6.6.

Before the execution of the main loop, no operation is decided before any other operation because h
is empty (Observation 3.4). By the induction hypothesis, no operation was decided during the first i − 1
iterations of the main loop. It follows that if an operation is decided before another operation during iteration
i of the main loop, then it must be the first time any operation is decided before a different operation in h.
If this indeed happens, then it must be in one of the lines: 4,7,10, or 13. We go over them one by one,
and prove that an execution of none of them can be the first time an operation is decided before a different
operation.

Assume by way of contradiction that the execution of line 4 in iteration i is the first time in which an
operation is decided before a different operation. Because M is a help-free algorithm, the operation that is
decided before a different operation must be W1. Since W1 is now decided before a different operation, and
since W3 is not yet decided, then in particular, W1 must be decided before W3 (Claim 3.5).

At this point, let p3 run solo until completing W3. We consider two cases. The first case is that after
this run of p3, W3 is decided before R1. If this is the case, then by transitivity, W1 must also be decided
before R1. However, in a help-free algorithm W1 cannot be decided before R1 during a solo execution of
p3. It follows that W1 was already decided before R1 prior to this solo execution. Thus, W1 must be decided
before R1 in the execution of line 4. But this contradicts the condition in line 3, and thus the first case is
impossible.

The second case is that after the solo run of p3 which completes W3, W3 is not decided before R1. If W3

is not decided before R1 after the completion of W3, then it follows that W3 can never be decided before R1

in a help-free algorithm (because any such future decision cannot be inside the execution of W3, and will
thus be help.) Thus, R1 cannot possibly return any value ≥ 3: returning such a value would indicate it is
after W3 (because W3 is decided to be the first operation that writes a value ≥ 3, as no other operation that
writes a value ≥ 3 has even started, and W3 is already completed). But if R1 cannot possibly return a value
≥ 3, then R1 is decided before W3. However, R1 cannot be decided before another operation during the
execution of line 4 or during the solo execution of p3 in a help-free algorithm. Since we assumed that line 4
is the first time any operation is decided before any other operation, this yields a contradiction, making the
second case impossible as well.

Thus, we have established that line 4 in iteration i of the main-loop cannot decide any operation before
any other operation. The argument for line 7 is similar. We move on to consider line 10.

24



Assume by way of contradiction that the execution of line 10 in iteration i is the first time in which an
operation is decided before a different operation. Because M is a help-free algorithm, the operation that is
decided before a different operation must be R1. Since R1 is now decided before a different operation, and
since R2 is not yet decided, then in particular, R1 must be decided before R2 (Claim 3.5).

At this point, let p5 run solo until completing R2. We consider two cases. The first case is that R2

returns 0. If this is the case, then R2 is decided before both W1 and W2, and by transitivity, R1 is decided
before W1 and W2 as well. However, R1 cannot be decided before W1 in a help-free algorithm during a
solo execution of p5. It follows that R1 was already decided before W1 before this solo execution. Thus, R1

must be decided before W1 in the execution of line 10. But this contradicts the condition in line 9, and thus
the first case is impossible.

The second case is that R2 returns a value greater than 0. In such a case, either W1 or W2 must be decided
before R2 (depending on the value returned). But both W1 and W2 cannot be decided before R2 during the
solo execution of p5, or during the execution of line 10, in a help-free algorithm. Since we assumed line 10
is the first time any operation is decided before any other operation, then this yields a contradiction, making
the second case impossible as well.

Thus, we have established that line 10 in iteration i of the main-loop cannot decide any operation before
any other operation. The argument for line 13 is similar, and the proof is complete.

Corollary 6.2 No operation is completed during the execution of the main loop (lines 2–15).

Proof: By Claim 6.1, no operation is decided before any other operation during the execution of the main
loop. By Observation 3.4, an operation that is already completed must be decided before all operations that
have not yet started. Since there are operations that are never started (W3, R2), but no operation is decided
before any operation, then no operation can be completed during the execution of the main loop.

Corollary 6.3 The execution of the main loop (lines 2–15) is finite.

Proof: In each iteration of the main loop excluding the last one, a process takes a step in M . However,
during the execution the main loop no operation is completed. (Corollary 6.2.) Since M is a lock-free
implementation then this cannot continue infinitely, and thus the execution of the main loop is finite.

Observation 6.4 Immediately before line 16 the order of any two operations is not yet decided. Further-
more, immediately before line 16, it holds that 1) in h ◦ p1, the operation W1 is decided before R1, 2) in
h ◦ p2, the operation W2 is decided before R1, and 3) in h ◦ p4, the operation R1 is decided before both W1

and W2.

From Claim 6.1 the order between any two operations is not decided immediately before line 16.
From observing the code, the main loop exits and line 16 is reached only if (1), (2), and (3) hold.

Claim 6.5 Reaching line 16 yields contradiction.

Proof: By Observation 6.4, in h ◦ p1 ◦ p4, the operation W1 is decided before R1, and in h ◦ p4 ◦ p1,
the operation R1 is decided before both W1 and W2. It follows that h ◦ p1 ◦ p4 and h ◦ p4 ◦ p1 must be
distinguishable to process p4, since if p4 continues to run solo after h ◦ p4 ◦ p1 then R1 must return 0, and if
p1 runs solo after h ◦ p1 ◦ p4 then R1 must return at least 1. It follows that the next steps of both p1 and p4
must be to the same memory address. Furthermore, to enable distinguishability by p4, the next step by p1
must be a WRITE, and the next step by p4 must be a READ.

25



For similar reasons, the next step of p2 must also be a WRITE to the same memory address. Thus, the
next step by both p1 and p2 is a WRITE to the same location. Thus, h◦p2◦p1 and h◦p1 are indistinguishable
to p4. Since in h ◦ p2 ◦ p1 the operation W2 is decided before R1, a solo execution by p4 starting from that
point until R1 is completed must cause R1 to return 2. Since this is indistinguishable to p4 from h ◦ p1, then
a solo execution of p4 immediately after h◦p1 must also return 2. However, this would imply W2 is decided
before R1. But W2 is not decided before R1 in h (Observation 6.4), and cannot be decided before it during
a step of p1 or during the solo execution of p4 in a help-free algorithm, yielding a contradiction.

Theorem 6.6 A lock-free implementation of a max-register using only READ and WRITE primitives cannot
be help-free.

Proof: We assumed a lock-free help-free implementation of a max-register using only READ and WRITE

primitives. However, while examining the algorithm for constructing history h depicted in Figure 3, we
reached the conclusion that the main-loop execution must be finite (Corollary 6.3), but also the conclusion
that line 16 can never be reached (Claim 6.5). This yields contradiction, and proves the Theorem.

7 Types that Do Not Require Help

In this section, we establish that some types can be implemented in a wait-free manner without using help.
Loosely speaking, if the type operations dependency is weak enough then no help is required. As a trivial
example, consider the vacuous type. A vacuous object supports only one operation, NO-OP, which receives
no input parameters and returns no output parameters (void). Thus, the result of a NO-OP does not depend
on the execution of any previous operations. Consequently, there is no operations dependency at all in the
vacuous type. It can trivially be implemented by simply returning void without executing any computation
steps, and without employing help.

7.1 A Help-Free Wait-Free Set

As a more interesting example, consider the set type of a finite domain. The set type supports three oper-
ations, INSERT, DELETE, and CONTAINS. Each of the operations receives a single input parameter which
is a key in the set domain, and returns a boolean value. An INSERT operation adds the given key to the set
and returns true if the key is not already in the set, otherwise it does nothing and returns false. A DELETE

operation removes a key from the set and returns true if the key is present in the set, otherwise it does nothing
and returns false. A CONTAINS operation returns true if and only if the input key exists in the set.

Consider the following wait-free help-free set implementation given in Figure 4. The implementation
uses an array with a bit for every key in the set domain. Initially, all bits are set to zero, and the set is empty.
To insert a key to the set, a process performs a CAS operation that changes the bit from zero to one. If the
CAS succeeds, the process returns true. If the CAS fails, that means that the key is already in the set, and the
process returns false. Deletion is executed symmetrically by CASing from one to zero, and contains reads
the appropriate bit and returns true if and only if it is set to one.

In this set algorithm, it is easy to specify the linearization point of each operation. In fact, every operation
consists of only a single computation step, which is the linearization point of that operation. For any type,
an obstruction-free implementation in which the linearization point of every operation can be specified as a
step in the execution of the same operation is help-free.

The function f that proves such an implementation is help-free is derived naturally from the linearization
points. For each given history, the operations are ordered according to the order of the execution of their

26



1: bool insert(int key) {
2: bool result = CAS(A[key],0,1); ◃ linearization point
3: return result; }
4: bool delete (int key) {
5: bool result = CAS(A[key],1,0); ◃ linearization point
6: return result; }
7: bool contains (int key) {
8: bool result = (A[key] == 1); ◃ linearization point
9: return result; }

Figure 4: A help-free wait-free set implementation

linearization points. Consider a type T , an obstruction-free implementation of it O, and the corresponding
set of histories H . Assume the code of O specifies the linearization point of each operation at the execution
of a specific computation step of the same operation. Let f be the linearization function derived from this
specification.

Claim 7.1 For every h ∈ H , every two operations op1, op2, and a single computation step γ such that
h ◦ γ ∈ H , it holds that if op1 is decided before op2 in h ◦ γ and op1 is not decided before op2 in h, then γ
is the linearization point of op1.

As a direct result, γ is executed by the owner of op1, and thus O is help-free.
Proof: First, we observe that op1 is not yet linearized in h. If it were, then the order between op1 and op2
would have already been decided: were op2 linearized before op1 then op2 would have been decided before
op1, and were op1 linearized before op2 or op1 is linearized and op2 not, then op1 would have been decided
before op2. Thus, op1 cannot be linearized in h.

Second, we observe that op1 is linearized in h ◦ γ. Were it not, then a solo execution of the owner of op2
until the linearization of op2 would have linearized op2 before op1, contradicting the assumption that op1 is
decided before op2 in h ◦ γ.

7.2 A Help-Free Wait-Free Max Register

In Section 6 we proved that a lock-free max register cannot be help-free if only READS and WRITES are
available. In this subsection we show that a help-free wait-free max register is possible when using the CAS

primitive. The implementation uses a shared integer, denoted value, initialized to zero. This integer holds
the current max value. The implementation is given in Figure 5.

A WRITEMAX operation first reads the shared integer value. If it is greater than or equal to the input
key, then the operation simply returns. Otherwise it tries by a CAS to replace the old (smaller) value with the
operation’s input key. If the CAS succeeds, the operation returns. Otherwise the operation starts again from
the beginning. This implementation is wait-free because each time the CAS fails, the shared value grows
by at least one. Thus, a WRITEMAX(x) operation is guaranteed to return after a maximum of x iterations.
A READMAX operation simply reads the value and returns it.

Help-Freedom is proved similarly to the wait-free help-free set, using Claim 7.1. In the given max
register implementation, the linearization point of every operation can be specified as a step in the execution
of the same operation, and thus it is help-free. The linearization point of a WRITEMAX operation is always
its last computation step. This is either reading the value variable (if the read value is greater than the
input key), or the CAS (if the CAS succeeds). The linearization point of a READMAX is reading the value.

27



1: void WriteMax(int key) {
2: while(true) {
3: int local = value; ◃ linearization point if value ≥ key
4: if (local ≥ key)
5: return;
6: if (CAS(value, local, key)); ◃ linearization point if the CAS succeeds
7: return;
8: } }
9: int ReadMax() {

10: int result = value; ◃ linearization point
11: return result;
12: }

Figure 5: A help-free wait-free max register implementation

8 A Universality of Fetch-And-Cons

A fetch-and-cons object allows a process to atomically add (con) an item to the beginning of a list and
return the items following it. In this section, we show that fetch-and-cons is universal with respect to help-
free wait-free linearizable objects. That is, given a help-free wait-free atomic fetch-and-cons primitive, one
can implement any type in a linearizable wait-free help-free manner. Not surprisingly for a universal object,
both Theorems 4.18 and 5.23 hold for fetch-and-cons and show it cannot be implemented in a help-free
wait-free manner. Before demonstrating the universality of fetch-and-cons, we shortly discuss the strength
of different primitives when it comes to overcoming indistinguishability problems.

Consider two processes, p1 and p2, at a certain point in an execution. Consider only their immediate
next computation step. With this regard, there are five possible states: 1) neither have yet taken its next step,
2) p1 has taken its next step and p2 has not, 3) p2 has taken its next step and p1 has not, 4) p1 has taken
its next step, and afterwards p2 has taken its next step, and 5) p2 has taken its next step, and afterwards p1
has taken its next step. Different primitives can be measured by their ability to support distinguishability
between each of these five possibilities. Perfect distinguishability allows each process in the system to know
exactly which one of the five scenarios occurred.

Using such a metric, we can state that a system supporting only READ and WRITE is weaker than a
system that also supports CAS. When both p1 and p2 are attempting a CAS at the same memory location,
it is possible for every process in the system to distinguish between (4) and (5), while also distinguishing
between (3) and (4). This is impossible when using only READ and WRITE. Still, a CAS is not perfect: for
example, it is still impossible to distinguish between (2), (3) and (4) at the same time.

FETCH&ADD adds more strength to the system. When both p1 and p2 execute FECTH&ADD, in which
they add different values to the same location, it is possible for every process in the system to distinguish
between (1), (2), (3), and (4). In fact, FETCH&ADD is almost perfect: its only weakness is that it does
not allow processes other than p1 and p2 to distinguish between (4) and (5). By contrast, fetch-and-cons is
perfect: it allows every process in the system to distinguish between all five possibilities. Intuitively, this is
the source of its strength.

To show that fetch-and-cons is indeed universal, we use a known wait-free reduction from any sequential
object to fetch-and-cons, described in detail in [17]. We claim that the reduction is help-free. In essence,
each process executes every operation in two parts. First, the process calls fetch-and-cons to add the descrip-
tion of the operation (such as ENQUEUE(2)) to the head of the list, and gets all the operations that preceded
it. This fetch-and-cons is the linearization point of the operation.

Second, the process computes the results of its operation by examining all the operations from the

28



beginning of the execution, and thus determining the “state” prior to its own operation and the appropriate
result. Note that since every operation is linearized in its own fetch-and-cons step, then this reduction is
help-free by Claim 7.1.

9 Discussion

This paper studies the fundamental notion of help for wait-free concurrent algorithms. It formalizes the
notion, and presents conditions under which concurrent data structures must use help to obtain wait-freedom.

We view our contribution as a lower-bound type of result, which sheds light on a key element that
implementations of certain object types must contain. As such, we hope it will have a significant impact on
both research and design of concurrent data structures. First, we believe it can lead to modularity in designs
of implementations that are shown to require a helping mechanism in order to be wait-free, by allowing to
pinpoint the place where help occurs.

Second, we ask whether our definition of help can be improved in any sense, and expect this to be an
important line of further research. We think that our proposed definition is a good one, but there exist other
possible definitions as well. An open question is how various formalizations of this notion relate to each
other. Another important open problem is to find a definition for the other notion of help, as we distinguish
in the introduction. Such a definition should capture the mechanisms that allow a process to set the ground
for its own operation by possibly assisting another operation, for the sole purpose of completing its own
operation. In this paper we do not refer to the latter as help, as captured by our definition.

An additional open problem is the further characterizations of families of data structures that require
help to obtain wait-freedom. For example, we conjecture that perturbable objects [18] cannot have wait-
free help-free implementations when using only READ and WRITE primitives, but the proof would need to
substantially extend our arguments for the max register type.

Acknowledgements: The authors thank Nir Shavit for intriguing discussions, and the anonymous referees
of a previous version of the paper for helpful comments.The first author is supported in part by ISF Grant
1696/14. The second and third authors are supported in part by ISF Grant 274/14.

References

[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic snap-
shots of shared memory. J. ACM, 40(4):873–890, September 1993.

[2] Dan Alistarh, Keren Censor-Hillel, and Nir Shavit. Are lock-free concurrent algorithms practically
wait-free? In Symposium on Theory of Computing, (STOC), pages 714–723, 2014.

[3] James Aspnes, Hagit Attiya, and Keren Censor-Hillel. Polylogarithmic concurrent data structures from
monotone circuits. J. ACM, 59(1):2:1–2:24, March 2012.

[4] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and Advanced
Topics (2nd edition). John Wiley Interscience, March 2004.

[5] Greg Barnes. A method for implementing lock-free shared-data structures. In SPAA, pages 261–270,
1993.

29



[6] Faith Ellen, Panagiota Fatourou, Eleftherios Kosmas, Alessia Milani, and Corentin Travers. Universal
constructions that ensure disjoint-access parallelism and wait-freedom. In Proceedings of the 31st
ACM Symposium on Principles of Distributed Computing (PODC), pages 115–124, 2012.

[7] Faith Ellen, Danny Hendler, and Nir Shavit. On the inherent sequentiality of concurrent objects. SIAM
J. Comput., 41(3):519–536, 2012.

[8] Panagiota Fatourou and Nikolaos D. Kallimanis. A highly-efficient wait-free universal construction.
In SPAA, pages 325–334, 2011.

[9] Faith Ellen Fich, Victor Luchangco, Mark Moir, and Nir Shavit. Obstruction-free algorithms can
be practically wait-free. In 19th International Symposium on Distributed Computing (DISC), pages
78–92, 2005.

[10] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, April 1985.

[11] Wojciech M. Golab, Lisa Higham, and Philipp Woelfel. Linearizable implementations do not suffice
for randomized distributed computation. In Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 373–382, 2011.

[12] Maurice Herlihy. A methodology for implementing highly concurrent data structures. In Proceed-
ings of the Second ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming
(PPOPP), pages 197–206, 1990.

[13] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149, Jan-
uary 1991.

[14] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2008.

[15] Maurice Herlihy and Nir Shavit. On the nature of progress. In Proceedings of the 15th International
Conference on Principles of Distributed Systems (OPODIS), pages 313–328, 2011.

[16] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[17] Maurice P. Herlihy. Impossibility and universality results for wait-free synchronization. In Proceedings
of the Seventh Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 276–
290, 1988.

[18] Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower bounds for nonblocking implemen-
tations. SIAM J. Comput., 30(2):438–456, 2000.

[19] Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers and dequeuers. In PPOPP,
pages 223–234, 2011.

[20] Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data structures. In PPOPP,
pages 141–150, 2012.

[21] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem. Commun. ACM,
17(8):453–455, August 1974.

30



[22] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on Principles
of Distributed Computing, Philadelphia, Pennsylvania, USA, May 23-26, 1996, pages 267–275, 1996.

[23] S. A. Plotkin. Sticky bits and universality of consensus. In Proceedings of the Eighth Annual ACM
Symposium on Principles of Distributed Computing (PODC), pages 159–175, 1989.

[24] Eric Ruppert. Determining consensus numbers. SIAM J. Comput., 30(4):1156–1168, 2000.

[25] Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-free linked-lists. In
OPODIS, 2012.

[26] Shahar Timnat and Erez Petrank. A practical wait-free simulation for lock-free data structures. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP), pages 357–368,
2014.

31


