
On Fast and Robust Information Spreading
in the Vertex-Congest Model

Keren Censor-Hillel and Tariq Toukan

Technion - Israel Institute of Technology
{ckeren, ttoukan}@cs.technion.ac.il

Abstract. This paper initiates the study of the impact of failures on
the fundamental problem of information spreading in the Vertex-Congest
model, in which in every round, each of the n nodes sends the same
O(logn)-bit message to all of its neighbors.

Our contribution to coping with failures is twofold. First, we prove that
the randomized algorithm which chooses uniformly at random the next
message to forward is slow, requiring Ω(n/

√
k) rounds on some graphs,

which we denote by Gn,k, where k is the vertex-connectivity.
Second, we design a randomized algorithm that makes dynamic mes-

sage choices, with probabilities that change over the execution. We prove
that for Gn,k it requires only a near-optimal number of O(n log3 n/k)
rounds, despite a rate of q = O(k/n log3 n) failures per round. Our tech-
nique of choosing probabilities that change according to the execution is
of independent interest.

Keywords: distributed computing, information spreading, randomized
algorithms, vertex-connectivity, fault tolerance

1 Introduction

Coping with failures is a cornerstone challenge in the design of distributed algo-
rithms. It is desirable that a distributed system continues to operate correctly
despite a reasonable amount of failures, and hence obtaining fault-tolerance has
been a fundamental goal in this field. The impact of failures has been studied in
various models of computation and for various distributed tasks.

In this paper, we initiate the study of robustness against failures of the task of
information spreading in the Vertex-Congest model of computation. Information
spreading requires each node of the network to obtain the information of all
other nodes. This problem is at the heart of many distributed applications which
perform global tasks, and thus is a central issue in distributed computing (see,
e.g., [16]). The Vertex-Congest model, where in each round, every node generates
an O(log n)-sized packet and sends it to all of its neighbours, abstracts the
behavior of wireless networks that operate on top of an abstract MAC layer [11]
that takes care of collisions.

The time required for achieving information spreading depends on the struc-
ture of the communication graph. Even without faults, it is clear that having a

2

minimum vertex-cut of size k implies an Ω(n/k) lower bound for the running
time of any algorithm in the above model, and hence our study addresses the
k-vertex-connectivity of the graph. The diameter of a graph is a trivial lower
bound on the number of rounds required for spreading even without faults, and
hence, for k-vertex-connected graphs, Ω(n/k) is a general lower bound as there
exist k-vertex-connected graphs of diameter n/k.

A tempting approach would be to use randomization for choosing which mes-
sage to forward in each round of communication, in the hope that this would be
naturally robust against failures. However, we show that the uniform random-
ized algorithm is slow on a k-vertex-connected family of graphs, denoted Gn,k,
which consists of n/k cliques of size k that are connected by perfect matchings,
requiring Ω(n/

√
k) rounds.

Instead, this paper presents an algorithm for spreading information in the
Vertex-Congest model that uses dynamic probabilities for selecting the messages
to be sent in each round. We prove that for Gn,k, the round complexity of our
algorithm is almost optimal and that it is highly robust against node failures.

1.1 Our Contribution

As explained, our first contribution is proving that the intuitive idea of simply
choosing at random which message to forward is not efficient. The proof is based
on the fact that there is an inverse proportion between the number of received
messages in a node and the probability of a message in that node to be chosen
and forwarded. The larger the number of messages received in the nodes of a
clique, the longer it takes for any newly received message to be forwarded to the
nodes of the next clique. The full proof appears in appendix.

Theorem 1.1. The uniform random algorithm requires Ω(n/
√
k) rounds on

Gn,k, in expectation.

Our main result is an algorithm in which the probabilities for sending mes-
sages in each round are not fixed, but rather change dynamically during the
execution based on how it evolves. Roughly speaking, the probability of sending
a message is set according to the number of times it was received, with the goal
of giving higher probabilities for less popular messages. The key intuition be-
hind this approach is that nodes can take responsibility for forwarding messages
that they receive few times, while they can assume that messages that have
been received many times have already been forwarded throughout the network.
This way, we aim to combine qualities of both random and static approaches,
obtaining an algorithm that is both fast and robust.

This basic approach alone turns out to be insufficient. It allows each mes-
sage to be sent fast through multiple paths in the network, but it requires an
additional mechanism in order to be robust against failures. Our next step is
to augment our algorithm with some additional rounds of communication that
allow the paths to change dynamically as the execution unfolds, essentially by-
passing faulty nodes. These shuffle phases provide fault-tolerance while retaining
the efficiency of the algorithm. We consider a strong failure model, in which links

3

are reliable but nodes fail independently with probability q per round and never
recover, and prove the following result, which holds with high probability1.

Theorem 4.3 Alg. 2 completes full information spreading on Gn,k in O
(
n
k log3 n

)
rounds, for any node failure probability per round q, 0 ≤ q ≤ O

(
k

n log3 n

)
, w.h.p.

While our algorithm is general and does not assume any knowledge of the
topology of the network, showing that it is fast and robust for Gn,k is important
as this graph is basically a k-vertex-connected generalization of a simple path.
This constitutes a first step towards understanding this key question. By making
minor changes to Gn,k we can cover additional graphs with same or similar
analysis. We believe that the same approach works for additional families of
k-vertex-connected graphs.

1.2 Additional Background and Related Work

One approach for disseminating information that was introduced in [1] and has
been intensively studied (e.g. [5, 9, 12, 15]) is network coding. Instead of simply
relaying the packets they receive, the nodes of a network take several packets
and combine them together for transmission. An example is random linear net-
work coding (RLNC) presented in [10]. Among its advantages is improving the
network’s throughput [9]. A conclusion that can be derived from the analysis
shown in [8], is that RLNC spreads the information in Θ(n/k) rounds, w.h.p.

However, network coding requires sending large coefficients, which do not fit
within the restriction on the packet size that is imposed in the Vertex-Congest
model. An additional disadvantage is derived from the fact that decoding is done
by solving a system of linear independent equations of n variables, one variable
for each of the original messages. Thus, the decoding process requires the recep-
tion of a sufficient number of packets by the node, in order to start reproducing
the original information. Unfortunately, in most cases, this sufficient number
of packets equals the number of original messages, which means that decoding
happens only at the end of the process. This issue has supreme importance in
applications of broadcasting videos or presentations. For example, when watch-
ing online content, one would prefer displaying the downloaded parts of an image
immediately on the screen, rather than waiting with an empty screen until the
image is fully downloaded.

An almost-optimal algorithm that requires O(n log n/k) rounds with high
probability has been shown in [2]. It is based on a preprocessing stage which con-
structs vertex-disjoint connected dominating sets (CDSs) which are then used
in order to route messages in parallel through all the CDSs. However, this algo-
rithm is non-robust for the following reason. In the basic algorithm the failure
of a single node in a CDS suffices to render the entire structure faulty. This
sensitivity can be easily fixed by combining O(polylog(n)) CDSs together into
well-connected components and sending information redundantly over each CDS

1 We use the phrase “with high probability” (w.h.p.) to indicate that an event happens
with probability at least 1− 1

nc
for a constant c ≥ 1.

4

in the component, incurring a cost of only an O(polylog(n)) factor of slowdown
in runtime. Nevertheless, the construction itself, of the CDS packings, is highly
sensitive to failures. It is an important open problem whether CDS packings can
be constructed under faults.

Randomized protocols were designed to overcome similar problems of fault-
tolerance in various settings [6, 7], as they are naturally fault-tolerant. The ap-
proach taken in this paper, of changing the probabilities of sending messages
according to how the execution evolves such that they are inversely proportional
to the number of times a message has been received, bears some resemblance and
borrows ideas from [4], where a fault-tolerant information spreading algorithm
was designed for gossiping, which is a different model of communication. Apart
from the high-level intuition, the model of communication and the implementa-
tion and analysis are completely different.

1.3 Preliminaries

We assume a network with n nodes that have unique identifiers of O(log n) bits.
Each node u holds one message, denoted mu. An information spreading algo-
rithm distributes the messages of each node in the network to all other nodes.

In the Vertex-Congest model, each node knows its neighbours but does not
know the global graph topology. The execution proceeds in a sequence of syn-
chronous rounds. In each round, every node generates a packet and sends it
to all of its neighbours. The packet size is bounded by O(log n) bits and can
encapsulate one message, in addition to some header.

An n-node graph is said to be k-vertex-connected if the graph resulting from
deleting any (perhaps empty) set of fewer than k vertices remains connected. In
this paper we assume that k = ω(log3 n). An equivalent definition [13] is that a
graph is k-vertex-connected if for every pair of its vertices it is possible to find k
vertex-disjoint paths connecting these vertices.

We consider a strong failure model, in which links are reliable but nodes fail
independently with probability q per round and never recover.

2 A Fast Information Spreading Algorithm

In this section, we describe our basic information spreading algorithm. We em-
phasize that the algorithm does not assume anything about the underlying
graph, except for a polynomial bound on its size. In particular, the nodes do
not know the vertex-connectivity of the graph, nor any additional information
about its topology. Each node u has a set of received messages, whose content
at the beginning of round t is denoted Ru(t). We use cntu,v(t) to denote the
number of times a node u has received message mv by the beginning of round t.
Denote by Su(t) the set of messages sent by node u by the beginning of round t.
Define Bu(t) ≡ Ru(t)− Su(t), the set of messages that are known to node u at
the beginning of round t, but not yet sent. We refer to Bu(t) as a logical vari-
able, whose value changes implicitly according to updates in the actual variables

5

Ru(t) and Su(t). For every node u, we have that Su(0) = ∅, Ru(0) = {mu},
cntu,u(0) = 1, and for each v 6= u, cntu,v(0) = 0.

We present an algorithm, Alg. 1, that consists of two types of phases: a
random phase and ranking phases (see Fig. 3). Let t0 be the round number at
the beginning of the random phase, and let t̄0 be the round number after the
random phase. Let tp be the round number at the beginning of ranking phase p,
and let t̄p be the round number after ranking phase p, starting from p = 1. In this
algorithm, it holds that t̄p = tp+1 for every p, and t0 = 1. We will later modify
this algorithm in Section 4, where we argue about properties that hold in t̄p
and tp+1, separately. Denote by B̂u(tp) the set of node u at time tp. Unlike Bu(t),

B̂u(t) is an actual variable that does not implicitly change according to Ru(t)
and Su(t). We assign a value to it at the beginning of every phase, that is,
B̂u(tp) = Bu(tp), and make sure that its content only gets smaller during a
phase. The parameters α and d are constants that are fixed later, at the end
of Section 3. The algorithm runs as follows, where in each round every node
sends a message and receives messages from all of its neighbors:

(1) Single round (Round 0): This is the first round of the algorithm, where every
node u sends the message mu it has.

(2) Random phase: This is the first phase of the algorithm, which consists of τ =
α log n rounds. In each round t, every node u picks a message to send from
B̂u(t0) uniformly at random, and removes it from the set.

(3) Consecutive ranking phases: Each of these phases consists of τ ′ = 8dτ log2 n
rounds. At the beginning of such a phase, each node uses the Ranking Func-
tion (Fig. 1) that defines a probability space over the messages in B̂u(tp). In

each round, every node u picks a message to send from B̂u(tp) according to
the probability space, and removes it from the set.

Ranking Function. The ranking function (in Fig. 1) is calculated by each node,
and defines a probability space over its messages. Each node u sorts the messages
in B̂u according to their cnt values, smallest to largest, breaking ties arbitrarily.
Denote by rankm the position of the message m within the sorted list, and let
b = |B̂u|, be the size of the list. We consider the probability space in which
the probability for a message m with rankm = r to be picked is 1

rHb
. Namely,

the probability is inversely proportional to r. The b-th harmonic number, Hb =∑b
i=1 1/i, is a normalization factor (over the whole list of messages). This means

that messages in lower positions (lower rankm values, implying lower cnt values)
are more likely to be picked.

Other interesting variants of probability distributions over the messages might
work as well. For example, the inverse proportion might be raised to some expo-
nent, and be a function of the cnt values instead of the ranking r. Our ranking
function was selected as it is very simple, and fits perfectly in Lemma 2.2. In the
algorithm, the probability space used by a node u during a phase is calculated at
the start of the phase. In ranking phases, it is defined according to the Ranking
function. In the random phase, it is the uniform distribution. Within a phase, the

6

Algorithm 1 for each node u

1: SyncRound(mu) . Round 0
2: RandomPhase()
3: loop
4: RankingPhase()
5: end loop

SyncRound(m)

6: procedure SyncRound(m) . A synchronized round
7: send(m)
8: Su(t)← Su(t) ∪ {m}
9: R← received messages

10: for all mv ∈ R do
11: Ru(t)← Ru(t) ∪ {mv}
12: cntu,v(t)← cntu,v(t) + 1
13: end for
14: t← t+ 1
15: end procedure

RandomPhase

16: B̂u(t0)← Bu(t) . t = t0
17: loop τ times . τ = α logn
18: m← pop message from B̂u(t0) uniformly at random
19: SyncRound(m)
20: end loop

RankingPhase p

21: B̂u(tp)← Bu(t) . t = tp
22: Prob← RankingFunction(B̂u(tp))
23: loop τ ′ times . τ ′ = 8dτ log2 n
24: m← pop message from B̂u(tp) according to Prob
25: Nullify Prob[m] (update Prob accordingly)
26: SyncRound(m)
27: end loop

1: function RankingFunction(Buffer B̂u)
2: mList← sort B̂u increasingly according to cnt values
3: b← length(mList)
4: for all 1 ≤ r ≤ b do Prob[mList[r]]← 1

rHb
end for

5: return Prob
6: end function

Fig. 1. The Ranking Function

only modifications in the probability space of a node are done due to the non-
repetitive sending policy2, i.e., the need for nullifying probabilities of messages
that are already sent. When a message is sent, the modification can be done, for

2 There is no point in re-sending messages, as all links are reliable.

7

example, by updating the normalization factor, or alternatively by distributing
the probability of the sent message between all other messages (say, proportion-
ally to their current probabilities). Anyhow, this implies that the probability
of each message can only get larger during a phase, as long as it is not sent.
Namely, the initial probability of a message (at the beginning of a phase) is a
lower bound on its probability for the rest of the phase (as long as it is not sent).
Probabilities are not defined for messages that were not known at the start of
a phase, and were first received during the phase, thus these messages have no
chance of being sent until the next phase starts.

The Phase Separation Property. Changes in cnt values during a phase (due
to reception of messages) do not affect the probability space of this phase, as it
is calculated only at the start of each phase. This implies that messages that are
first received by a node after the start of the random phase or a ranking phase
have zero probability for being sent during that phase, and can be sent by the
node only starting from the next phase, when the probability space is recalcu-
lated. We call this the phase separation property, and it implies the following:

Proposition 2.1. At the start of ranking phase p, every message has propagated
to a distance of at most p+ 1.

The following lemma holds for any node and for a general graph. Its proof
appears in appendix.

Lemma 2.2. Let m be a message with rank r ≤ 8τ (recall that τ = α log n),
then m is sent during the ranking phase with probability at least 1− n−d.

3 Time Analysis for Gn,k

Recall that Gn,k is the graph that consists of n/k cliques of size k (assume n/k
is an integer), with a matching between every two consecutive cliques (see Fig. 2
in appendix). Clearly, Gn,k is k-vertex-connected.

Additional Definitions. Denote by C the set of all cliques. Recall the enumer-
ation of the cliques, and denote by Ci clique number i, i ∈ {1, . . . , nk }. Denote
by C(u) the clique that contains node u. A layer L is a set of n/k nodes from all
distinct cliques that form a path starting in C1 and ending in Cn/k. We denote
by L the set of all k layers. The layer L(u) ∈ L is the layer that contains node
u. Notice that within the same clique, different nodes belong to different layers.

We now analyze the time complexity of the algorithm to spread informa-
tion over Gn,k. For simplicity, we analyze the flow of messages from Cj to Ci,
where j ≤ i. The opposite direction of flow and its analysis are symmetric.

Theorem 3.1. Alg. 1 completes full information spreading on Gn,k in O
(
n
k log3 n

)
rounds, w.h.p.

The theorem is directly proved based on Lemma 3.2, as follows.

8

Lemma 3.2 (Iteration). For every i, 1 ≤ i ≤ n
k , every node u ∈ Ci, and every

node v such that v ∈ Cj for some i−p ≤ j ≤ i, it holds that mv ∈ Ru(t̄p), w.h.p.

Proof (Proof of Theorem 3.1). Lemma 3.2 shows that by the end of ranking phase
p, w.h.p. each node u knows all messages mv originating at distance at most p.
This implies that full information spreading is completed after n/k phases, since
n/k is the diameter of the graph, which proves Theorem 3.1. ut

In the rest of the section we prove Lemma 3.2. The following definition is
useful to indicate that a node shares responsibility for disseminating a message.

Definition 3.3 (Fresh message). A fresh message of a node u at time t, is a
message mv ∈ Ru(t) for which cntu,v(t) < T , for threshold T = 1

2τ .

General Idea of the Proof. At the end of round 0, every message mv is
disseminated in its own clique C(v). Then, we show that by the end of the random
phase, each message mv is sent w.h.p. by a sufficiently large number of nodes
u ∈ C(v), to become non-fresh in all nodes of the clique C(v). Simultaneously,
each of the messages mv becomes known and fresh in a sufficiently large number
of nodes in the neighboring clique.

Then we show that ranking phases shift and preserve this situation. At the
beginning of every ranking phase, every fresh message in a node is also fresh in
a sufficiently large number of nodes within the same clique. During the phase,
all of the fresh messages are sent w.h.p., implying that each one of the messages
(i) is disseminated in the clique; (ii) is not fresh in nodes of the clique anymore;
and (iii) is fresh in a sufficiently large number of nodes in the neighboring clique.

The combination of properties (ii) and (iii) is the crux of the proof. It guar-
antees that the process progresses iteratively, as it leads to similar conditions
again and again at the beginning of every new ranking phase. This happens
because every node can easily distinguish between a new message received from
nodes within the clique (becomes non-fresh by the end of the phase), and a new
message received from the neighbor in the neighboring clique (stays fresh at the
end of the phase, and should be sent during the next phase). We emphasize that
all of this is done implicitly, without knowing the structure of the network.

This iterative behavior of the combined properties guarantees that every mes-
sage propagates one additional clique per phase, until full information spreading
completes after O(n/k) phases.

Let t′, for 0 ≤ t′ ≤ τ−1, be the time from the first round of the random phase,
i.e., t′ = t− t0. The following proposition is immediate from the pseudocode:

Proposition 3.4. At the beginning of the random phase, B̂u(t0) for every node
u ∈ Ci contains exactly k−1 messages mv originating at v ∈ Ci, and at most two
additional messages, one originating at v ∈ Ci−1 ∩L(u), and one originating at
v ∈ Ci+1∩L(u). Thus, it holds that |B̂u(t0+t′)| = k+1−t′, for i = 2, 3, · · · , nk−1,

and |B̂u(t0 + t′)| = k − t′, for i = 1, nk .

Namely, nodes of inner cliques (Ci, 1 < i < n/k) start the random phase with
|B̂u(t0)| = k + 1, while nodes of cliques C1 and Cn/k start the random phase

with |B̂u(t0)| = k.

9

3.1 Analysis of the Random Phase

The following lemma analyzes the initial random phase, and shows that every
message mv is non-fresh in all nodes of C(v) at the end of the random phase:

Lemma 3.5. At the end of the random phase, for every message mv and for
all nodes u ∈ C(v), mv is non-fresh for u, with probability at least 1− 1

nα/48−1 .

Proof. Fix v. Message mv is disseminated in C(v) by the start of the random
phase. By Proposition 3.4, for every u ∈ C(v), it holds that |B̂u(t0+t′)| ≤ k+1−t′
during the random phase.

Let 1u,v, for every u ∈ C(v), be an indicator variable that indicates whether
node u sends mv during the random phase or not. Then

Pr[1u,v = 1] ≥ 1−
τ−1∏
t′=0

k − t′

k + 1− t′
= 1− k + 1− τ

k + 1
≥ τ

(3/2)k
.

Let Xv =
∑
u∈C(v) 1u,v, be the number of nodes in C(v) that send mv during

the random phase, i.e., the number of times mv is received by every node in
C(v). Then

µ = E(Xv) = E

 ∑
u∈C(v)

1u,v

 =
∑

u∈C(v)

E(1u,v) ≥
∑

u∈C(v)

2τ

3k
=

2τ

3
.

Since v is fixed, the indicator variables are independent, as they refer to decisions
of distinct nodes. By applying a Chernoff bound [14, Chapter 4], we get

Pr[Xv ≤ (1− δ)µ] ≤ exp
(
−δ2µ/2

)
≤ exp

(
−δ2α log n/3

)
< 1/n

αδ2

3 .

By setting δ = 1
4 , we get that a message mv is non-fresh in all nodes u ∈ C(v)

with probability at least 1− 1
nα/48

. By a union bound, this holds for every node

v with probability at least 1− 1
nα/48−1 . ut

Definition 3.6. A pioneer message in node u ∈ Ci at time tp (beginning of
ranking phase p), is a message mv ∈ Ru(tp) that originated at v ∈ Ci−p−1.

Pioneer Attributes. If a message mv is a pioneer in node u ∈ Ci at time tp, then
(i) v ∈ L(u) (by Proposition 2.1, the message was transmitted over the shortest
path), and the following hold at time tp: (ii) cntu,v(tp) = 1, and thus mv is fresh
for u, (iii) mv /∈ Ru′(tp) for every u′ ∈ Ci, u′ 6= u (by Proposition 2.1), (iv) mv

is disseminated in Ci−1 (by the node that relayed mv to its neighbor in Ci), and
(v) mv is fresh in every node u′ ∈ Ci−1. The following is proved in appendix.

Lemma 3.7. With probability at least 1− 1/nα/24−1, at the end of the random
phase, for every i, the number of pioneer messages that reach Ci is ≤ 3τ .

10

3.2 Analysis of Ranking Phases

After analyzing the single random phase, here we analyze the ranking phases.

Lemma 3.8. With probability at least 1− 1
nd−2 , every node u that starts ranking

phase p with at most 8τ fresh messages, sends all of them during the phase.

The proof appears in appendix. To prove Lemma 3.2, we show a sequence of
four inductive properties, that hold for ranking phase p, with probability at
least 1−

(
2p
nd−2 + 2

nα/48−1

)
.

Property 1. For every i, 1 ≤ i ≤ n
k , it holds that the number of messages mv,

v ∈ Ci−p−1, such that mv ∈ Ru(tp) for some u ∈ Ci (pioneers), is at most 3τ ,
and each reaches a distinct node u ∈ L(v).

Property 2. For every i, 1 ≤ i ≤ n
k , and every node u ∈ Ci, it holds that at

time tp there are at most 4τ fresh messages mv for node u for every one of the
two directions of flow (8τ in total). All of them originated at nodes v ∈ Ci−p
(similarly, v ∈ Ci+p), except for at most one (a pioneer) which originated at
u′ ∈ Ci−p−1∩L(u) (similarly, u′ ∈ Ci+p+1∩L(u)). All messages mv ∈ Ru(tp), v ∈
Ci−p (similarly, v ∈ Ci+p), are fresh.

Property 3. For every i, 1 ≤ i ≤ n
k , and every node v ∈ Ci−p, it holds that mv

is fresh for at least T nodes u ∈ Ci at time tp. Recall that T = τ/2.

Property 4. For every i, 1 ≤ i ≤ n
k , every node u ∈ Ci, and every node v

such that v ∈ Cj for some i − p ≤ j ≤ i, it holds that mv ∈ Ru(t̄p), and mv is
non-fresh.

We prove the four properties simultaneously by induction on the ranking phase
number, p. To prove the base cases, we assume that all events described in
Lemma 3.5, Lemma 3.7, and Lemma 3.8 (for p = 1) occur. Notice that, by a
union bound, the probability for this is at least 1−

(
1

nα/24−1 + 1
nα/48−1 + 1

nd−2

)
≥

1−
(

2
nα/48−1 + 2

nd−2

)
.

To prove the induction step, we assume that all events described in the four
properties for p−1, and in Lemma 3.8 for p−1 and p, occur. This happens with

probability at least 1−
(

2
nα/48−1 + 2(p−1)

nd−2 + 1
nd−2 + 1

nd−2

)
= 1−

(
2

nα/48−1 + 2p
nd−2

)
.

The complete inductive proof appears in appendix. Property 4 guarantees that
full information spreading is completed after ranking phase p = n/k, with prob-

ability at least 1 −
(

2n/k
nd−2 + 2

nα/48−1

)
≥ 1 −

(
1

nd−3 + 1
nα/48−2

)
≥ 1 − 1

nc , for a

constant c, by fixing d and α to values d > c+ 3, α > 48c+ 96. This completes
the proof of Lemma 3.2, from which Theorem 3.1 follows.

4 Fault Tolerance

Alg. 1 highly depends on the random phase in the following sense. For every
node v, consider the set of nodes in neighboring cliques that know message mv

11

by the end of the random phase. Then, w.h.p. the algorithm spreads mv using
the layers of nodes in the above set (“carriers”). This means that the paths of a
message are fixed very early in the algorithm and do not alternate.

A single failure of a node in each layer (carrier) is sufficient to break down
its role. Each message relies on at least T different layers to proceed. Hence, the
algorithm is sensitive to failures in which less than T carrier layers are non-faulty.

At the beginning of ranking phase p, consider the case where a message
mv ∈ Ci−p is fresh in x < T nodes in clique Ci, due to failures. The behavior of
the algorithm in such case is as follows: During the ranking phase, less than T
nodes in the clique send the message, so all other nodes in Ci receive the message
less than T times, thus it stays fresh in all of them at the end of ranking phase
p. Starting from the next ranking phase, the message mv propagates regularly
over those x < T carriers, but also propagates over all other carriers, with a
delay of a phase. This means that every layer becomes responsible for one extra
message (in addition to at most 8τ messages), which may still be tolerable. In
general, our algorithm can manage a constant number of such occurrences.

We aim to cope with a larger number of failures, so we modify our algorithm
to help layers bypass their failing nodes, so they continue operating as carriers.

4.1 Shuffle Phases

We invoke a shuffle phase between every two ranking phases, so phases of the
algorithm now proceed as described in Fig. 4. Roughly speaking, the objective
of a shuffle phase, is that nodes of every clique re-divide their responsibilities
over messages.

A shuffle phase consists of 8τ rounds. During it, every node sends its fresh
messages (and receives fresh messages from all neighbors). Instead of updating
the regular cnt values, nodes use separate counters, phasecnt, to count the num-
ber of receptions for each message during the current shuffle phase. Recall that
the objective is shuffling the fresh messages between nodes of same clique. Thus,
at the end the of the shuffle phase, every node identifies and filters out unwanted
messages, which are messages received from neighboring cliques (low phasecnt
values), and messages that were already non-fresh prior to the start of the shuffle
phase. Then it randomly picks 4τ new fresh messages, to start the next ranking
phase with.

The important gain from this cooperative division of responsibilities done by
the nodes of a clique, is that a node u ∈ Ci that does not receive new messages
from its faulty neighbor u′ ∈ Ci−1∩L(u), can overcome the failure of the carrier
layer, and still take part in transmitting relevant messages from one clique to
the other, with no delays. The proof of the following appears in appendix.

Theorem 4.1. Alg. 2 completes full information spreading on Gn,k in O
(
n
k log3 n

)
rounds, w.h.p.

4.2 Resilience to Faults

Recall that we consider a model of independent failures of nodes, where each
node fails at each round with probability q, and never recovers. Let τe ≤ 2nk τ

′ =

12

Algorithm 2 for each node u

1: SyncRound(mu) . Round 0
2: RandomPhase()
3: loop
4: RankingPhase()
5: ShufflePhase()
6: end loop

ShufflePhase p

7: B̂u(t̄p)← fresh messages in Bu(t) . t = t̄p
8: for all mv ∈ B̂u(t̄p) do
9: phasecntu,v ← 1

10: end for
11: R← B̂u(t̄p)
12: loop 8τ times
13: if B̂u(t̄p) = ∅ then
14: send own message mu

15: else
16: pop and send a fresh message from B̂u(t̄p)
17: end if
18: R′ ← receive messages
19: for all mv ∈ R′ do
20: if mv /∈ R then
21: phasecntu,v ← 1
22: else
23: phasecntu,v ← phasecntu,v + 1
24: end if
25: R← R ∪ {mv}
26: end for
27: t← t+ 1
28: end loop
29: R← R after filtering out unwanted messages. . Filter out messages mv with

phasecntu,v < ĉ · T . Filter out messages that were non-fresh prior to the start of
the phase

30: Ru(t)← Ru(t) ∪R
31: Select 4τ messages from R randomly, rank them from 1 to 4τ .

O
(
n
k log3 n

)
(the round number at the end of ranking phase n/k in Alg. 2). First,

we prove the following. The proof appears in appendix.

Lemma 4.2. At the end of round τe, the number of non-faulty nodes in each
clique is at least (30k/32), with probability at least 1− 1/n30.

We show that the algorithm tolerates failures for q, 0 ≤ q ≤ O
(

k
n log3 n

)
.

Theorem 4.3. Alg. 2 completes full information spreading on Gn,k in O
(
n
k log3 n

)
rounds, for any node failure probability per round q, 0 ≤ q ≤ O

(
k

n log3 n

)
, w.h.p.

13

Proof. Fix i, p. Let mv be a message that is fresh in at least T (non-faulty) nodes
in Ci−1 at the end of shuffle phase p − 1. Here we analyze the probability that
mv is not shuffled successfully in clique Ci.

An unsuccessful shuffle might occur either because the phasecnt values in
Ci at the end of shuffle phase p are smaller than the threshold of T ∗ = ĉT , so
the message is filtered out (denote this event by A), or because the message was
selected by less than T (non-faulty) nodes. By Lemma 3.8, at the beginning of
shuffle phase p, the message mv is supposed to be fresh in at least T nodes in Ci
(each of them gets the message from its respective neighbor in Ci−1). Of these
nodes in Ci, if one does not send mv during shuffle phase p, then either the node
or its neighbor in Ci−1 (or both) becomes faulty by the end of shuffle phase p. The
probability q̂ for such a pair of nodes not to fail is bounded from below (according
to Bernoulli’s inequality) by q̂ = ((1− q)τe)2 ≥ (1− qτe)2 ≥ 1− 2qτe ≥ 1− 1/16.

Fix a set of T pairs of nodes S(mv) ⊆ Ci−1×Ci, of those who know message
mv in Ci−1 at the end of shuffle phase p − 1, and their respective neighbors in
Ci. There might exist more than T such pairs, but by fixing a set of size T and
ignoring the rest, we bound the probability of an unsuccessful shuffle from above,
as the ignored nodes can only help and increase the probability of success. A
“surviving” pair is a pair of nodes from S(mv) where both are non-faulty at the
end of the shuffle phase, and hence function properly (by sending message mv)
during shuffle phase p. Denote by s, the number of “surviving” pairs. We have:

Pr[A] ≤
T∗−1∑
s=0

(
T

s

)
q̂s(1− q̂)T−s ≤

T∗−1∑
s=0

(
T

s

)
(1− q̂)T−s ≤

T∗−1∑
s=0

(
T

s

)(
1

16

)T−s
.

We sum over all s ∈ {0, . . . , T ∗ − 1}, where the number of “survivors” is lower
than the threshold of ĉT , which implies that the message mv is filtered out,
improperly, at the end of the shuffle phase due to a low phasecnt value.

By setting 0 < ĉ ≤ 1
2 , we get that Pr[A] ≤ 1/nα/3−1 (see calculation in

appendix). Namely, the message is not filtered out with probability at least
1/nα/3−1. The number of non-faulty nodes in each clique is at least 31k/32 with
probability at least 1− 1

n30 , by Lemma 4.2. An analysis similar to the one in the
proof of Lemma 6.3 (with δ = 11/15) gives that, once the message is not filtered
out, it is selected by at least T of the non-faulty nodes in Ci with probability
at least 1 − 1/n11

2α/(15·16). In total, by using a union bound, a message is not
shuffled successfully between two consecutive shuffle phases with probability at
most 1

nα/3−1 + 1
n112α/(15·16) + 1

n30 ≤ 1
n6 (for value of α fixed earlier).

We use union bound two more times, for all messages and for all phases,
and get an upper bound for the probability that a message is not propagated
properly, of 1

n4 . This proves that the algorithm tolerates failures that occur with
probability 0 ≤ q ≤ 1

32τe
in the given model, with probability at least 1− 1

n4 . ut

5 Discussion

Static-Routes Algorithms. Let ALG be an algorithm that spreads informa-
tion on k-vertex-connected graphs in O

(
n
k · polylog(n)

)
rounds, by constructing

14

static routes, and using them to disseminate messages in parallel, each message
on a specific route. This makes ALG very sensitive to failures, as a single failure
in a route suffices to render the entire route faulty.

However, it can easily be configured so that vertex-disjoint routes are com-
bined into groups of size γ, and every node duplicates its messages and sends
them concurrently over these components. Notice that in k-vertex-connected
graphs, γ is bounded from above by k. This costs γ slowdown in runtime as a
trade-off. Denote this configuration of the algorithm by ALG(γ).

We are interested in cases where γ = O(polylog(n)), so that the runtime of
the algorithm remains O

(
n
k · polylog(n)

)
. Every combination of γ vertex-disjoint

routes induces a γ-vertex-connected subgraph, as it stays connected after the
removal of any γ − 1 vertices. Each component functions as long as it stays
connected. According to [3, Theorem 1.5], for γ = Ω(log3 n), such a component
stays connected w.h.p. if its nodes are sampled independently with a constant
probability. By considering the sampling process imposed by failures, i.e. con-
sidering the non-faulty nodes as sampled, then each component stays connected
if a constant fraction of its nodes stays non-faulty during the execution, toler-
ating a constant fraction of nodes that fail. The additional slowdown factor for
each message to spread over such a component in the presence of faults can be
loosely bounded form above by O(γ), as the size of the combined component is
O(γ) the size of its original routes, (in the worst case a message traverses over
all non-faulty nodes of the component). In total, this configuration of the algo-
rithm tolerates the failure of a constant fraction of nodes during its execution,

which matches a probability of failure of q = O
(

k
n·polylog(n)

)
per round, while

preserving a time complexity of O
(
n
k · polylog(n)

)
.

The algorithm presented in [2] is static-route, as it constructs CDS packings
and routes messages over them. The CDS packings are only fractionally vertex-
disjoint, which requires a few modifications to the above analysis. However, de-
spite the above fix, the algorithm remains vulnerable due to the preprocessing
stage. Tolerating failures that occur during the preprocessing stage is more com-
plicated, and the construction of CDS packings in the presence of failures is still
an open problem.

Summary. In this paper, we show an information spreading algorithm, and
prove that it is fast and robust for Gn,k. The intriguing open question is whether
this approach can work for general k-vertex-connected graphs.

To summarize, we find the question of devising a fast and robust information
spreading algorithm in the Vertex-Congest model an intriguing open question,
and view our result as a first step in this direction. The technique our algorithm
leverages, of using probability distributions that change over time according to
how the execution unfolds, may have applications in other settings as well.

Acknowledgements: Keren Censor-Hillel is a Shalon Fellow. This research is sup-
ported by the Israel Science Foundation (grant number 1696/14). We thank
Mohsen Ghaffari, Fabian Kuhn, Yuval Emek and Shmuel Zaks for useful discus-
sions.

15

References

1. Ahlswede, R., Cai, N., Li, S.Y., Yeung, R.W.: Network information flow. IEEE
Transactions on Information Theory 46(4), 1204–1216 (2000)

2. Censor-Hillel, K., Ghaffari, M., Kuhn, F.: Distributed connectivity decomposition.
In: Proceedings of the 33rd ACM Symposium on Principles of Distributed Com-
puting. pp. 156–165. PODC (2014)

3. Censor-Hillel, K., Ghaffari, M., Kuhn, F.: A new perspective on vertex connec-
tivity. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms. pp. 546–561. SODA (2014), http://epubs.siam.org/doi/

abs/10.1137/1.9781611973402.41

4. Censor-Hillel, K., Giakkoupis, G.: Fast and robust information spreading. Unpub-
lished manuscript (2012)

5. Deb, S., Médard, M., Choute, C.: Algebraic gossip: A network coding approach
to optimal multiple rumor mongering. IEEE Transactions on Information Theory
52(6), 2486–2507 (2006)

6. Elsässer, R., Sauerwald, T.: Cover time and broadcast time. In: Proceedings of
the 26th International Symposium on Theoretical Aspects of Computer Science,
STACS. pp. 373–384 (2009)

7. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks.
Random Structures & Algorithms 1(4), 447–460 (1990)

8. Haeupler, B.: Analyzing network coding gossip made easy. In: Proceedings of the
43rd annual ACM symposium on Theory of computing. pp. 293–302. STOC (2011)

9. Ho, T., Koetter, R., Medard, M., Karger, D.R., Effros, M.: The benefits of coding
over routing in a randomized setting. In: Proceedings of the IEEE International
Symposium on Information Theory. p. 442 (2003)

10. Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.:
A random linear network coding approach to multicast. IEEE Transactions on
Information Theory 52(10), 4413–4430 (2006)

11. Kuhn, F., Lynch, N., Newport, C.: The abstract MAC layer. Distributed Comput-
ing 24(3-4), 187–206 (2011), http://dx.doi.org/10.1007/s00446-010-0118-0

12. Li, S.Y., Yeung, R.W., Cai, N.: Linear network coding. IEEE Transactions on
Information Theory 49(2), 371–381 (2003)

13. Menger, K.: Zur allgemeinen kurventheorie. Fundamenta Mathematicae 10(1), 96–
115 (1927)

14. Mitzenmacher, M., Upfal, E.: Probability and computing: Randomized algorithms
and probabilistic analysis. Cambridge University Press (2005)

15. Mosk-Aoyama, D., Shah, D.: Information dissemination via network coding. In:
2006 IEEE International Symposium on Information Theory. pp. 1748–1752. IEEE
(2006)

16. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)

http://epubs.siam.org/doi/abs/10.1137/1.9781611973402.41
http://epubs.siam.org/doi/abs/10.1137/1.9781611973402.41
http://dx.doi.org/10.1007/s00446-010-0118-0

16

6 Appendix

6.1 The Graph Gn,k

Fig. 2. Gn,k is an example of a k-vertex-connected graph with diameter n
k

.

6.2 The Uniform Random Algorithm

We consider the uniform random algorithm, in which every node picks and sends
a message from its buffer in each round uniformly at random. We show that
the time complexity of the algorithm is asymptotically much slower than the
optimal Ω(n/k). Consider the uniform random algorithm running on graph Gn,k.
We prove that the expected number of rounds for full information spreading is
Ω(n/

√
k). First, we prove the following.

Lemma 6.1. If the buffer size of a node is at least n/4, then the number of
rounds needed for a message mv in its buffer to be sent is Θ(n) in expectation.

Proof. During the first n/8 rounds, the buffer size is at least n/4− n/8 = n/8.
The number of rounds until the messagemv is first sent is bounded from below by
a geometric random variable with success probability p = 8/n. The expectation
of a geometric random variable is 1/p = n/8, and the lemma follows. ut

Theorem 1.1 The uniform random algorithm requires Ω(n/
√
k) rounds on

Gn,k, in expectation.

Proof. To prove the theorem, we define a partition over the whole space, and
calculate the conditional expectations of the number of rounds for each case. We
show that the expected number of rounds in every case is Ω(n/

√
k), and the

theorem follows according to the law of total expectation:

E[X] =
∑
i

E[X | Ai] Pr[Ai] ,

17

where {Ai} is the partition.
Let r0 be the random variable of the first round number in which the buffer

size of all nodes in clique Cn/k is at least n/2. The buffer of every node consists
of the messages it knows but not sent yet. In the executions in which such
round does not exist, it holds that n− t ≤ n/2, where t is the last round of the
dissemination process, implying t ≥ n/2 ≥ n/

√
k.

Otherwise, r0 is well defined, and it holds that

E

[
r0

∣∣∣∣ r0 ≥ n√
k

]
≥ n

32
√
k
. (1)

Consider the set of messages M1 = {mv | mv is known to some node u ∈ Cn/k}.
We analyze two possible cases:

1. If |M1| < n at r0, then there exists a message that is not known to any
node in Cn/k at round r0. Let mv be such a message. Let r1 be the random
variable of the number of rounds since r0 until the message mv spreads to
all nodes of Cn/k. We argue that E[r0 + r1] ≥ n

32
√
k

. The following trivially

hold, since r0 and r1 are non-negative:

E

[
r0 + r1

∣∣∣∣ r0 < n√
k
, r1 ≥

n

24

]
≥ n

32
√
k
. (2)

To conclude the argument for this case, it is enough to show that

E

[
r0 + r1

∣∣∣∣ r0 < n√
k
, r1 <

n

24

]
≥ n

32
√
k
. (3)

In the following, we assume that r0 < n/
√
k and r1 < n/24, and give a lower

bound for E
[
r1

∣∣∣ r0 < n√
k
, r1 <

n
24

]
. In addition, we assume that k ≤ n/6.

At round r0 it holds that at least n/2− k ≥ n/3 messages are disseminated
in Cn/k−1, for otherwise the messages do not reach nodes of Cn/k. During
the r1 rounds in the interval [r0, r0+r1], all buffers in all nodes in Cn/k are of
size at least n/2−r1, in all nodes in Cn/k−1 are of size at least n/3−r1, which
means that all buffer sizes of nodes both cliques are at least n/4 during the r1
rounds in the interval. Since buffer sizes are at least n/4 and at most n, the
probability q̂ that a node v ∈ Cn/k−1∪Cn/k that knows mv sends it is 1/n ≤
q̂ ≤ 4/n. Let Xr be the number of nodes in Cn/k−1 that send mv during

the r rounds that follow round r0. It holds that E
[
Xr

∣∣∣ r0 < n√
k
, r1 <

n
24

]
is at most k(1− (1− q̂)r) ≤ k(1− (1− q̂r)) = kq̂r ≤ 4kr

n (the first inequality
is according to Bernoulli’s inequality). Each node in Cn/k−1 that sends the
message relays it to its corresponding neighbor in Cn/k. If any of these nodes
in Cn/k sends mv, then the message is disseminated and all k nodes in Cn/k
know it.
For every r ≥ n/k, denote by Ar the event Xr ≤ 8kr

n . By applying Markov’s

inequality we get that Pr
[
Xr ≥ 8kr

n

∣∣∣ r0 < n√
k
, r1 <

n
24

]
≤ 4kr

n

/
8kr
n = 1

2 ,

18

and hence,

Pr

[
Ar

∣∣∣∣ r0 < n√
k
, r1 <

n

24

]
≥ 1

2
.

Under the assumption that Ar occurs, the probability for the dissemina-
tion to occur during these r rounds (implying that r1 ≤ r) is at most

1 − ((1− q̂)r)8kr/n = 1 − (1 − q̂)8kr2/n ≤ 1 − (1 − 8kr2q̂/n) = 8kr2q̂/n ≤
32kr2

n2 , (first inequality is according to Bernoulli’s inequality). By assigning
r = n

8
√
k
> n/k, we get that

Pr

[
r1 >

n

8
√
k

∣∣∣∣ Ar, r0 < n√
k
, r1 <

n

24

]
≥ 1− 32k(n/8

√
k)

2

n2
≥ 1

2
,

and hence

Pr

[
r1 >

n

8
√
k

∣∣∣∣ r0 < n√
k
, r1 <

n

24

]
≥

≥ Pr

[
r1 >

n

8
√
k
,Ar

∣∣∣∣ r0 < n√
k
, r1 <

n

24

]
=

= Pr

[
r1 >

n

8
√
k

∣∣∣∣ Ar, r0 < n√
k
, r1 <

n

24

]
· Pr

[
Ar

∣∣∣∣ r0 < n√
k
, r1 <

n

24

]
≥

≥ 1

2
· 1

2
=

1

4
,

the first equality is according to the law of conditional probability, P (A ∩
B) = P (A|B)P (B). This gives

E

[
r1

∣∣∣∣ r0 < n√
k
, r1 <

n

24

]
≥ n

32
√
k
,

which proves (3).
2. If |M1| = n at r0, let r2 be the random variable of the number of rounds since
r0 until all messages are disseminated in Cn/k. We argue that E[r0 + r2] ≥
n

32
√
k

. Since r0 and r2 are non-negative, the following hold trivially:

E

[
r0 + r2

∣∣∣∣ r0 < n√
k
, r2 ≥

n

24

]
≥ n

32
√
k
. (4)

To conclude the argument for this case, it is enough to show that

E

[
r0 + r2

∣∣∣∣ r0 < n√
k
, r2 <

n

24

]
≥ n

32
√
k
. (5)

In the following, we assume that r0 < n/
√
k and r2 < n/24, and give a lower

bound for E
[
r2

∣∣∣ r0 < n√
k
, r2 <

n
24

]
. In addition, we assume that k ≤ n/6.

In each round, a node in Cn/k receives at most k new messages and sends

19

one, and hence the buffer size can increase by at most k − 1 in a single
round. By its definition, at round r0 there exists a node in Cn/k with buffer
size at most n/2 + k − 1 ≤ 2n/3, implying that the number of disseminated
messages in Cn/k is at most n/2 + r0 + k − 1 ≤ n/4. At round r0, at least
n/4 messages are not disseminated in Cn/k but are known to some nodes
of the clique. Denote the set of these messages by M2. Messages in M2

were not received from nodes within the clique Cn/k (otherwise, there are
disseminated), which means that at round r0 every node in Cn/k knows

at most r0 < n/
√
k such messages. During the r2 rounds in the interval

[r0, r0 + r2], all buffers in all nodes in Cn/k are of size at least n/2 − r2 ≥
n/2−n/

√
k−n/24 ≥ n/4. Since buffer sizes are at least n/4, the probability

q̂ for each node in Cn/k to send a message from M2 in a single round is at

most n√
k
/n4 = 4√

k
. In order for the dissemination process to complete, each

message in M2 must be sent at least once by some node in Cn/k (or be sent by
all nodes of Cn/k−1, which happens only after Ω(n) rounds in expectation,
by Lemma 6.1). By considering the sending of a message from M2 a success,
which occurs with probability at most q̂, the dissemination process completes
after at least |M2| ≥ n/4 successes. Denote by X the random variable of
number of trials before reaching |M2| successes. X is a negative binomial
variable, X ∼ NB(|M2|, q̂), with expectation of |M2|/q̂ ≥ n

4 /
4√
k

= n
√
k

trials. In each round, the number of trials is k (one trial per node of the
clique), and hence, the expected number r2 of additional rounds before all
messages are disseminated in Cn/k is at least n

√
k/k = n√

k
in expectation.

We get that

E

[
r2

∣∣∣∣ r0 < n√
k
, r2 <

n

24

]
≥ n√

k
,

which proves (5).

In summary, we covered the whole space by combinations of events that form
a partition, proved that the conditional expectation in each case is Ω(n/

√
k),

and hence by the law of total expectation, the theorem follows. ut

6.3 Missing Proofs

Fig. 3. Phases of Alg. 1.

20

Lemma 2.2 Let m be a message with rank r ≤ 8τ (recall that τ = α log n),
then m is sent during the ranking phase with probability at least 1− n−d.

Proof. Let A be the event that the message with rank r is not picked during a
phase of τ ′ = 8dτ log2 n = 8dα log3 n rounds. We wish to bound from above the
probability for event A:

Pr[A] ≤
(

1− 1

r ·Hb

)τ ′
≤
(

1− 1

r · (ln b+ 1)

)τ ′
≤
(

1− 1

r · log b

)τ ′
≤

≤
(

1− 1

r log n

)8dα log3 n

≤
(

1− 1

r log n

)(r logn) 1
r 8dα log2 n

≤

≤
(

1

2

) 1
r 8dα log2 n

=

(
1

n

) 1
r 8dα logn

.

The second inequality holds because Hn ≤ ln(n) + 1. The last inequality holds
since (1 − 1/x)x ≤ e−1 < 1/2 for x > 0. Namely, any message with r ≤ 8τ =
8α log n is sent during the phase with probability at least 1− 1

nd
. ut

Lemma 3.7 With probability at least 1− 1/nα/24−1, at the end of the random
phase, for every i, the number of pioneer messages that reach Ci is ≤ 3τ .

Proof. According to pioneer definition, considering the direction of the flow of
messages, cliques C1 and C2 could not have pioneer messages. Fix i, 3 ≤ i ≤ n/k.
By Proposition 3.4, at the beginning of the random phase, for every node u ∈
Ci−1, buffer B̂u(t0) contains exactly one unique message mv, v ∈ Ci−2 ∩ L(u),
and it holds that |B̂u(t0 + t′)| = k + 1− t′ during the random phase (as Ci−1 is
an inner clique).

Let 1u, for every u ∈ Ci−1, be an indicator variable that indicates whether
node u sends its unique message during the random phase, or not. Then

Pr[1u = 1] = 1− Pr[1u = 0] = 1−
τ−1∏
t′=0

k − t′

k + 1− t′
=

= 1− k + 1− τ
k + 1

= 1−
(

1− τ

k + 1

)
=

τ

k + 1
.

Let Xi−1 =
∑
u∈Ci−1

1u, be the number of messages mv, v ∈ Ci−2, that reach
clique Ci by the end of the random phase. Then

µ = E(Xi−1) = E

 ∑
u∈Ci−1

1u

 =
∑

u∈Ci−1

E(1u) =

=
∑

u∈Ci−1

τ

k + 1
= k · τ

k + 1
,

21

which means that τ/2 ≤ µ ≤ τ . The indicator variables are independent, as they
refer to decisions of distinct nodes. By applying a Chernoff bound, we get

Pr[Xi−1 > (3/2)τ] ≤ Pr[Xi−1 ≥ (3/2)µ] ≤ Pr[Xi−1 ≥ (1 + δ)µ] ≤

≤ exp

(
−δ2 · µ

3

)
≤ exp

(
−δ2 · (τ/2)

3

)
≤

≤ exp

(
−δ2 · α log n

6

)
<

1

n
αδ2

6

.

By setting δ = 1
2 , we get that the number of pioneer messages, Xi−1, that

reach Ci from one direction is ≤ (3/2)τ with probability at least 1 − 1
nα/24

. By
a union bound, this holds for both directions and every clique with probability
at least 1− 1

nα/24−1 . ut

Lemma 3.8 With probability at least 1− 1
nd−2 , every node u that starts ranking

phase p with at most 8τ fresh messages, sends all of them during the phase.

Proof. Fix a node u. All fresh messages mv ∈ Ru(t) have rank r ≤ 8τ . According
to Lemma 2.2, a message with rank r ≤ 8τ is sent during a ranking phase with
probability at least 1− 1

nd
. By a union bound, the probability for node u to send

all of its fresh messages during the phase is bounded by 1− 1
nd
· 8τ ≥ 1− 1

nd−1 .
We use a union bound once more to bound the probability that this happens for
every node u by 1− 1

nd−1 · n = 1− 1
nd−2 . ut

Property 1. For every i, 1 ≤ i ≤ n
k , it holds that the number of messages mv,

v ∈ Ci−p−1, such that mv ∈ Ru(tp) for some u ∈ Ci (pioneers), is at most 3τ ,
and each reaches a distinct node u ∈ L(v).

Property 2. For every i, 1 ≤ i ≤ n
k , and every node u ∈ Ci, it holds that at

time tp there are at most 4τ fresh messages mv for node u for every one of the
two directions of flow (8τ in total). All of them originated at nodes v ∈ Ci−p
(similarly, v ∈ Ci+p), except for at most one (a pioneer) which originated at
u′ ∈ Ci−p−1∩L(u) (similarly, u′ ∈ Ci+p+1∩L(u)). All messages mv ∈ Ru(tp), v ∈
Ci−p (similarly, v ∈ Ci+p), are fresh.

Property 3. For every i, 1 ≤ i ≤ n
k , and every node v ∈ Ci−p, it holds that mv

is fresh for at least T nodes u ∈ Ci at time tp. Recall that T = 1
2τ .

Property 4. For every i, 1 ≤ i ≤ n
k , every node u ∈ Ci, and every node v

such that v ∈ Cj for some i − p ≤ j ≤ i, it holds that mv ∈ Ru(t̄p), and mv is
non-fresh.

22

We prove the four properties simultaneously by induction on the ranking phase
number, p. To prove the base cases, we assume that all events described in
Lemma 3.5, Lemma 3.7, and Lemma 3.8 (for p = 1) occur. Notice that, by a
union bound, the probability for this is at least 1−

(
1

nα/24−1 + 1
nα/48−1 + 1

nd−2

)
≥

1−
(

2
nα/48−1 + 2

nd−2

)
.

Proof (Base case for Property 1). Let p = 1. One random phase precedes the first
ranking phase. The upper bound on the number of pioneers in every clique holds
according to Lemma 3.7. The distribution among distinct layers is immediate
according to Attribute (i) of pioneer messages. ut

Proof (Base case for Property 2). Let p = 1. Fix some node u ∈ Ci. We analyze
possibilities for fresh messages for one direction of flow at the end of the random
phase, and the other direction is symmetric. By Proposition 2.1, messages mv ∈
Ru(t1) originate at nodes v ∈ Ci−2 ∪ Ci−1 ∪ Ci. A message mv ∈ Ru(t1) that
originates at node v ∈ Ci−2 is a pioneer. By Attributes (i) and (ii) there can
be at most one such message, and it is fresh. For messages mv ∈ Ru(t1) that
originate at nodes v ∈ Ci−1 there are two possibilities. One possibility is that
they are received from the neighbor u′ ∈ Ci ∩ L(v), which implies that they are
pioneers in nodes u1 ∈ Ci+1 ∩L(v) at time t1. By Property 1 for p = 1 (which is
already proved), there are at most 3τ such messages. The only other possibility
is that they are received from the neighbor u′ ∈ Ci−1 ∩L(u). There are at most
τ such messages (which might include one that originates at Ci−2, as already
discussed), and they are all fresh. Messages mv ∈ Ru(t1) that originate at nodes
v ∈ Ci are all non-fresh, according to Lemma 3.5.

In total, at the beginning of the first ranking phase, each node u has at
most 4τ fresh messages from the one direction. All of them originated at nodes
u′ ∈ Ci−1, except for at most one which originated at u′ ∈ Ci−2 ∩ L(u). All
messages that originated at nodes u′ ∈ Ci−1 are fresh. The other direction of
flow is symmetric. ut

Proof (Base case for Property 3). Let p = 1. For every v ∈ Ci−1, at the end
of round 0, exactly one node u ∈ Ci knows mv. It may disseminate it during
the random phase. At the end of the random phase, by Lemma 3.5, for every
v ∈ Ci−1,mv is non-fresh in all nodes of Ci−1. That is, by the end of the random
phase, every node v′ ∈ Ci−1, v′ 6= v, receives mv at least T times, all from nodes
within the clique. Therefore, at least T nodes in Ci−1 send mv in the random
phase, which implies that at least T nodes in Ci know mv. According to the
phase separation property, every such node in Ci receives mv at most twice
(from the neighbor in Ci−1, and possibly from the neighbor u ∈ Ci), so it is
fresh. ut

Proof (Base case for Property 4). Let p = 1. Fix i, u ∈ Ci. According to
Lemma 3.5, it holds that for every node v ∈ Ci, mv is known and non-fresh
in u.

At the beginning of the first ranking phase, according to Property 3 for p = 1
and i, it holds that every message mv, v ∈ Ci−1, is fresh in at least T nodes in

23

Ci. According to Property 2 for p = 1, it holds that every node has at most 8τ
fresh messages. By Lemma 3.8, all nodes (in particular, nodes in Ci) send all of
their fresh messages. This means that every message mv, v ∈ Ci−1, is received
by node u at least T times so it becomes non-fresh. ut

This completes the proof of the base cases. Recall that the base cases are proved
by assuming that all events described in Lemma 3.5, Lemma 3.7, and Lemma 3.8
(for p = 1) occur. Thus, the properties are proved for p = 1 with probability at
least 1−

(
2

nα/48−1 + 2
nd−2

)
.

To prove the induction step, we assume that all events described in the four
properties for p−1, and in Lemma 3.8 for p−1 and p, occur. This happens with

probability at least 1−
(

2
nα/48−1 + 2(p−1)

nd−2 + 1
nd−2 + 1

nd−2

)
= 1−

(
2

nα/48−1 + 2p
nd−2

)
.

Proof (Induction step for Property 1). By Property 1 for p− 1 and i− 1, at the
beginning of ranking phase p− 1, the number of messages mv, v ∈ Ci−p−1, that
reach nodes in Ci−1 is at most 3τ , each reaches a distinct node u ∈ Ci−1 ∩L(v).
At time tp−1, by Pioneer Attribute (ii), each one of them is fresh. By Property 2
for p− 1 and i− 1, at the beginning of ranking phase p− 1, every node u ∈ Ci−1
has at most 8τ fresh messages. By Lemma 3.8 for p− 1, every node sends all of
its fresh messages during ranking phase p − 1 (in particular, pioneer messages
in nodes in Ci−1). Thus, it holds that the number of messages mv, v ∈ Ci−p−1,
such that mv is a pioneer at time tp in nodes of Ci, is at most 3τ , and each
reaches a distinct node u ∈ Ci ∩ L(v). ut

Proof (Induction step for Property 2). Fix a node u ∈ Ci. By Proposition 2.1,
for every message mv ∈ Ru(tp) (known to u at the beginning of ranking phase
p) it holds that v ∈

⋃
j∈{i−p−1,...,i}

Cj . By Property 4 for p − 1 and i, for every

node v such that v ∈ Cj for some i− p+ 1 ≤ j ≤ i, it holds that mv ∈ Ru(t̄p−1),
mv non-fresh. Thus, only messages mv, v ∈ Ci−p−1 ∪ Ci−p can be fresh.

Consider a message mv, v ∈ Ci−p: By Property 1 for p − 1 and i, at the
beginning of ranking phase p − 1, any message mv, v ∈ Ci−p, that reach Ci (a
pioneer) is known to exactly one node in the clique. Thus, any message mv, v ∈
Ci−p, that reaches Ci by the beginning of ranking phase p is fresh (because it
could be received only once from a neighbor within the clique Ci and once from
a neighbor in clique Ci−1, i.e., it is received at most twice).

By Property 2 for p − 1 and i − 1, at the beginning of ranking phase p − 1,
node u′ ∈ Ci−1∩L(u) has at most 4τ fresh messages (consider relevant direction
of flow), all of them originated at nodes v ∈ Ci−p, except for at most one which
originated at u′ ∈ Ci−p−1 ∩L(u) (a pioneer). According to Lemma 3.8 for p− 1,
every node u′ sends all of its fresh messages during ranking phase p−1. Thus, at
the end of ranking phase p− 1 (beginning of ranking phase p), they all reach u,
and they are all fresh. In particular, they are received at most twice, according
to the previous discussion. The opposite direction of flow is symmetric. This
completes the proof. ut

Proof (Induction step for Property 3). By Property 3 for p− 1 and i− 1, at the
beginning of ranking phase p − 1, every message mv, v ∈ Ci−p, is fresh in at

24

least T nodes u′ ∈ Ci−1. By Property 2 for p − 1 and i − 1, at the beginning
of ranking phase p − 1, every node u ∈ Ci−1 has at most 8τ fresh messages.
According to Lemma 3.8 for p− 1, all are sent during ranking phase p− 1, each
of the nodes u ∈ Ci−1 sends to a distinct neighbor node u ∈ Ci. Therefore, at
the end of ranking phase p − 1 (beginning of ranking phase p), every message
mv, v ∈ Ci−p, is known to at least T nodes u ∈ Ci. By Property 2 for p (which
is already proved) and i, all messages mv, v ∈ Ci−p known in Ci are fresh, which
completes the proof. ut

Proof (Induction step for Property 4). By Property 4 for p− 1 and i, for every
node u ∈ Ci, every node v such that v ∈ Cj for some i − p + 1 ≤ j ≤ i, it
holds that mv ∈ Ru(t̄p−1), and mv is non-fresh. This holds also at the end of
ranking phase p. We still need to show that the property holds for all message
mv, v ∈ Ci−p. Notice that Properties 1,2 and 3 are already proved for p.

By Property 3 for p and i, at the beginning of ranking phase p, every message
mv, v ∈ Ci−p, is fresh in at least T nodes u ∈ Ci. By Property 2 for p and i, at the
beginning of ranking phase p, every node u ∈ Ci has at most 8τ fresh messages.
By Lemma 3.8 for p, all are sent during ranking phase p. This means that every
message mv, v ∈ Ci−p, is sent by at least T nodes of the clique Ci. This implies
that every message mv, v ∈ Ci−p, is received by every node u ∈ Ci at least T
times. Thus, at the end of ranking phase p, every message mv, v ∈ Ci−p is known
and non-fresh in all nodes u ∈ Ci, which completes the proof. ut

Property 4 guarantees that full information spreading is completed after

ranking phase p = n/k, with probability at least 1 −
(

2n/k
nd−2 + 2

nα/48−1

)
≥ 1 −(

1
nd−3 + 1

nα/48−2

)
≥ 1 − 1

nc , for a constant c, by fixing d and α to values d >
c + 3, α > 48c + 96. This completes the proof of Lemma 3.2, from which Theo-
rem 3.1 follows.

Theorem 4.1 Alg. 2 completes full information spreading on Gn,k in O
(
n
k log3 n

)
rounds, w.h.p.

Proving the four properties for the modified algorithm implies Lemma 3.2,
from which Theorem 4.3 follows. In the previous analysis, the transition from
the end of a ranking phase to the beginning of the next one was immediate,
therefore claims that hold at end of ranking phase p− 1, automatically hold at
the beginning of ranking phase p. Here, every two consecutive ranking phases are
separated by a shuffle phase, implying that t̄p−1 and tp are not equal anymore.
We need to prove that the relevant claims that hold at the beginning of a shuffle
phase (end of a ranking phase) hold also at the end of the shuffle phase (beginning
of the next ranking phase). That is, we prove that shuffle phases preserve the
required properties. The addition of the shuffle phase does not affect the progress
of the algorithm until the end of the first ranking phase. Thus, the base case in
the inductive proof of the four properties stays as is. Modifications are needed
to the proofs of inductive steps.

Before heading to modify the proof of the induction step, we first prove the
following.

25

Lemma 6.2. Assume properties 2, 3 and 4 hold at the end of ranking phase
p − 1. Then, for each node u ∈ Ci, and for each direction of flow, at the end
of shuffle phase p − 1, there are k remaining messages mv, v ∈ Ci−p (similarly
Ci+p) in R after filtering out unwanted messages (in line 29).

Proof. Properties 2 and 3 hold at the end of ranking phase p − 1, i.e., at the
beginning of shuffle phase p − 1, for every node v ∈ Ci−p, it holds that mv

is fresh in at least T nodes u ∈ Ci, and that every node in Ci has at most
4τ fresh messages per direction. Thus, during the shuffle phase, every message
mv, v ∈ Ci−p, is sent (and thus, received) at least T times by nodes of Ci, and
therefore is not filtered out at the end of the shuffle phase. As already discussed,
messages that originate at mv, v ∈ Ci−p−1 are filtered out due to low phasecnt
values. By property 4 for end of ranking phase p− 1, for every node v such that
v ∈ Cj for some i−p+ 1 ≤ j ≤ i, it holds that mv non-fresh, so they are filtered
out. In total, all messages mv, v ∈ Ci−p, are not filtered out, and only them. The
other direction of flow is symmetric. ut

Lemma 6.3. Assume properties 2, 3 and 4 hold at the end of ranking phase
p − 1. Then, with probability at least 1 − 1

n9α/16−1 , at the end of shuffle phase
p−1, every message that is not filtered out in node u ∈ Ci, is selected to be fresh
by at least T nodes in Ci.

Proof. Assume properties 2, 3 and 4 hold at the end of ranking phase p − 1.
Fix i, v. Let 1u,v, for every u ∈ Ci, be indicator variables that indicate whether
node u selects mv at the end of shuffle phase p− 1, or not. By Lemma 6.2, there
are at most 2k remaining messages in R after filtering out unwanted messages
(in line 29). Thus, the probability for each message to be within the 4τ selected
messages at the end of the shuffle phase is at least

Pr[1u,v = 1] ≥ 4τ

2k
=

2τ

k
.

Let Xv =
∑
u∈Ci 1u,v, be the number of nodes in Ci that select message mv at

the end of shuffle phase p− 1. Then

µ = E(Xv) = E

(∑
u∈Ci

1u,v

)
=
∑
u∈Ci

E(1u,v) ≥

≥
∑
u∈Ci

2τ

k
= k · 2τ

k
= 2τ .

The indicator variables are independent, as they refer to decisions of distinct
nodes. By applying a Chernoff bound, we get

Pr[Xv ≤ (1− δ)µ] ≤ exp
(
−δ2µ

2

)
≤ exp

(
−δ2 2τ

2

)
=

= exp
(
−δ2α log n

)
<

1

nαδ2
.

26

By setting δ = 3
4 , we get that a message mv is selected fresh in at least T nodes

u ∈ Ci with probability at least 1 − 1
n9α/16 . By a union bound, this holds for

every node v with probability at least 1− 1
n9α/16−1 . ut

To match the modification of the algorithm, we show that the four properties
now hold for p with probability at least 1−

(
2

nα/48−1 + 2p
nd−2 + p

n9α/16−1

)
. To prove

the new induction step, we make similar assumptions as earlier when proving the
induction step, i.e., all events described in the four properties for p − 1, and in
Lemma 3.8 for p− 1 and p, occur. In addition, we assume that events described
in Lemma 6.3 for p− 1, occur. In total, this happens with probability at least

1−
(

2

nα/48−1
+

2(p− 1)

nd−2
+

p

n9α/16−1
+

1

nd−2
+

1

nd−2

)
=

1−
(

2

nα/48−1
+

2p

nd−2
+

p

n9α/16−1

)
.

Proof (Extension of induction step for property 1). The property holds at the
end of ranking phase p− 1. At the beginning of shuffle phase p− 1, each pioneer
message in a clique is known to exactly one node in the clique. Thus, at the
end of the shuffle phase, the phasecnt values for pioneer messages are at most 2
(one reception is from the respective node within the same clique, and the other
is from the neighbor from the neighboring clique). In conclusion, all pioneer
messages are filtered out, so there are no pioneer messages at the beginning of
ranking phase p, which completes the proof. ut

Proof (Extension of induction step for property 2). The property holds at the
end of ranking phase p− 1. At the beginning of shuffle phase p− 1, considering
one direction of flow, all fresh messages mv in nodes of clique Ci originate at
nodes Ci−p, except for pioneers (originating at nodes in Ci−p−1). At the end of
shuffle phase p − 1, as already discussed, all pioneer messages are filtered out
due to low phasecnt values. By property 4 for the end of ranking phase p − 1,
all messages mv /∈ Ci−p are non-fresh, so they are filtered out (if any) for being
non-fresh prior to the start of shuffle phase p − 1. Thus, in total, considering
both directions, at the end of shuffle phase p − 1, each node selects 4τ of the
messages mv, v ∈ Ci−p ∪ Ci+p, marks them fresh and ranks them 1 to 4τ . This
completes the proof. ut

Proof (Extension of induction step for property 3). Properties 2 and 3 hold at
the end of ranking phase p− 1, i.e., at the beginning of shuffle phase p− 1, for
every node v ∈ Ci−p, it holds that mv is fresh in at least T nodes u ∈ Ci, and
that every node in Ci has at most 4τ fresh messages per direction. During the
shuffle phase, every message mv, v ∈ Ci−p, is sent at least T times by nodes of
Ci, and therefore is not filtered out at the end of the shuffle phase. By Lemma 6.3
for p− 1, each message is selected and becomes fresh in at least T nodes, which
completes the proof. ut

Proof (Extension of induction step for property 4). The original proof of property
4 for p shown in the previous section relies on property 4 at the end of ranking

27

phase p− 1, on Properties 2 and 3 at the beginning of ranking phase p, and on
Lemma 3.8 for p. At this point, all of them are proved. Thus, the same original
proof for property 4 applies directly.

In other words, by property 4 for p − 1 and i, for every node u ∈ Ci, every
node v such that v ∈ Cj for some i− p+ 1 ≤ j ≤ i, it holds that mv ∈ Ru(t̄p−1),
and mv is non-fresh. Notice that shuffle phases preserve this. By property 3 for
p and i, at the beginning of ranking phase p, every message mv, v ∈ Ci−p, is
fresh in at least T nodes u ∈ Ci. By property 2 for p and i, at the beginning of
ranking phase p, every node u ∈ Ci has at most 8τ fresh messages. By Lemma 3.8
for p, all are sent during ranking phase p. This means that every message mv,
v ∈ Ci−p, is sent by at least T nodes of the clique Ci. This implies that every
message mv, v ∈ Ci−p, is received by every node u ∈ Ci at least T times. Thus,
at the end of ranking phase p, every message mv, v ∈ Ci−p is known and non-
fresh in all nodes u ∈ Ci, which completes the proof. ut

This completes the proof. Recall that we assumed that all events described
in the four properties for p− 1, in Lemma 3.8 for p− 1 and p, and in Lemma 6.3
for p − 1, occur. Thus, the properties are proved with probability at least 1 −(

2
nα/48−1 + 2p

nd−2 + p
n9α/16−1

)
.

Assigning p = n/k in Property 4 proves Lemma 3.2, from which Theorem 4.3
follows, with probability at least

1−
(

2

nα/48−1
+

2n/k

nd−2
+

n/k

n9α/16−1

)
≥

1−
(

1

nd−3
+

1

nα/48−2
+

1

n9α/16−2

)
≥ 1− 1

nc
,

for a constant c, by fixing d and α to values d > c+ 3, α > 48c+ 96.

Fig. 4. Phases of Alg. 2.

Lemma 4.2 At the end of round τe, the number of non-faulty nodes in each
clique is at least (30k/32), with probability at least 1− 1/n30.

28

Proof. Let 1u, for every node u, be an indicator variable that indicates whether
node u is non-faulty after τe rounds, or not. Then

Pr[1u = 1] = (1− q)τe ≥ 1− qτe ≥ 1− 1/32 = 31/32 .

Let Xi =
∑
u∈Ci 1u, for every i, 1 ≤ i ≤ n/k, be the number of non-faulty nodes

in Ci after τe rounds. Then

µ = E(Xi) = E

(∑
u∈Ci

1u

)
=
∑
u∈Ci

E(1u) ≥

≥
∑
u∈Ci

31/32 = 31k/32 .

The indicator variables are independent, as failure events of nodes are indepen-
dent. By applying a Chernoff bound, with δ = 1

31 , we get

Pr

[
Xi <

30

32
k

]
≤ Pr

[
Xi ≤ (1− δ)31

32
k

]
≤ Pr[Xi ≤ (1− δ)µ] ≤ exp

(
−δ2µ

2

)
≤

≤ exp

(
−δ2 31k

2 · 32

)
≤ exp

(
−δ2 31(2 · 32 · 312 log n)

2 · 32

)
<

<
1

n313δ2
.

The inequality in second line holds because k = Ω(log3 n). We get that at the
end of round τe, the number of non-faulty nodes in a clique is at least (30k/32)
with probability at least 1− 1

n31 . By a union bound, this holds for every clique
with probability at least 1− 1

n30 . ut

Theorem 4.3 Alg. 2 completes full information spreading on Gn,k in O
(
n
k log3 n

)
rounds, for any node failure probability per round q, 0 ≤ q ≤ O

(
k

n log3 n

)
, w.h.p.

Proof. Fix i, p. Let mv be a message that is fresh in at least T (non-faulty)
nodes in Ci−1 at the end of shuffle phase p− 1. Here we analyze the probability
that mv is not shuffled successfully in clique Ci. An unsuccessful shuffle might
occur either because the phasecnt values in Ci at the end of shuffle phase p are
smaller than the threshold of T ∗ = ĉT , so the message is filtered out (denote this
event by A), or because the message was selected by less than T (non-faulty)
nodes. By Lemma 3.8, at the beginning of shuffle phase p, the message mv is
supposed to be fresh in at least T nodes in Ci (each of them gets the message
from its respective neighbor in Ci−1). Of these nodes in Ci, if one does not send
mv during shuffle phase p, then either the node or its neighbor in Ci−1 (or both)
becomes faulty by the end of shuffle phase p. The probability, q̂, for such a pair
of nodes not to fail is bounded from below (according to Bernoulli’s inequality)
by q̂ = ((1 − q)τe)2 ≥ (1 − qτe)2 ≥ 1 − 2qτe ≥ 1 − 1/16. Fix a set of T pairs of
nodes S(mv) ⊆ Ci−1×Ci, of those who know message mv in Ci−1 at the end of

29

shuffle phase p−1, and their respective neighbors in Ci. There might exist more
than T such pairs, but by fixing a set of size T and ignoring the rest, we bound
the probability of an unsuccessful shuffle from above, as the ignored nodes can
only help and increase the probability of success. A “surviving” pair is a pair
of nodes from S(mv) where both are non-faulty at the end of the shuffle phase,
and hence function properly (by sending message mv) during shuffle phase p.
Denote by s, the number of “surviving” pairs. We have that

Pr[A] ≤
T∗−1∑
s=0

(
T

s

)
· (q̂)s · (1− q̂)T−s ≤

T∗−1∑
s=0

(
T

s

)
· (1− q̂)T−s ≤

≤
T∗−1∑
s=0

(
T

s

)
· (1/16)T−s .

We sum over all s ∈ {0, . . . , T ∗ − 1}, where the number of “survivors” is lower
than the threshold of ĉT , which implies that the message mv is filtered out,
improperly, at the end of the shuffle phase due to a low phasecnt value. By
setting 0 < ĉ ≤ 1

2 , we get the following,

Pr[A] ≤ T ∗ ·
(
T

T/2

)
· (1/16)T/2 ≤ ĉT ·

(
T · e
T/2

)T/2
· (1/16)T/2 ≤

≤ T/2 ·
(

(2e)
1
2

)T
· (1/16)T/2 ≤ 1

4
α log n ·

(
(2e)

1
4

)α logn

·
(

1

24

) 1
4α logn

≤

≤ n ·
(

2
2
3

)α logn

·
(

1

24

) 1
4α logn

≤ n · n 2
3α ·

(
1

n4

) 1
4α

≤ n 2
3α+1 · 1

n
4
4α

=

=
1

nα−
2
3α−1

=
1

nα/3−1
.

Namely, the message is not filtered out with probability at least 1
nα/3−1 . The

number of non-faulty nodes in each clique is at least 31k/32 with probability
at least 1 − 1

n30 , by Lemma 4.2. An analysis similar to the one in the proof
of Lemma 6.3 (with δ = 11/15) gives that, once the message is not filtered out,
it is selected by at least T of the non-faulty nodes in Ci with probability at
least 1− 1

n112α/(15·16) . In total, by using a union bound, a message is not shuffled
successfully between two consecutive shuffle phases with probability at most

1
nα/3−1 + 1

n112α/(15·16) + 1
n30 ≤ 1

n6 (for value of α fixed earlier).
We use union bound two more times, for all messages and for all phases,

and get an upper bound for the probability that a message is not propagated
properly, of 1

n4 . This proves that the algorithm tolerates failures that occur with
probability 0 ≤ q ≤ 1

32τe
in the given model, with probability at least 1− 1

n4 . ut

	On Fast and Robust Information Spreading in the Vertex-Congest Model

