
Multi-Sided Shared Coins and Randomized Set-Agreement

Keren Censor Hillel
∗

Department of Computer Science
Technion

Haifa 32000, Israel
ckeren@cs.technion.ac.il

ABSTRACT
This paper presents wait-free randomized algorithms for solving
set-agreement in asynchronous shared-memory systems under a
strong adversary. First, the definition of a shared-coin algorithm is
generalized to a multi-sided shared-coin algorithm, and it is shown
how to use any multi-sided shared coin in order to obtain a random-
ized set-agreement algorithm for agreeing on k values out of k+1.
Then, an implementation is given for a (k + 1)-sided shared coin
for n processes with a constant agreement parameter, O(n2/k) to-
tal step complexity, and O(n/k) individual step complexity. This
implementation yields a randomized set-agreement algorithm for
agreeing on k values out of k + 1 with a total step complexity of
O(n2/k + nk) and an individual step complexity of O(n/k + k).
Next, other set-agreement algorithms for agreeing on ` values out
of k + 1, where ` is smaller than k, are presented. This includes
the case of multi-valued consensus in which ` = 1, k > 1. To the
best of our knowledge, these are the first wait-free algorithms for
set-agreement in the asynchronous shared-memory model under a
strong adversary that are not for the specific case of binary consen-
sus, where ` = k = 1. Finally, an application of asynchronous
wait-free multi-valued consensus is presented, in implementing at-
most-once semantics with optimal effectiveness.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent program-
ming; F.2 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity—Nonnumerical Algorithms and Problems; G.3
[Mathematics of Computing]: Probability and Statistics—Proba-
bilistic algorithms

General Terms
Algorithms, Theory

∗Supported in part by the Adams Fellowship Program of the Israel
Academy of Sciences and Humanities and by the Israel Science
Foundation (grant number 953/06).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

Keywords
distributed computing, shared memory, randomized algorithms, set-
agreement, multi-valued shared coins

1. INTRODUCTION
The problem of set-agreement was introduced by Chaudhuri [9]

as a generalization of the consensus problem, in order to over-
come the well-known impossibility of solving consensus determin-
istically in an asynchronous system which allows even one crash-
failure [13]. In the set-agreement problem, n processes start with
input values in {0, . . . , k} and should produce output values such
that there are at most ` different outputs, for some ` < n. The ter-
mination condition requires every non-faulty process to eventually
decide, and to avoid trivial solutions, the validity condition requires
each output value to be the input value of some process.

Chaudhuri showed that if the bound f on the number of faulty
processes is smaller than `, then set-agreement can be solved by
a deterministic algorithm. Later, it was shown by Borowsky and
Gafni [7], Herlihy and Shavit [14], and Saks and Zaharoglou [20],
using topological arguments, that set-agreement cannot be solved
deterministically in an asynchronous system if f ≥ `, and in partic-
ular it does not have a wait-free solution (i.e., f = n− 1, implying
that it may be that all but one process fail).

Another approach to overcome the FLP impossibility result for
consensus, is to relax the termination condition to hold only with
probability 1, and thus allow the use of randomization. Many ran-
domized consensus algorithms were designed for different models
of communication and timing assumptions. As in the case of con-
sensus, randomization also allows to overcome the impossibility
result for set-agreement.

In this paper, we present randomized wait-free algorithms for
solving set-agreement in an asynchronous shared-memory system.
First, in Section 3, we generalize the definition of a shared-coin
algorithm, and define multi-sided shared-coin algorithms. In such
an algorithm, each process outputs one of k + 1 values (instead
of one of two values as in a regular shared-coin), such that each
subset of k values has probability at least δ for containing the out-
puts of all the processes. In other words, each value has probability
at least δ of not being the output of any process. We then extend
the Aspnes-Herlihy framework for using a shared coin for obtain-
ing a randomized consensus algorithm [4], and show how to use
any multi-sided shared coin in order to obtain a randomized set-
agreement algorithm, for agreeing on k values out of k + 1.

Next, in Section 4, we present an implementation of a (k + 1)-
sided shared-coin algorithm which has a constant agreement pa-
rameter, O(n2/k) total step complexity, and O(n/k) individual
step complexity. We then derive a set-agreement algorithm from
the (k + 1)-sided shared coin using the above framework.

Algorithm Parameters Method Individual Step Total Step
Complexity Complexity

Section 3 k, k + 1 multi-sided shared coin O(n/k + k) O(n2/k + nk)

Section 5.1 `, k + 1 space reduction O(n(log k − log `)) O(n2(log k − log `))
Section 5.2 `, k + 1 iterative O((k − `+ 1)k O((k − `+ 1)nk

+n(log k − log `)) +n2(log k − log `))

Section 5.3 1, k + 1 bit-by-bit O(n log k) O(n2 log k)

Figure 1: The agreement algorithms presented in this paper.

In Section 5, we present set-agreement algorithms that are de-
signed for agreeing on ` values out of k + 1, for ` < k. In particu-
lar, they can be used for the case ` = 1, where the processes agree
on the same value, i.e., for multi-valued consensus. By definition,
solving multi-valued consensus is at least as hard as solving binary
consensus (where the inputs are in the set {0, 1}, i.e., k = 1), and
potentially harder. One algorithm uses multi-sided shared coins,
while the other two embed binary consensus algorithms in various
ways.

To the best of our knowledge, these are the first wait-free al-
gorithms for set-agreement in the shared-memory model under a
strong adversary, other than binary consensus. Figure 1 shows the
properties of the different algorithms we present. For ` < k one
of our algorithms is better than the others; however, intrigued by
the question of whether multi-valued consensus is inherently harder
than binary consensus, we find the different methods interesting in
hope that one of them could lead to a lower bound.

Finally, we show in Section 6 an application of asynchronous
wait-free multi-valued consensus in implementing at-most-once se-
mantics with optimal effectiveness. At-most-once semantics [15]
requires m jobs to be executed with the guarantee that no job is
performed more than once. A trivial solution simply does not exe-
cute any job. However, the effectiveness of an algorithm for solving
the at-most-once problem is the number of completed jobs, and it
is desired to find algorithms with the maximal effectiveness possi-
ble. Section 6 shows how to use a randomized multi-valued con-
sensus algorithm in order to solve the at-most-once problem while
obtaining the optimal effectiveness, thus answering an open ques-
tion raised in [15].

Related Work:. Previous randomized agreement algorithms for
asynchronous shared-memory systems under a strong adversary are
for the specific case of binary consensus (e.g., [1–5, 8, 19]). The
optimal individual and total step complexities areO(n) andO(n2),
respectively [3, 5].

Unlike the shared-memory model, several set-agreement algo-
rithms for asynchronous message-passing systems have been pro-
posed. Mostefaoui et al. [17] use binary consensus to construct
a multi-valued consensus algorithm for message-passing systems.
This work assumes reliable broadcast. In the same model, Zhang
and Chen [23] present improved algorithms, which reduce the num-
ber of binary consensus instances that are required. Under the
above assumption, Ezhilchelvan et al. [12] also present a random-
ized multi-valued consensus algorithm, while Mostefaoui and Ray-
nal [16], present a randomized set-agreement algorithm for agree-
ing on ` values out of n. The above algorithms require a bound on
the number of failures f < n/2, a restriction that can be avoided
in the shared-memory model. Moreover, there is an exponentially
small agreement probability for the coins that are used, which causes
the expected number of phases until agreement is reached to be
large.

There is additional literature on set-agreement in synchronous
systems. Chaudhuri et al. [10] show that f/k + 1 is the num-
ber of rounds needed for solving set-agreement in shared mem-
ory. Turpin and Coan [22] propose a set-agreement algorithm for
message passing with Byzantine failures that embeds consensus to
agree on the credibility of sent messages. Their algorithm satisfies
a weaker validity condition, which requires that if all input values
are the same, then every output value is that input value. Raynal
and Travers [18] propose new algorithms in addition to a good sur-
vey on synchronous set-agreement algorithms.

2. MODEL AND DEFINITIONS
We consider a standard model of an asynchronous system in

which n processes {p0, . . . , pn−1} communicate by reading and
writing to shared multi-writer multi-reader registers. A step of a
process consists of one access to the shared memory, followed by
local computation and/or local coin-flips. Processes may fail by
crashing, in which case they do not take any further steps. We
require our algorithms to be wait-free, i.e., to be correct even if
n− 1 processes may fail during an execution. The system is asyn-
chronous, meaning that the steps of processes are scheduled ac-
cording to an adversary. This implies that there are no timing as-
sumptions, and specifically no bounds on the time between two
steps of a process, or between steps of different processes.

For completeness, we formally define the problem of set-
agreement as follows. In an algorithm for solving (`, k + 1, n)-
agreement each process pi starts with an input value in {0, . . . , k}
and should produce an output value such that the following condi-
tions hold:

• Set-Agreement: there are at most ` different outputs.
• Validity: every output is the input of some process.
• Termination: every non-faulty process eventually decides.

We sometimes use the term set-agreement without parameters for
abbreviation. The particular case in which ` = 1, k > 1 is the
problem of multi-valued consensus, while in case ` = k = 1 we
have binary consensus.

A randomized algorithm for set-agreement is required to satisfy a
relaxed termination condition: with probability 1, every non-faulty
process eventually decides.

We measure the individual step complexity of a randomized set-
agreement algorithm as the expected number of steps taken by any
single process. Similarly, the total step complexity is the expected
number of steps taken by all the processes.

In Section 3 we present a framework for randomized algorithms
which solve (k, k + 1, n)-agreement using a multi-sided shared-
coin algorithm. We now formally define such a procedure, which
is a generalization of a shared coin (which in our terms is a 2-sided
shared coin). A (k + 1)-sided shared-coin algorithm with agree-
ment parameter δ is an algorithm in which every non-faulty process

p produces an output value in {0, . . . , k}, such that for every sub-
set of size k there is probability at least δ that all the outputs are
within that subset. Alternatively, for every value v in {0, . . . , k}
there is probability at least δ that v is not the output of any process.
We emphasize that unlike the requirement of set-agreement, the
probability of disagreement in a shared coin may be greater than 0.
Notice that there are no inputs to this procedure.

Since our algorithms are randomized, different assumptions on
the power of the adversary may yield different results. Through-
out this work, we assume a strong adversary. Such an adversary
can base its next scheduling decision on the local state of all the
processes, including the results of local coin-flips. Notice, how-
ever, that the adversary does not know the results of local coins that
were not yet flipped1.

3. A (k, k+1, n)-AGREEMENT ALGORITHM
USING A (k + 1)-SIDED SHARED COIN

In this section we present a framework for randomized (k, k +
1, n)-agreement algorithms. It is a generalization of the framework
of Aspnes and Herlihy [4] for deriving a randomized binary con-
sensus algorithm from a weak shared coin, and specifically follows
the presentation given by Saks, Shavit, and Woll [19]. However, its
complexity is improved by using multi-writer registers, based on
the construction of Cheung [11].

We assume a (k+1)-sided shared-coin algorithm called shared-
Coink+1, with an agreement parameter δk+1. The set-agreement
algorithm is given in Algorithm 1. Throughout the paper, we as-
sume that shared arrays are initialized to a special symbol ⊥. In-
formally, the set-agreement algorithm proceeds by (asynchronous)
phases, in which each process p writes its own preference to a
shared array Propose , checks if the preferences agree on k val-
ues, and notes this in another shared array Check . If p indeed sees
agreement, it also notes its preference in Check .

Process p then checks the agreement array Check . If p does
not observe a note of disagreement, it decides on the value of its
preference. Otherwise, if there is a note of disagreement, but also a
note of agreement, p adopts the value associated with the agreement
notification as preference for the next phase. Finally, if there is only
a notification of disagreement, the process participates in a (k+1)-
sided shared-coin algorithm and prefers the output of the shared
coin.

LEMMA 1. Consider a phase r ≥ 1 and a non-faulty process p
that finishes phase r. If all the processes that start phase r before
p finishes it have at most k preferences in {v1, . . . , vk}, then p
decides v ∈ {v1, . . . , vk} in this phase r.

PROOF. We claim that p reads Check [r][disagree] == false
in line 9 of phase r, and therefore decides in phase r. This will
also imply that its decision value v is in {v1, . . . , vk}, otherwise
p is among the processes that start phase r before p finishes, but
does not have a preference in {v1, . . . , vk}, which contradicts
our assumption. Assume towards a contradiction, that p reads
Check [r][disagree] == true in line 9 of phase r. This implies
that there is a process q that writes Check [r][disagree] = true in
line 7 of phase r, and this happens before p finishes. Therefore, q
reads more than k values in Propose[r] in line 3 of phase r, which
means that there are k + 1 processes that write k + 1 different val-
ues to Propose[r] in line 2 of phase r, and all this happens before p
finishes. But this contradicts our assumption that all the processes
1Thus, if we model local coin-flips as having a random tape for
each process, then the adversary knows the content of the tape only
in locations that were accessed by the process.

Algorithm 1 A (k, k + 1, n)-agreement algorithm, code for pi
Local variables: r = 1, decide = false, myValue = input,

myPropose = [], myCheck = []
Shared arrays: Propose[][0..k],Check [][agree, disagree]
1: while decide == false
2: Propose[r][myValue] = true
3: myPropose = collect(Propose[r])
4: if the number of values in myPropose is at most k
5: Check [r][agree] = 〈true,myValue〉
6: else
7: Check [r][disagree] = true
8: myCheck = collect(Check [r])
9: if myCheck [disagree] == false
10: decide = true
11: else if myCheck [agree] == 〈true, v〉
12: myValue = v
13: else if myCheck [agree] == false
14: myValue = sharedCoink+1[r]
15: r = r + 1
16: end while
17: return myValue

that start phase r before a non-faulty process p finishes it have at
most k preferences.

Lemma 1 implies validity, by applying it for phase r = 1. The
next two lemmas are used to prove the agreement condition. Below,
we use the notation 〈true, ?〉 for an entry in the array Check which
has true as its first element, and any value as its second element.

LEMMA 2. For every phase r ≥ 1, all the processes that read
Check [r][agree] == 〈true, ?〉 and finish phase r have at most k
different preferences at the end of phase r.

PROOF. We first claim that all the processes that write
to Check [r][agree] wrote at most k different preferences to
Propose[r]. Assume, towards a contradiction, that among the
processes that write to Check [r][agree] there are k + 1 pro-
cesses {pi1 , . . . , pik+1} that wrote k + 1 different preferences to
Propose[r]. Let pij be the last process to write to Propose[r].
When pij collects Propose[r] in line 3, it reads k + 1 values, and
therefore does not write to Check [r][agree], which is a contradic-
tion.

The above claim implies that at most k different preferences
may be written to Check [r][agree]. Since a process that reads
Check [r][agree] == 〈true, v〉 adopts v as its preference, at most
k values can be a preference of such processes at the end of phase
r.

LEMMA 3. For every phase r ≥ 1, if processes decide on val-
ues in {v1, . . . , vk} in phase r, then every non-faulty process de-
cides on a value in {v1, . . . , vk} in phase r′, where r′ is either r
or r + 1.

PROOF. We first claim that if a process decides v in phase
r, then every non-faulty process that finishes phase r reads
Check [r][agree] == 〈true, ?〉. To prove the claim, let p be a pro-
cess that decides v in phase r. Let q be a non-faulty process that
finishes phase r, and assume towards a contradiction that q reads
Check [r][agree] == false. This implies that q collects Check [r]
in line 8 before p writes to Check [r] in line 5, and therefore p col-
lects Check [r] after q writes to Check [r][disagree], which implies
that p does not decide in phase r, a contradiction.

Now, let p be a process that decides in phase r, and let q be a non-
faulty process. By the above claim, q reads Check [r][agree] ==
〈true, ?〉 in line 8. By Lemma 2, there are at most k different values
that can become a preference of a process at the end of phase r.
Therefore, if q decides at the end of phase r then it decides a value
in {v1, . . . , vk}. Otherwise, all the non-faulty processes write at
most k preferences to Propose[r+1], and by Lemma 1, they decide
on one of these values at the end of phase r + 1.

Lemma 3 implies agreement. Notice that both validity and agree-
ment are always satisfied, and not only with probability 1. For
termination, we prove the following lemma. Below, we denote the
agreement parameter of the (k+1)-sided shared coin by δ = δk+1.

LEMMA 4. The expected number of phases until all non-faulty
processes decide is at most 1 + 1/δ.

PROOF. For every subset {v1, . . . , vk} ⊆ {0, . . . , k} there is a
probability of at least δ for all processes that run sharedCoink+1

to output values in {v1, . . . , vk}. Therefore, for any value v in
{0, . . . , k}, there is a probability of at least δ that v is not the
output of any process running sharedCoink+1. This is because
{0, . . . , k} \ {v} has probability of at least δ for containing the
outputs of all the processes.

Consider a phase r ≥ 2. By Lemma 2, all the processes that fin-
ish phase r−1 and in line 8 read Check [r−1][agree] == 〈true, ?〉
propose at most k values to Propose[r]. The other processes pro-
pose to Propose[r] a value obtained from their shared coin. There-
fore, there is a probability of at least δ that all processes write at
most k different values to Propose[r], and by Lemma 1, decide by
the end of phase r.

Therefore, after phase r = 1, the expected number of phases
until all non-faulty processes decide, is the expectation of a geo-
metrically distributed random variable with success probability at
least δ, which is at most 1/δ.

For the first phase r = 1, the values written to Propose[1] are the
inputs and are therefore controlled by the adversary. This implies
that the expected number of phases until all non-faulty processes
decide is at most 1 + 1/δ.

Consider a (k + 1)-sided shared coin algorithm with an agree-
ment parameter δ = δk+1, a total step complexity of T = Tk+1,
and an individual step complexity of I = Ik+1. In each phase,
a process takes O(k) steps in addition to the I steps it takes in
the sharedCoink+1 algorithm. Combining this with Lemma 4,
which bounds the expected number of phases until all non-faulty
processes decide, gives:

THEOREM 5. Algorithm 1 solves (k, k + 1, n)-agreement with
O(I+k

δ
) individual step complexity and O(T+nk

δ
) total step com-

plexity.

4. A (k + 1)-SIDED SHARED COIN
We present, in Algorithm 2, a (k + 1)-sided shared-coin algo-

rithm which is constructed by using k instances of a 2-sided shared
coin. We statically partition the processes into k sets of at most n

k
processes each. That is, for every j, 0 ≤ j ≤ k − 1, we have a
set Pj =

{
p jn

k
, . . . , p (j+1)n

k
−1

}
(for j = k − 1 the set may be

smaller). The processes of each set Pj run a 2-sided shared-coin al-
gorithm sharedCoin[j] and output the result plus the value j. The
idea is that in order to have a value j that is not the output of any
process, it is enough that all processes running sharedCoin[j − 1]
agree on the value 0 and therefore output j−1, and that all the pro-
cesses running sharedCoin[j] agree on the value 1 and therefore
output j + 1.

Algorithm 2 A (k + 1)-sided shared coin algorithm, code for pro-
cess pi
Local variables: j = b ik

n
c

1: return sharedCoin[j] + j

Let δ = δ2 be the agreement parameter of the 2-sided shared
coin. We bound the agreement parameter of the k+1-sided shared
coin in the next lemma.

LEMMA 6. Algorithm 2 is a (k + 1)-sided shared coin with an
agreement parameter δ2.

PROOF. There is a probability of at least δ for all processes who
run sharedCoin[j] to return the value j, and a probability of at
least δ for all processes who run sharedCoin[j] to return the value
j+ 1. Therefore, for any value in {0, . . . , k}, there is a probability
of at least δ2 that this value is not the output of any process running
sharedCoin[j], for any 0 ≤ j ≤ k− 1 (because j = 0 may be the
output only of sharedCoin[0], j = k only of sharedCoin[k − 1],
and j ∈ {1, . . . , k − 1} only of sharedCoin[j − 1] and shared-
Coin[j]). Therefore, Algorithm 2 is a (k + 1)-sided shared coin
with an agreement parameter δ2.

The next lemma gives the complexity of the k + 1-sided shared
coin, and follows immediately from the fact that each process runs a
2-sided shared coin algorithm for n

k
processes. Since the complexi-

ties depend on the number of processes t that may run an algorithm,
we now carefully consider this in the notation. Let I(t) = I2(t)
and T (t) = T2(t) be the individual and total step complexities,
respectively, of the 2-sided shared coin with t processes.

LEMMA 7. Algorithm 2 has individual and total step complex-
ities of O(I(n

k
)) and O(k · T (n

k
)), respectively.

Plugging Lemmas 6 and 7 into Theorem 5 gives:

THEOREM 8. Algorithm 1 solves (k, k + 1, n)-agreement with
individual step complexity ofO((I(n

k
)+k)/δ2) and total step com-

plexity of O((k · T (n
k
) + nk)/δ2).

By using an optimal 2-sided shared coin [3] with a constant
agreement parameter, an individual step complexity of O(t), and
a total step complexity of O(t2), we get that Algorithm 2 is a
(k+1)-sided shared coin with a constant agreement parameter, and
individual and total step complexities of O(n

k
) and O(n

2

k
), respec-

tively. Therefore, Algorithm 1 solves (k, k+ 1, n)-agreement with
individual step complexity of O(n

k
+ k) and total step complexity

of O(n
2

k
+ nk). Note that for n ≥ k2, Algorithm 1 has O(n

k
) in-

dividual step complexity, and O(n
2

k
) total step complexity, which

are the same as the complexities of binary consensus divided by k.

5. (`, k + 1, n)-AGREEMENT ALGORITHMS
In this section we construct several algorithms for the solving

(`, k + 1, n)-agreement, where ` < k.

5.1 An (`, k + 1, n)-Agreement Algorithm by
Space Reduction

For agreeing on one value out of {0, . . . , k} we can get a total
step complexity of O(n2 log k) by reducing the possible values by
half until we have one value. We later show how this construction
can be used for agreeing on ` > 1 values.

In Algorithm 3 we assume an array Agree of binary consensus
instances, which a process can execute with a proposed value. Al-
gorithm 3 can be modelled as a binary tree, where the processes
begin at the leaves, which represent all of the values, and in every
iteration j the processes agree on the value of the next node, going
up to the root. This means that at most half of the suggested values
are decided in each iteration. In addition, all decided values are
valid because this is true for each node.

Algorithm 3 A (1, k+ 1, n)-agreement algorithm by space reduc-
tion, code for pi
Local variables myValue = input, myPair , mySide
Shared arrays: Agree[1..dlog (k + 1)e][1..k/2j],

Values[1..dlog (k + 1)e][1..k/2j][0..1]
1: for j = 1 . . . dlog (k + 1)e
2: myPair = bmyValue

2j c
3: if myValue −myPair · 2j < 2j−1

4: mySide = 0
5: else mySide = 1
6: Values[j][myPair][mySide] = myValue
7: side = Agree[j][myPair](mySide)
8: myValue = Values[j][myPair][side]
9: end for
10: return myValue

LEMMA 9. (Validity) For every j, the variable myValue of a
process p at the end of iteration j is an input of some process.

PROOF. The proof is by induction on j. The base case j = 1
is clear since myValue is initialized with the input of the process.
For the induction step, assume the lemma holds up to j − 1, and
notice that myValue is updated only in line 8, to the value written
in the Values array in the location side which is returned from the
binary consensus protocol. Since the consensus protocol satisfies
validity, side has to be the input of some process to the consensus
protocol, and this only happens if that process first writes to that
location in the Values array in line 6. By the induction hypothesis,
that value is the input of some process.

LEMMA 10. (Agreement) Every two process executing Algo-
rithm 3 output the same value.

PROOF. We claim that there can be at most one value writ-
ten to Values[j][pair][side], and prove this by induction, where
the base case is trivial since at the beginning a process writes to
Values[1][pair][side] only if its input value is 2 · pair + side.
Assume this holds up to iteration j − 1. By the agreement prop-
erty of the consensus protocol, all processes that execute Agree[j−
1][pair] output the same value. Therefore, in iteration j, only one
value out of {2j · pair, . . . , 2j(pair + 1) − 1} can be written to
Values[j][pair][side]. The lemma follows by applying the claim
to the root, which satisfies agreement.

Termination follows from the termination property of the binary
consensus instances. For each j, a process executes one consen-
sus protocol, plus O(1) additional accesses to shared variables. By
using an optimal binary consensus protocol where a process com-
pletes within O(n) steps, this implies:

THEOREM 11. Algorithm 3 solves (1, k+1, n)-agreement with
an individual step complexity of O(n log k) and a total step com-
plexity of O(n2 log k).

Note that we can backstop this construction at any level j at the
tree to get an agreement on ` = 2log k−j values. This means that
instead of having j iterate from 1 to dlog (k + 1)e, the algorithm
changes so that j iterates from 1 to dlog (k + 1)e − dlog `e. The
individual step complexity isO(n(log k−log `)), and the total step
complexity is O(n2(log k − log `)).

5.2 An Iterative (`, k + 1, n)-Agreement
Algorithm

In Algorithm 5, we construct an (`, k + 1, n)-agreement algo-
rithm by iterating Algorithm 1 and reducing the number of pos-
sible values by one until all processes output no more than ` val-
ues. The idea is that the processes execute consecutive iterations of
(s, s+ 1, n)-agreement algorithms for values of s decreasing from
k to `. In each iteration the number of possible values is reduced
until it reaches the desired bound `.

This procedure is less trivial than it may appear because, for ex-
ample, after the first iteration outputs no more than k values out of
k + 1, in order to decide on k − 1 out of the k values that are pos-
sible, the processes need to know which are the k possible values.
However, careful inspection shows that they need to know these k
values only if they disagree upon choosing the k − 1 values out of
them. In this case, a process that sees k values indeed knows which
are these values among the initial k + 1.

The pseudocode appears in Appendix A, as well as the proof of
its correctness and complexity, as stated in the following theorem.
When using the (s+ 1)-sided shared coins of Section 4 we have:

THEOREM 12. Algorithm 5 solves (`, k+1, n)-agreement with
O((k− `+1)k+n(log k− log `)) individual step complexity and
O((k − `+ 1)nk + n2(log k − log `)) total step complexity.

5.3 A Bit-By-Bit (1, k + 1, n)-Agreement
Algorithm

For agreeing on one value out of {0, . . . , k} we construct Algo-
rithm 6, which agrees on each bit at a time while making sure that
the final value is valid. A similar construction appears in [21, Chap-
ter 9], but does not address the validity condition. In this algorithm,
obtaining validity is a crucial point in the construction, since sim-
ply agreeing on enough bits does not guarantee an output that is the
input of some process.

The idea of our algorithm is that in every iteration j, all the
myValue local variables share the same first j − 1 bits, and they
are all valid values (each is the input of at least one process).

The pseudocode appears in Appendix B, as well as the proof of
its correctness and complexity, as stated in the following theorem.
We denote by δ = δ2 the agreement parameter of the 2-sided shared
coin, and T = T2 and I = I2 are its total and individual step
complexities, respectively.

THEOREM 13. Algorithm 6 solves (1, k + 1, n)-agreement
with O(dlog (k + 1)e · I

δ
) individual step complexity and

O(dlog (k + 1)eT
δ
) total step complexity.

Using an optimal shred coin with a constant agreement param-
eter, an individual step complexity of O(n), and a total step com-
plexity of O(n2), we get a (1, k + 1, n)-agreement algorithm with
an individual step complexity of O(n log k) and a total step com-
plexity of O(n2 log k). Notice that the step complexity could be
improved if agreement on the bits could be run in parallel. How-
ever, this is not trivial because of the need to maintain validity.

6. APPLICATION: THE AT-MOST-ONCE
PROBLEM

In addition to the importance of set-agreement as a basic problem
in distributed computing, it can also be used to solve other practi-
cal problems. In this section, we show how to use a randomized
multi-valued consensus algorithm in order to solve the at-most-
once problem, while improving previous known guarantees for a
measure of performance.

The at-most-once semantics ensures that operations in a dis-
tributed system occur no more than once. This requirement was
studied in contexts of at-most-once message delivery, and of at-
most-once remote procedure calls (RPC), and has been recently ad-
dressed in the context of asynchronous shared memory by Kentros
et al. [15]. In this problem, n processes are required to perform m
jobs. Any job may be performed by any process, but it is required
that no job is executed more than once. While a trivial solution
would be to simply not execute any job, we are interested in algo-
rithms that can nevertheless guarantee some amount of completed
jobs.

DEFINITION 1 ([15]). The effectiveness of an algorithm for
the at-most-once problem with m jobs, and n processes prone to
f crash-failures, is the minimal number of completed jobs over all
possible executions.

Kentros et al. [15] present a deterministic solution for the at-
most-once problem with effectiveness (k − 1)h, where m = kh

and n = 2h, for wait-free solutions2. They also prove a lower
bound of m− f on the effectiveness of any such algorithm. While
the proof is non-trivial, the intuition is rather simple: a process
p may fail just before it is about to execute a certain job, but no
other process q can take over that job, since it cannot distinguish
this situation and the case where p is simply slow. If q executes
the job and p was just slow and eventually also executes the job,
the at-most-once semantics is violated. Following this intuition,
and although we do not give a formal proof, it is clear that the
lower bound of m− f also holds for randomized solutions, which
allow termination with probability 1, but require the at-most-once
condition to always hold.

Using our randomized wait-free (1, n, n)-agreement algorithms
(multi-valued consensus out of n values), we show a randomized
algorithm for the at-most-once problem, that has optimal effective-
ness of m − f . The idea is that for every job the processes exe-
cute (1, n, n)-agreement, and the process whose value was decided
is the process that executes the job. A process participates in the
multi-valued consensus algorithm for a job only after it finished
participating in the multi-valued consensus algorithms for all the
previous jobs. In the algorithm we assume m objects of (1, n, n)-
agreement called Agreement [1..m].

Algorithm 4 An at-most-once algorithm, code for pi
Local variables j
Shared arrays: Agreement [1..m]
1: for j = 1..m
2: if Agreement [j](i) == i execute job j

Algorithm 4 solves the at-most-once problem because of the
agreement property of the multi-valued consensus algorithm. Fur-
ther, in Algorithm 4 a failed process pi can only block one job j, if
2We note that in [15] the number of processes is noted by m and
the number of jobs by n, as opposed to this work.

i was the value decided upon in Agreement [j], and pi fails before
executing job j. This is because the value i can only be proposed to
Agreement [j] by pi, and therefore by validity can only be decided
if pi invokes Agreement [j](i). This can only happen for one value
of j at any given time, by ensuring that a process participates only
in one multi-valued consensus algorithm at a time. Therefore we
have:

THEOREM 14. Algorithm 4 solves the at-most-once problem
and has effectiveness m− f .

Notice that our algorithm can be easily adapted to the case where
the number of jobs is unknown in advance, by simply having an
array jobs that indicates whether another job exists, and having
the processes check this array before proceeding. Moreover, our
solution also works in an online setting of this problem where the
jobs arrive during the execution, at times that are controlled by the
adversary. This is done by having the processes repeatedly read the
first empty location in the jobs array (or linked-list) until they see
an indication for a new job.

Another algorithm for the at-most-once problem can use the tree
construction of Kentros et al. [15], and add a binary consensus ob-
ject for every node in the tree, in order to improve the effective-
ness of their algorithm. This addition prevents having a location
in the array of a node in the tree, which is not addressed by pro-
cesses of either “side" because of a possibility for a conflict (we
refer the reader to the above paper for more details on their algo-
rithm). However, our implementation using multi-valued consen-
sus is more powerful in the sense of being adaptive to the number
of jobs that need to be executed.

7. DISCUSSION
This paper presents wait-free randomized algorithms for the

set-agreement problem in asynchronous shared-memory systems.
There are many open questions that arise and are interesting sub-
jects for further research, as we elaborate next.

We extended the definition of shared-coin algorithms to multi-
sided shared coins. It is an open question whether our (k + 1)-
sided shared-coin algorithm can be improved while keeping the
agreement parameter constant. In addition, the definition can be
modified so that the agreement parameter holds for subsets of less
than k values. It is interesting to find good implementations for
multi-sided shared coins that satisfy this modified definition.

For randomized set-agreement algorithms, it is open whether
better algorithms exist in this model. In addition, it would be in-
triguing to prove lower bounds on the complexities of such algo-
rithms, as no such bounds are currently known.

We note that for k ≤
√
n the total and individual step com-

plexities of our (k, k + 1, n)-agreement algorithm are the same as
for the optimal algorithm for randomized binary consensus, only
divided by k (see [5] and [3] for the total and individual step
complexities of randomized consensus, respectively). First, it is an
open question whether the same complexities can be obtained for
larger values of k. In addition, a similar relation between consen-
sus and set-agreement occurs also for complexities in deterministic
synchronous algorithms and lower bounds under f failures, since
the optimal number of rounds for solving consensus is f + 1 [6],
while the optimal number of rounds for solving set-agreement is
f/k + 1 [10]. It is interesting whether this is a coincidence or an
indication of an inherent connection between the two problems.

We presented a randomized algorithm for the at-most-once prob-
lem, which achieves optimal effectiveness. It is interesting to find
algorithms that have a better step complexity, while retaining the

optimal effectiveness. Our algorithm does not require knowledge
of the number of jobs, and can even work for an online setting, but
it still requires the number of processes to be known in advance,
and it is an open question whether there is a solution which avoids
this assumption.

We believe that similar algorithms to the ones presented in this
paper can be constructed for weaker adversarial models. It is
an open question whether there can be improved algorithms for
weaker adversaries, and it is also important to find analogous al-
gorithms for solving set-agreement in message-passing systems.
Needless to say, obtaining lower bounds for these models is an im-
portant direction for further research.

Acknowledgements:. The author thanks Hagit Attiya for many
valuable discussions, David Hay for a useful suggestion, and Noga
Zewi for comments on an earlier version of this paper.

8. REFERENCES
[1] K. Abrahamson. On achieving consensus using a shared

memory. In Proceedings of the 7th Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages
291–302, 1988.

[2] J. Aspnes. Time- and space-efficient randomized consensus.
J. Algorithms, 14(3):414–431, 1993.

[3] J. Aspnes and K. Censor. Approximate shared-memory
counting despite a strong adversary. In SODA ’09:
Proceedings of the Nineteenth Annual ACM -SIAM
Symposium on Discrete Algorithms, pages 441–450,
Philadelphia, PA, USA, 2009. Society for Industrial and
Applied Mathematics.

[4] J. Aspnes and M. Herlihy. Fast randomized consensus using
shared memory. Journal of Algorithms, 11(3):441–461,
1990.

[5] H. Attiya and K. Censor. Tight bounds for asynchronous
randomized consensus. J. ACM, 55(5):1–26, 2008.

[6] H. Attiya and J. L. Welch. Distributed Computing:
Fundamentals, Simulations and Advanced Topics. John
Wiley & Sons, 2nd edition, 2004.

[7] E. Borowsky and E. Gafni. Generalized FLP impossibility
result for t-resilient asynchronous computations. In STOC
’93: Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, pages 91–100, New York, NY,
USA, 1993. ACM Press.

[8] G. Bracha and O. Rachman. Randomized consensus in
expected O(n2 logn) operations. In Proceedings of the 5th
International Workshop on Distributed Algorithms (WDAG),
pages 143–150, 1991.

[9] S. Chaudhuri. More choices allow more faults: Set consensus
problems in totally asynchronous systems. Information and
Computation, 105(1):132–158, 1993.

[10] S. Chaudhuri, M. Herlihy, N. A. Lynch, and M. R. Tuttle.
Tight bounds for k-set agreement. J. ACM, 47(5):912–943,
2000.

[11] L. Cheung. Randomized wait-free consensus using an
atomicity assumption. In OPODIS, pages 47–60, 2005.

[12] P. Ezhilchelvan, A. Mostefaoui, and M. Raynal. Randomized
multivalued consensus. In Proceedings of the 4th IEEE
International Symposium on Object-Oriented Real-Time
Computing, pages 195–200, 2001.

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM,
32(2):374–382, Apr. 1985.

[14] M. Herlihy and N. Shavit. The topological structure of
asynchronous computability. Journal of the ACM,
46(6):858–923, 1999.

[15] S. Kentros, A. Kiayias, N. C. Nicolaou, and A. A.
Shvartsman. At-most-once semantics in asynchronous shared
memory. In DISC, pages 258–273, 2009.

[16] A. Mostefaoui and M. Raynal. Randomized k-set agreement.
In SPAA ’01: Proceedings of the thirteenth annual ACM
symposium on Parallel algorithms and architectures, pages
291–297, New York, NY, USA, 2001. ACM Press.

[17] A. Mostefaoui, M. Raynal, and F. Tronel. From binary
consensus to multivalued consensus in asynchronous
message-passing systems. Inf. Process. Lett.,
73(5-6):207–212, 2000.

[18] M. Raynal and C. Travers. Synchronous set agreement: a
concise guided tour (including a new algorithm and a list of
open problems). In PRDC ’06: Proceedings of the 12th
Pacific Rim International Symposium on Dependable
Computing, pages 267–274, Washington, DC, USA, 2006.
IEEE Computer Society.

[19] M. Saks, N. Shavit, and H. Woll. Optimal time randomized
consensus—making resilient algorithms fast in practice. In
Proceedings of the 2nd annual ACM-SIAM symposium on
Discrete algorithms, pages 351–362, 1991.

[20] M. Saks and F. Zaharoglou. Wait-free k-set agreement is
impossible: The topology of public knowledge. SIAM J.
Comput., 29(5):1449–1483, 2000.

[21] G. Taubenfeld. Synchronization Algorithms and Concurrent
Programming. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 2006.

[22] R. Turpin and B. A. Coan. Extending binary byzantine
agreement to multivalued byzantine agreement. Inf. Process.
Lett., 18(2):73–76, 1984.

[23] J. Zhang and W. Chen. Bounded cost algorithms for
multivalued consensus using binary consensus instances. Inf.
Process. Lett., 109(17):1005–1009, 2009.

APPENDIX
A. PROOF OF THE ITERATIVE (`, k + 1, n)-

AGREEMENT ALGORITHM
We now present the pseudocode of Algorithm 5 which solves

(`, k+1, n)-agreement by iteratively decreasing the number of pos-
sible values using Algorithm 1, as discussed in Section 5.2.

Notice that Algorithm 1 is correct for agreeing on k values out
of k + 1 values, even if the k + 1 possible input values are not
necessarily {0, . . . , k}, as long as they are a fixed and known set
{v0, . . . , vk}. This is done by having a bijective mapping between
the two sets.

The following lemma guarantees the correctness of the algo-
rithm.

LEMMA 15. For each iteration s, ` ≤ s ≤ k, the number of
different values that appear in the myValue variables of the pro-
cesses that finish iteration s is at most s, and each of these values
is the input of some process.

PROOF. The proof is by induction over the iterations, where the
base case is for s = k and its proof is identical to that of Algo-
rithm 1. For the induction step, we assume the lemma holds up to
s + 1 and prove it for s. A process finishes iteration s when it as-
signs decide = true in line 13. This can only happen after it reads
myCheck [disagree] == false in line 10, which implies that the

number of different entries in myPropose that contain true is at
most s. Moreover, every value that is written to the Propose[s] ar-
ray is the myValue variable of some process at the end of iteration
s + 1, and therefore is the input of some process, by the induction
hypothesis.

Algorithm 5 An (`, k + 1, n)-agreement algorithm, code for pro-
cess pi
local variables: myValue , myPropose = [0..k],

myCheck = [agree, disagree],s,m,r,decide
shared arrays: Propose[1..k][][0..k],

Check [1..k][][agree, disagree]
1: for s = k down to `
2: r = 1
3: decide = false
4: while decide == false
5: Propose[s][r][myValue] = true
6: myPropose = collect(Propose[s][r])
7: if the number of entries in myPropose that contains true

is at most s
8: Check [s][r][agree] = 〈true,myValue〉
9: else
10: Check [s][r][disagree] = true
11: myCheck = collect(Check [s][r])
12: if myCheck [disagree] == false
13: decide = true
14: else if myCheck [agree] == 〈true, v〉
15: myValue = v
16: else if myCheck [agree] == false
17: m = sharedCoins+1[r]
18: myValue = the m-th entry in myPropose that

contains true // At most s+ 1 such values
19: r = r + 1
20: end while
21: end for
22: return myValue

Applying Lemma 15 to s = ` gives the validity and agreement
properties. This leads to the following theorem:

THEOREM 16. Algorithm 5 solves (`, k + 1, n)-agreement
with O(

∑`
s=k

Is+1+k

δs+1
) individual step complexity and

O(
∑`
s=k

Ts+1+nk

δs+1
) total step complexity, where δs+1, Is+1,

and Ts+1 are the agreement parameter, individual step complexity,
and total step complexity, respectively, of the (s+ 1)-sided shared
coins.

PROOF. For each value of s, a process runs an iteration of the
agreement algorithm for s out of s + 1 values. By an analog of
Theorem 1, this takes O(

Is+1+k

δs+1
) individual step complexity, and

O(
Ts+1+nk

δs+1
) individual step complexity. Notice that we add O(k)

steps for collecting the arrays and not O(s) steps, since it may be
that a process does not know which are the s + 1 current possible
values among the initial k + 1 values.

Summing over all iterations gives the resulting complexities.

Using the multi-sided shared coins of Section 4 gives:

Theorem 12 [restated] Algorithm 5 solves (`, k + 1, n)-
agreement with O((k − ` + 1)k + n(log k − log `)) individual
step complexity and O((k − ` + 1)nk + n2(log k − log `)) total
step complexity.

PROOF. For the individual step complexity we have:

∑̀
s=k

Is+1 + k

δs+1
= O(

∑̀
s=k

n

s
+ k)

= O((k − `+ 1)k + n
∑̀
s=k

1

s
)

= O((k − `+ 1)k + n(log k − log `)),

where the last equality follows from the fact that the harmonic se-
ries Hk =

∑k
s=1

1
s

is in the order of log k. Similarly, we have
that the total step complexity is O((k − ` + 1)nk + n2(log k −
log `)).

Note that for ` = 1, i.e., for agreeing on exactly one value out of
the initial k+1 possible inputs, we get an individual step complex-
ity of O((k− `+1)k+n(log k− log `)) = O(k2 +n log k), and
a total step complexity ofO((k− `+1)nk+n2(log k− log `)) =
O(nk2 + n2 log k).

B. PROOF OF THE BIT-BY-BIT (1, k + 1, n)-
AGREEMENT ALGORITHM

We now present the pseudocode of Algorithm 6 which solves
(1, k + 1, n)-agreement by agreeing on every bit of the value, as
discussed in Section 5.3.

Algorithm 6 A (1, k + 1, n)-agreement algorithm by agreeing on
log k bits, code for pi
local variables: myValue = input, myPropose = [0.. log k],

myCheck = [agree, disagree],r = 0,decide = false
shared arrays: Propose[1..k][][0.. log k],

Check [1..k][][agree, disagree]
1: for j = 1 . . . dlog (k + 1)e
2: while (decide == false)
3: r+ = 1
4: Propose[j][r][myValue[j]] = myValue
5: myPropose = collect(Propose[j][r])
6: if myPropose[0] 6= ⊥ and myPropose[1] 6= ⊥
7: Check [j][r][disagree] = myPropose
8: else Check [j][r][agree] = myValue
9: myCheck = collect(Check [j][r])
10: if myCheck [disagree] 6= ⊥
11: coin = sharedCoin2(j, r)
12: if myCheck [agree] 6= ⊥
13: myValue = Propose[j][r][myCheck [agree]]
14: else myValue = myCheck [disagree][coin]
15: else decide = true and r = 0
16: end while
17: end for
18: return myValue

LEMMA 17. For every j, 1 ≤ j ≤ dlog (k + 1)e, at the begin-
ning of iteration j every process has myValue that is the input of
some process, and all the processes have myValue with the same
first j − 1 bits.

PROOF. The proof is by induction on j. The base case for j = 1
clearly holds since at the beginning of the algorithm myValue is
initialized to the input of the process, and j − 1 = 0 so there is no
requirement from the first bits of myValue .

Induction step: Assume that the lemma holds up to value j − 1.
That is, the variable myValue of all processes at the beginning of
iteration j − 1 has the same j − 2 first bits, and they are all inputs
of processes.

First, we notice that in iteration j − 1 the variable myValue can
only change to a value written in the Propose array in line 13, or
to a value written in the Check array in line 14. This implies that
myValue is always an input of some process.

Next, assume that at the end of the iteration processes p and q
have myValue variables with different first j − 1 bits. By the in-
duction hypothesis, this implies that their j − 1-th bit is different.
Let r be the first phase in which such two processes exist and de-
cide in that phase. Assume, without loss of generality, that p exe-
cutes line 4 after q does. This implies that when p reads the array
Propose in line 5, both entries are non-empty. But then p writes its
value into the disagree location of the array Check and therefore
cannot decide in that phase.

Lemma 17, in an analog to Section 3, implies validity and agree-
ment. The following theorem shows the correctness and complex-
ity of the algorithm:

Theorem 13 [restated] Algorithm 6 solves (1, k + 1, n)-
agreement with O(dlog (k + 1)e · I

δ
) individual step complexity

and O(dlog (k + 1)eT
δ
) total step complexity.

PROOF. In each iteration j, 1 ≤ j ≤ dlog (k + 1)e, by an ana-
log to Lemma 4, the expected number of phases until all non-faulty
process decide is 1 + 1/δ which is O(1

δ
). In each phase, a process

takes O(1) steps in addition to the I steps it takes in the shared-
Coin2 algorithm. Therefore, the individual step complexity of Al-
gorithm 6 is O(dlog (k + 1)e · I

δ
), and the total step complexity is

O(dlog (k + 1)eT
δ
).

