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Abstract

An inherent characteristic of distributed systems is the lack of centralized control, which requires

the components to coordinate their actions. This need is abstracted as theconsensusproblem, in

which each process has a binary input and should produce a binary output, such that all outputs

agree. A difficulty in obtaining consensus arises from the possibility of process failures in practical

systems. When combined with the lack of timing assumptions in asynchronous systems, it renders

consensus impossible to solve, as proven by Fischer, Lynch,and Paterson in their fundamental

impossibility result, which shows that no deterministic algorithm can achieve consensus in an

asynchronous system, even if only a single process may fail.

Being a cornerstone in distributed computing, much research has been invested in overcoming

this impossibility result. One successful approach is to incorporate randomization into the compu-

tation, allowing the processes to terminate with probability 1 instead of in every execution, while

never violating agreement.

Randomized consensus is the main subject of this thesis, which investigates algorithms and

lower bounds for this problem. In addition, it addresses problems that arise from the study of

randomized consensus, including set agreement, and efficient concurrent data structures.

Our main contribution is in settling the total step complexity of randomized consensus, im-

proving both known lower and upper bounds to a tightΘ(n2). The upper bound is obtained by

presenting a new shared coin algorithm and analyzing its agreement parameter and total step com-

plexity by viewing it as a stochastic process. The lower bound relies on considering a restricted

round-based set of executions called layers, and using randomized valency arguments to prevent

the algorithm for terminating too quickly. It is shown how toremain with high probability in bi-

valent configurations, or in null-valent configurations. The latter case is modeled as a one-round

coin-flipping game, which is analyzed using an isoperimetric inequality.
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The above result closes the question of the total step complexity of randomized consensus under

a strong adversary, which can observe the values of all shared variables and the local states of all

processes (including results of local coin-flips) before making the next scheduling decision. An

additional result we present is a bound on the total number ofsteps as a function of the probability

of termination for randomized consensus under a weak adversary, which must decide upon the

entire schedule in advance.

Another complexity measure we investigate is the individual step complexity of any single

process. In traditional shared coins a single process may have had to perform all the work by itself,

which motivated the design of shared coins that reduce the individual step complexity. This had the

price of increasing the total step complexity. In this thesis we show how to combine shared-coin

algorithms to enjoy the best of their complexity measures, improving some of the known results.

For the specific model of shared multi-writer multi-reader registers, the question of individual

step complexity of randomized consensus has been later settled by constructing a sub-linear ap-

proximate counter. This raises the interest in additional sub-linear data structures, and specifically

in data structures providing exact values. We present an exact polylogarithmic counter, using a

data structure which we call amax register, which we implement in a polylogarithmic number of

steps per operation. We then construct a framework that usesthe polylogarithmic exact counter to

obtain a shared-coin algorithm with an optimal individual step complexity ofO(n).

Finally, another way to circumvent the impossibility proofof consensus is to allow more

choices. This is modeled as the problem ofset agreement, where the inputs are drawn from a

set of size larger than two, and more than one output is allowed. We present randomized algo-

rithms for different parameters of the set agreement problem, which are resilient to any number of

failures.

2



Abbreviations and Notations

n The number of processes in the system . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 21

f The number of possible failures in the system . . . . . . . . . . . . .. . . . . . . . . . . 21

k + 1 The number of possible inputs to a set agreement algorithm. .. . . . . . . . . .22

ℓ The number of allowed outputs to a set agreement algorithm . .. . . . . . . . . 22

pi A process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 22

δ The agreement parameter of a shared-coin algorithm . . . . . . .. . . . . . . . . . . 27

C A configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 35

σ A schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .35

g A gate in a circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 53

L A layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 94

α An execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .96

qk The probability of not terminating ink(n − f) rounds . . . . . . . . . . . . . . . 100

Pi A set of processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 100

3



4



Chapter 1

Introduction

Coordinating the actions of processes is crucial for virtually all distributed applications, due to

the lack of a centralized control. The most basic abstraction for such coordination is the problem

of reachingconsensuson a single binary input given to each process. Consensus is afundamental

task in asynchronous systems, and can be employed to implement arbitrary concurrent objects [47];

consensus is also a key component of the state-machine approach for replicating services [56,70].

An obstacle in obtaining coordination in distributed systems is the possibility of crash failures,

where a crashed process stops taking steps. Applications are required to be resilient to crashes,

guaranteeing that non-faulty processes behave correctly.This requirement should hold regardless

of the number of failures, i.e., the algorithms should bewait-free.

Formally, the consensus problem requires every non-faultyprocess to eventually output a single

binary output (theterminationcondition), such that all outputs are equal (theagreementcondition).

To avoid trivial solutions, this common output must be the input of some process (thevalidity

condition).

The quality of algorithms for distributed systems subject to crash failures, and sometimes their

existence, is inherently influenced by the timing assumptions provided by the system. Two com-

mon types of distributed systems aresynchronousandasynchronoussystems. In a synchronous

system, the computation proceeds inrounds, each round consisting of a singlestepby each non-

faulty process, whose type depends on the communication model. In an asynchronous system, no

timing assumptions are provided; there are no bounds on the time between two steps of a process,

or between steps of different processes. Asynchrony makes it impossible to tell apart a crashed
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process from a very slow one.

Perhaps the most celebrated result in distributed computing, known as the FLP impossibility

result, first proved by Fischer, Lynch, and Paterson, shows that no deterministic algorithm can

achieve consensus in an asynchronous system, even if only a single process may fail [43,47,57].

Due to the importance of the consensus problem, much research was invested in trying to

circumvent this impossibility result. One successful approach is to relax the termination condition,

and allow randomized algorithms in which a non-faulty process terminates only with probability

1. This does not rule out executions in which a process does not terminate, but guarantees that the

probability of such executions is 0. We emphasize that the safety requirements, of agreement and

validity, remain the same, hence are required to hold ineveryexecution.

Randomized consensus is the main subject of this thesis, which investigates algorithms and

lower bounds. In addition, it addresses problems that arisefrom the study of randomized con-

sensus, including set agreement, and efficient concurrent data structures. The remainder of the

introduction is dedicated to describing these contributions.

1.1 The Total Step Complexity of Randomized Consensus Un-

der a Strong Adversary

Our main contribution is in proving thatΘ(n2) is a tight bound for thetotal step complexityof

asynchronous randomized consensus. The total step complexity, or thetotal workof a randomized

distributed algorithm is the expected total number of stepstaken by all the process. Our result is

two-fold1, improving upon both the previously known upper bound ofO(n2 log n) due to Bracha

and Rachman [28] and the previously known lower bound ofΩ(n2/ log2 n) due to Aspnes [5]. The

communication model addressed is a shared memory system, where processes communicate by

reading and writing tomulti-writer multi-readerregisters. The adversary controlling the schedule

is astrongadversary, which observes all values of shared registers and all local states of processes,

including results of local coin-flips, before scheduling the next process to take a step.

Our algorithm relies on ashared-coinalgorithm [12], as do virtually all randomized consensus

algorithms. In a shared-coin algorithm, each process outputs a value−1 or +1, and for every

1Both results appeared in [15].
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v ∈ {−1, +1}, there is a probability of at leastδ that all processes output the same valuev; δ

is theagreement parameterof the algorithm. Notice that there are no inputs to this procedure.

Aspnes and Herlihy [12] have shown that a shared-coin algorithm with agreement parameterδ

and expected total workT yields a randomized consensus algorithm with expected total work

O(n2 + T/δ).

We present a shared-coin algorithm with aconstantagreement parameter, which leverages a

single binary multi-writer register (in addition ton single-writer multi-reader registers). It allows to

optimize the trade-off between the total step complexity and the agreement parameter. By viewing

any schedule of the algorithm as a stochastic process, and applying Kolmogorov’s inequality, we

prove that for each possible decision value, all processes output that same value for the shared coin

with constant probability. The shared coin has an expected total step complexity ofO(n2). We use

this in the Aspnes-Herlihy framework to obtain a randomizedconsensus algorithm with the same

total step complexity ofO(n2).

The matching lower bound is obtained by consideringlayered executions. We focus on con-

figurations at the end of each layer and classify them according to theirvalence[43, 60], namely,

the decisions that can be reached in layered extensions. Similarly to notions for deterministic al-

gorithms, a configuration isunivalentif there is only one possible decision value from all of the

extensions of the execution from that configuration. If bothdecision values are possible then the

configuration isbivalent. When a decision is reached, the configuration must beunivalent, so the

proof aims to avoid univalent configurations. As opposed to deterministic algorithms, where the

valence of a configuration binds the extension to reach a certain decision valuev, in a randomized

algorithm the valence only implies that some execution willdecidev with high probability [5].

This leaves the possibility ofnull-valentconfigurations, from which no decision value is reached

with high probability. When the configuration is null-valent, we derive an isoperimetric inequality

in order to control a one-round coin-flipping game for reaching another null-valent configuration.

Our general proof structure follows a proof by [23] of anΩ(
√

n/ log n) lower bound on the

expected number of rounds in a randomized consensus algorithm for thesynchronous message

passingmodel. In particular, like them, we treat null-valent configurations by considering one-

round coin-flipping games and applying an isoperimetric inequality. Unlike their proof, our proof

handles the more complicated shared-memory model and exploits the fact that in an asynchronous
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system, processes can be hidden in a one-round coin flipping game without having to fail for the

rest of the execution.2

The layered approach was introduced by [60], who employed itto study deterministic consen-

sus. They showed that the layered approach can unify the impossibility proof for asynchronous

consensus [43, 47, 57] with the lower bound on the number of rounds needed for solving syn-

chronous consensus [37, 42]. Their work considered the message-passing model as well as the

shared-memory model withsingle-writerregisters. We take the layered approach one step further

and extend it to randomized algorithms, deriving the lower bound on their total step complexity

within the same framework as the results for deterministic algorithms. Besides incorporating ran-

domization into the layered model, our proof also deals withthe challenge of allowing processes

to accessmulti-writer registers.

1.2 A Lower Bound for Randomized Consensus Under a Weak

Adversary

The previous lower bound, accompanied by our algorithm, closes the question of the total step

complexity of randomized consensus under a strong adversary. However, there are additional types

of adversaries when randomized algorithms are considered.We provide a second lower bound for

randomized consensus algorithms, under the control of aweak adversarythat chooses the entire

schedule in advance, without observing any progress of the execution.

This is not a lower bound on the total step complexity. Instead, we make use of the obser-

vation that in typical randomized algorithms for consensus, the probability ofnot terminating in

agreement decreases as the execution progresses, becomingsmaller as processes perform more

steps. Our work shows that this behavior is inherent, by proving lower bounds on the probability

of termination when the step complexity is bounded.

We prove that for every integerk, the probability that anf -resilient randomized consensus al-

gorithm ofn processes does not terminate afterk(n−f) steps is at least1
ck , wherec is a constant if

2Hiding processes in a layer can be described as a round-basedmodel withmobilefailures, where a process that

fails in a certain round may still take steps in further rounds [68]. The equivalence between this model and the

asynchronous model is discussed by [64].
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⌈n
f
⌉ is a constant3. The result holds for asynchronous message-passing systems and asynchronous

shared-memory systems (using reads and writes), albeit with different constants. While the same

general proof structure applies in both cases, it is accomplished differently in the message-passing

and the shared-memory models; the latter case is further complicated due to the adversary’s weak-

ness.

For the message-passing model, our proof extends and improves on a result of Chor, Merritt

and Shmoys [36] forsynchronousmessage-passing systems. They show that the probability that

a randomized consensus algorithm does not terminate afterk rounds (andk(n − f) steps) is at

least 1
c·kk . (A similar result is attributed to Karlin and Yao [53].) Theproof rests on considering a

specific chain ofindistinguishableexecutions and showing a correlation between the termination

probability and the length of this chain (the number of executions in it), which in turn depends on

the number of rounds. The chain is taken from the proof of the rounds lower bound for (deter-

ministic) consensus [37, 42] (cf. [18, Chapter 5]); since the chain is determined in advance, i.e.,

regardless of the algorithm’s transitions, the lower boundis derived with a weak adversary.

Our first contribution in this context, for the message-passing model, improves on this lower

bound by exploiting the fact that asynchrony allows to construct “shorter” indistinguishability

chains.

The lower bound can be extended to Monte-Carlo algorithms that always terminate, at the cost

of compromising the agreement property. If an asynchronousmessage-passing algorithm always

terminates withink(n − f) steps, then the probability for disagreement is at least1
ck , wherec is a

constant if⌈n
f
⌉ is a constant. This lower bound can be compared to the recent consensus algorithms

of Kapron et al. [52] for the message-passing model. One algorithm always terminates within

polylog(n) asynchronous rounds, and has a probability1
polylog(n)

for disagreeing, while the other

terminates within2Θ(log7 n) asynchronous rounds, and has a probability1
poly(n)

for disagreeing.

A common theme in both of our lower bounds is the adaptation ofthe layering technique to

randomized algorithms, and the manipulation of layers in order to argue about indistinguishable

executions. This integrates the layering approach, which helps in obtaining simple bounds when

the model is asynchronous, with the randomization used by the algorithms.

In principle, the lower bound scheme can be extended to the shared-memory model by focusing

3This result appeared in [14].

9



on such layered executions. However, our severely handicapped adversarial model poses a couple

of technical challenges. First, while in the message-passing model each step can be assumed to

send messages to all processes, in a shared-memory event, a process chooses which register to

access and whether to read from it or write to it. A very weak adversary, as we use for our lower

bounds, must find a way to make its scheduling decisions in advance without even knowing what

type of step the process will take. Second, the proof scheme requires schedules to be determined

independently of the coin-flips. The latter difficulty cannot be alleviated even by assuming an

adaptive adversary that may schedule the processes according to the execution so far, since future

coin flips may lead to different types of steps.

We manage to extend the lower bound scheme to the shared-memory model, by first sim-

plifying the model, assuming that processes either write tosingle-writer registers or perform a

cheap snapshotoperation, reading all the registers at once. By further assuming that an algorithm

regularly alternates between writes and cheap snapshots, we make processes’ steps predictable,

allowing a weak adversary to construct indistinguishability chains. The lower bound is extended

to hold for multi-writer registers by reduction; while ordinary simulations of multi-writer registers

using single-writer registers haveO(n) overhead (which would significantly deteriorate the lower

bound), cheap snapshots admit a simulation with constant overhead.

1.3 Combining Shared Coins

In addition to investigating the total number of steps of randomized consensus algorithms, we

address theirindividual step complexity. The individual step complexity, or theindividual workof

a randomized distributed algorithm is the expected number of steps taken by any single process.

Having a small individual step complexity is not an immediate consequence of having a small total

step complexity, because a process running alone may have toperform all the work by itself.

As is the case for the total step complexity, the framework ofAspnes and Herlihy [12] shows

that a shared-coin algorithm with agreement parameterδ and expected total workI yields a ran-

domized consensus algorithm with expected total workO(n + I/δ). Previously, the best known

individual work was achieved by the algorithm of Aspnes and Waarts [13], who presented a shared

coin algorithm in which each process performsO(n log2 n) expected number of steps, which is
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significantly lower than the total step complexity bounds. However, by simply multiplying the

individual work byn, their algorithm increases the total work toO(n2 log2 n). This led Aspnes

and Waarts to ask whether this tradeoff is inherent.

We show that there is no such tradeoff, and in fact, each complexity measure can be optimized

separately. This result is achieved by showing that shared-coin algorithms can beinterleavedin a

way that obtains the best of their complexity figures, without harming the agreement parameter.4

Given the power of the adversary to observe both algorithms and adjust their scheduling, it is

not obvious that this is the case, and indeed, following [71], the work of Lynch, Segala, and Vaan-

drager [59] shows that undesired effects may follow from theinteraction of an adaptive adversary

and composed probabilistic algorithms. Nonetheless, we can show that in the particular case of

shared-coin algorithms, two algorithms with agreement parameterδA and δB can be composed

with sufficient independence such that the combined algorithm terminates with the minimum of

each of the algorithms’ complexities (e.g., inboth individual and total work), while obtaining an

agreement parameter ofδA · δB.

An immediate application of our result shows that the sharedcoin algorithm of Bracha and

Rachman can be interleaved with the algorithm of Aspnes and Waarts, to get an algorithm with both

O(n log2 n) individual work andO(n2 log n) total work. This implies that wait-free randomized

consensus can be solved withO(n log2 n) expected individual work andO(n2 log n) expected total

work, usingsingle-writermulti-reader registers. These are currently the best complexities known

for this model.

Our result has other applications for combining shared coins in order to enjoy the best of more

than one complexity measure. For example, Saks, Shavit, andWoll [66] presented three shared-

coin algorithms, each having a good complexity for a different scenario. The complexity measure

they consider is oftime units: one time unit is defined to be a minimal interval in the execution of

the algorithm during which each non-faulty processor executes at least one step. The first is a wait-

free algorithm which takesO( n3

n−f
) time, wheref is the actual number of faulty processes. In the

second algorithm, the time isO(logn) in executions with at mostf =
√

n faulty processes, and in

the third algorithm the time isO(1) in failure-free executions. All three shared coin algorithms have

constant agreement parameters, and Saks, Shavit, and Woll claim that they can be interleaved to

4This result appeared in [10].
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yield one algorithm with a constant agreement parameter that enjoys all of the above complexities.

Our argument is the first to prove this claim.

Our result holds also for the shared-memory model withmulti-writer multi-reader registers. In

this model, building upon ourO(n2) shared coin and the weighted voting scheme of [13], it has

been shown [8] that the individual work can be further reduced toO(n log n); again, this came at a

cost of increasing the total work toO(n2 log n), which can be avoided by combining theO(n log n)

individual work shared coin with ourO(n2) total work shared coin. However, this was superseded

by Aspnes and Censor [11], who gave a shared-coin algorithm with O(n) individual work and

(immediately)O(n2) total work, which is optimal due to ourO(n2) lower bound on total work.

This shared coin is established based on an approximatesub-linear counter, allowing to reduce the

individual work toO(n).

1.4 A Polylogarithmic Counter for an Optimal Individual Ste p

Complexity

While an approximate sub-linear counter suffices for closing the question of the individual step

complexity of randomized consensus algorithms, this leadsus to ask whether there exist better

counters, and specifically anexactsub-linear counter. Exploring this question resulted in anaffir-

mative answer, as well as constructions of additional polylogarithmic concurrent data structures.

One successful approach to building concurrent data structures is to employ theatomic snap-

shotabstraction [2]. An atomic snapshot object is composed of components, each of which typi-

cally is updated by a different processes; the components can be atomically scanned. By applying a

specific function to the scanned components, we can provide aspecific data structure. For example,

to obtain amax register, supporting a write operation and aReadMax operation that returns the

largest value previously written, the function returns thecomponent with the maximum value; to

obtain acounter, supporting an increment operation and aReadCounter operation, the function

adds up the contribution from each process.

Constructions of exact counters take a linear (inn) number of steps. This is due to the cost of

implementing atomic snapshots [49]. Indeed, Jayanti, Tan,and Toueg [51] show that operations

must takeΩ(n) space andΩ(n) steps in the worst case, for many common data structures, including

12



max registers and counters. This seems to indicate that we cannot do better than snapshots for exact

counting.

However, careful inspection of Jayanti, Tan, and Toueg’s lower bound proof reveals that it

holds only when there are numerous operations on the data structure. Thus, it does not rule out the

possibility of having sub-linear algorithms when the number of operations is bounded, or, more

generally, the existence of algorithms whose complexity depends on the number of operations.

Such data structures are useful for many applications, either because they have a limited life time,

or because several instances of the data structure can be used.

We present polylogarithmic implementations of key data structures with a bounded number of

valuesm5. The cornerstone of our constructions, and our first example, is an implementation of a

max register that beats theΩ(n) lower bound of [51] whenlog m is o(n). If the number of values

is bounded bym, its cost per operation isO(log m); for an unbounded set of values, the cost is

O(min(log v, n)), wherev is the value of the register.

Instead of simply summing the individual process contributions, as in a snapshot-based im-

plementation of a counter, we can use a tree of max registers to compute this sum: take an

O(log n) depth tree of two-input adders, where the output of each adder is a max register. To

increment, walk up the tree recomputing all values on the path. The cost of a read operation is

O(min(log v, n)), wherev is the current value of counter, and the cost of an increment operation

is O(min(log n log v, n)). When the number of increments is polynomial, this hasO(log2 n) cost,

which is an exponential improvement from the trivial upper bound ofO(n) using snapshots. The

resulting counter is wait-free and linearizable.

More generally, we show how a max register can be used to transform any monotone circuit

into a wait-free concurrent data structure that provides write operations setting the inputs to the

circuit and a read operation that returns the value of the circuit on the largest input values previ-

ously supplied. Monotone circuits expose the parallelism inherent in the dependency of the data

structure’s values on the arguments to the operations. Formally, a monotone circuitcomputes a

function over some finite alphabet of sizem, which is assumed to be totally ordered. The circuit

is represented by a directed acyclic graph where each node corresponds to a gate that computes a

function of the outputs of its predecessors. Nodes with in-degree zero are input nodes; nodes with

5These results appeared in [9].
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out-degree zero are output nodes. Each gateg, with k inputs, computes some monotone function

fg of its inputs. Monotonicity means that ifxi ≥ yi for all i, thenfg(x1, . . . , xk) ≥ fg(y1, . . . , yk).

The cost of writing a new value to an input to the circuit is bounded byO(Sd min(⌈lg m⌉, n),

wherem is the size of the alphabet for the circuit,d is the number of inputs to each gate, andS is

the number of gates whose value changes as the result of the write. The cost of reading the output

value ismin(⌈lg m⌉, O(n)). While the resulting data structure is not linearizable in general, it

satisfies a weaker but natural consistency condition, called monotone consistency, which we show

is still useful for many applications.

1.5 Randomized Consensus with Optimal Individual Work

We show how to use a polylogarithmic exact counter for obtaining randomized consensus with an

optimal individual step complexity ofO(n), by constructing a shared coin with that individual step

complexity, and using the Aspnes-Herlihy framework discussed earlier.6

Essentially all known shared coins are based on random voting, with some variation in how

votes are collected and how termination is detected.

Our shared coin is based on theweighted votingapproach pioneered in theO(n log2 n) individual-

work algorithm of Aspnes and Waarts [13], where a process that has already cast many votes

becomes impatient and starts casting votes with higher weight. We combined this with the termi-

nation bit of the shared coin ofO(n2) total work, to allow a detection of termination to be spread

fast among the processes.

Still, detecting for the first time that the threshold of number of votes has been reached is a

counting problem: using a standard counter withO(n)-operation reads means that the threshold

can be checked only occasionally without blowing up the cost. By applying our sub-linear counter,

a process can carry out as many asΘ(log n) counter reads within theO(n) time bound. This gives

anO(n) individual step complexity for the shared coin algorithm, and thusO(n) individual step

complexity for randomized consensus.

6This is an adaptation of the result that appeared in [11].
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1.6 Randomized Set Agreement

The last contribution of this thesis is for the problem ofset agreement. In the set-agreement

problem the processes start with input values in{0, . . . , k}, instead of binary inputs, and should

produce output values such that there are at mostℓ different outputs, for someℓ < k. As in the case

of consensus, the termination condition requires every non-faulty process to eventually decide, and

to avoid trivial solutions, the validity condition requires each output value to be the input value of

some process.

The problem of set agreement was introduced by Chaudhuri [32] as a generalization of the con-

sensus problem, in order to deterministically overcome thewell-known FLP impossibility of solv-

ing consensus deterministically in an asynchronous systemwhich allows even one crash-failure.

Chaudhuri showed that if the boundf on the number of faulty processes is smaller thanℓ, then

set agreement can be solved by a deterministic algorithm. Later, it was shown by Borowsky and

Gafni [27], Herlihy and Shavit [48], and Saks and Zaharoglou[67], using topological arguments,

that set agreement cannot be solved deterministically in anasynchronous system iff ≥ ℓ, and in

particular it does not have a wait-free solution.

As in the case of consensus, randomization also allows to overcome the impossibility result for

set agreement. We present randomized wait-free algorithmsfor solving set agreement in an asyn-

chronous shared-memory system.7 First, we generalize the definition of a shared-coin algorithm,

and definemulti-sided shared-coinalgorithms. In such an algorithm, each process outputs one of

k + 1 values (instead of one of two values as in a regular shared-coin), such that each subset ofk

values has probability at leastδ for containing the outputs of all the processes. In other words, each

value has probability at leastδ of not being the output of any process. We then extend the Aspnes-

Herlihy framework for using a shared coin for obtaining a randomized consensus algorithm [12],

and show how to use any multi-sided shared coin in order to obtain a randomized set-agreement

algorithm, for agreeing onk values out ofk + 1.

Next, we present an implementation of a(k + 1)-sided shared-coin algorithm which has a

constant agreement parameter,O(n2/k) total step complexity, andO(n/k) individual step com-

plexity. We then derive a set-agreement algorithm from the(k + 1)-sided shared coin using the

above framework.

7As appeared in [30].
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In addition, we present set-agreement algorithms that are designed for agreeing onℓ values out

of k +1, for ℓ < k. In particular, they can be used for the caseℓ = 1, where the processes agree on

the same value, i.e., formulti-valued consensus. By definition, solving multi-valued consensus is

at least as hard as solvingbinary consensus(where the inputs are in the set{0, 1}, i.e.,k = 1), and

potentially harder. One algorithm uses multi-sided sharedcoins, while the other two embed binary

consensus algorithms in various ways.

1.7 Overview of the Thesis

Additional background is provided in Chapter 2, followed bya formal description of the model in

Chapter 3.

The technical presentation has a different structure than the introduction. It is partitioned into

two parts; one studies algorithms and the second is dedicated to lower bounds, in order to empha-

size the common techniques.

First, Part I presents the algorithms discussed in the introduction. It begins with Chapter 4,

presenting our shared-coin algorithm used to derive randomized consensus withO(n2) total step

complexity. Next, Chapter 5 proves our results regarding the interleaving of shared-coin algo-

rithms. Chapter 6 presents our polylogarithmic concurrentdata structures, and Chapter 7 shows

how to use a polylogarithmic counter to obtain a shared coin with an optimal individual step com-

plexity of O(n). Finally, we conclude the algorithms part in Chapter 8, withalgorithms for set

agreement.

The second part of the thesis, Part II, contains the lower bounds for randomized consensus. We

begin by laying down the framework of manipulating layered executions in Chapter 9, followed by

our lower bound under a weak adversary in Chapter 10, and thenour lower bound under a strong

adversary in Chapter 11.

We complete the thesis with a discussion in Chapter 12.
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Chapter 2

Related Work

In this chapter we survey the background related to our work.We begin with a short historical

overview of randomized consensus algorithms for shared memory. An excellent survey of the state

of the art prior to 2003 appears in [6].

Following the first randomized consensus algorithm of Ben-Or [24], many randomized con-

sensus algorithms have been suggested, in different communication models and under various

assumptions about the adversary. In particular, algorithms were designed to solve randomized

consensus in asynchronous shared-memory systems, againsta strong adversary that can observe

the results of local coin flips before scheduling the processes. Abrahamson [1] presented a ran-

domized algorithm for solving consensus in asynchronous systems using shared memory, whose

total work is exponential inn, the number of processes. The first polynomial algorithm forsolv-

ing randomized consensus under the control of a strong adversary was presented by Aspnes and

Herlihy [12]. They described an algorithm that has a total work of O(n4). The amount of memory

required by this algorithm was later bounded by Attiya, Dolev, and Shavit [16]. Aspnes [4] pre-

sented an algorithm for randomized consensus withO(n4) total work, which also uses bounded

space. These algorithms were followed by an algorithm of Saks, Shavit and Woll [66] withO(n3)

total work, and an algorithm of Bracha and Rachman [28] withO(n2 log n) total work, where the

latter was previously the best known total step complexity.A lower bound ofΩ( n2

log2 n
) on the ex-

pected total number of coin flips was proved by Aspnes in [5]; this implies the same lower bound

on the total step complexity.

The previousΩ( n2

log2 n
) lower bound [5] for randomized consensus under a strong adversary
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relies on a lower bound for coin flipping games. In this proof,the adversary schedules processes

step-by-step, and the results of the games are analyzed through hyperbolic functions. In contrast,

our approach considers only the configurations at the end of layers, allowing powerful results

about product probability spaces to be applied, and streamlining the analysis of the behavior of

executions.

There is an extensive literature on randomized agreement algorithms for message passing sys-

tems under a weak adversary. Recent papers in this area provide algorithms for agreement in the

presence of Byzantine processes infull informationmodels, where the adversary is computation-

ally unbounded. See [25,44,54] for a more detailed description and references.

To the best of our knowledge, there are no other lower bounds on randomized consensus in

shared-memory systems under a weak adversary. There are several algorithms assuming avalue-

oblivious adversary, which may determine the schedule adaptively based on the functional de-

scription of past and pending operations, but cannot observe any value of any register nor re-

sults of local coin-flips. This model is clearly stronger than the adversary we employ, and hence

our lower bounds apply to it as well. The algorithms differ bythe type of shared registers they

use [20–22, 31]. For single-writer multi-reader registers, Aumann and Bender [21] give a con-

sensus algorithm that has probability of at most1
nc of not terminating withinO(n log2 n) steps.

For multi-writer multi-reader registers, Aumann [20] shows a consensus algorithm in which the

probability of not terminating ink iterations (andO(k · n) steps) is at most(3/4)k.

Chandra [31] gives an algorithm withO(log2 n) individual step complexity, assuming an in-

termediate adversary that cannot see the outcome of a coin-flip until it is read by some process.

Aumann and Kapah-Levy [22] give an algorithm withO(n log n exp(2
√

polylogn)) total step com-

plexity, using single-writer single-reader registers, and assuming a value-oblivious adversary.

An algorithm withO(n log log n) total step complexity against a weak adversary was given by

Cheung [34], which considers a model with a stronger assumption that a write operation occurs

atomically after a local coin-flip. It improves upon earlierwork by Chor, Israeli, and Li [35],

who provide an algorithm withO(n2) total step complexity using a slightly different atomicity

assumption.

We now turn our attention to randomized set agreement. Previous randomized agreement algo-

rithms for asynchronous shared-memory systems under a strong adversary are for the specific case
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of binary consensus, as discussed earlier, with the optimalindividual and total step complexities

beingO(n) andO(n2), respectively [11,15].

Unlike the shared-memory model, several set-agreement algorithms for asynchronousmessage-

passingsystems have been proposed. Mostefaoui et al. [62] use binary consensus to construct a

multi-valued consensus algorithm for message-passing systems. This work assumes reliable broad-

cast. In the same model, Zhang and Chen [74] present improvedalgorithms, which reduce the

number of binary consensus instances that are required. Under the above assumption, Ezhilchel-

van et al. [39] also present a randomized multi-valued consensus algorithm, while Mostefaoui

and Raynal [61] present a randomized set-agreement algorithm for agreeing onℓ values out ofn.

The above algorithms require a bound on the number of failures f < n/2, a restriction that can

be avoided in the shared-memory model. Moreover, there is anexponentially small agreement

parameter for the shared coins that are used, which causes the expected number of phases until

agreement is reached to be large.

There is additional literature on set agreement insynchronoussystems. An important result is

by Chaudhuri et al. [33] who show thatf/k + 1 is the number of rounds needed for solvingk-set

agreement in shared memory. Raynal and Travers [65] proposenew algorithms in addition to a

good survey on synchronous set-agreement algorithms.
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Chapter 3

The Basic Model and Definitions

This thesis considers a standard model of an asynchronous shared-memory system, wheren pro-

cesses,p1, . . . , pn, communicate by reading and writing to shared multi-writermulti-reader (atomic)

registers (cf. [19,58]). In some cases, which will be explicitly noted, it will be more convenient to

consider the set of processes as{p0, . . . , pn−1}.

Eachstepconsists of some local computation, including an arbitrarynumber of local coin

flips (possibly biased) and one shared memoryevent, which is a read or a write to some register.

Processes may fail by crashing, in which case they do not takeany further steps.

The system isasynchronous, meaning that the steps of processes are scheduled according to

an adversary. This implies that there are no timing assumptions, and specifically no bounds on the

time between two steps of a process, or between steps of different processes.

An algorithm isf -tolerantif it satisfies the requirements of a problem in a system whereat most

f processes can fail by crashing. In some cases we will requireour algorithms to bewait-free, i.e.,

to be correct even iff = n − 1 processes may fail during an execution.

Since our algorithms are randomized, different assumptions on the power of the adversary

may yield different results. Throughout most of this thesis, we assume that the interleaving of

processes’ events is governed by astrongadversary that observes the results of the local coin flips

before scheduling the next event; in particular, it may observe a coin-flip and, based on its outcome,

choose whether or not that process may proceed with its next shared-memory operation.

The only exception to this is in the lower bound presented in Chapter 10, where we assume a

weaker adversary. It is explicitly defined before being used.
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The complexity measures we consider are the following. Thetotal step complexityor total

work of an algorithm is the expected total number of steps taken byall the processes during a

worst-case execution of the algorithm. Similarly, theindividual step complexityor individual work

of an algorithm is the expected number of steps taken by any single process during a worst-case

execution of the algorithm.

Following are the formal definitions of the main problems addressed.

Definition 3.1 In a consensus algorithm, each processpi has an input valuexi, and should decide

on an output valueyi. An algorithm for solving randomized consensus satisfies the following

requirements.

Agreement:For every two non-faulty processespi andpj , if yi andyj are assigned thenyi = yj.

Validity: For every non-faulty processpi, if yi is assigned thenyi = xj for some processpj.

Termination:With probability 1, every non-faulty processpi eventually assigns a value toyi.

Note that the safety requirements of agreement and validityneed to always hold, while termination

only needs to hold with probability 1. The problem of set agreement is defined similarly, as follows.

Definition 3.2 In an algorithm for solving(ℓ, k + 1, n)-agreementeach processpi has an input

valuexi in {0, . . . , k} and should decide on an output valueyi such that the following conditions

hold:

Set Agreement:There are at mostℓ different outputs.

Validity: For every non-faulty processpi, if yi is assigned thenyi = xj for some processpj.

Termination:With probability 1, every non-faulty processpi eventually assigns a value toyi.

We sometimes use the termset agreementwithout parameters for abbreviation. The particular case

in which ℓ = 1, k > 1 is the problem ofmulti-valued consensus, while in caseℓ = k = 1 we have

binary consensus.

For completeness, we redefine the notion of ashared-coinalgorithm, as discussed in Chapter 1.

In a shared-coin algorithm the processes do not have inputs and each process should output a value

−1 or +1. Theagreement parameterof a shared-coin algorithm is the maximal valueδ such that

for everyv ∈ {−1, +1}, there is a probability of at leastδ that all processes output the same value

v.
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Algorithm 3.1 A randomized consensus algorithm from a shared coin, code for pi

Local variables:r = 1, decide = false,myValue = input,

myPropose = [ ], myCheck = [ ]

Shared arrays:Propose [ ][0..1],Check [ ][agree, disagree]

1: whiledecide == false

2: Propose [r][myValue ] = true

3: myPropose = collect(Propose [r])

4: if there is only one value inmyPropose

5: Check [r][agree] = 〈true,myValue〉
6: else

7: Check [r][disagree] = true

8: myCheck = collect(Check [r])

9: if myCheck [disagree] == false

10: decide = true

11: else ifmyCheck [agree] == 〈true, v〉
12: myValue = v

13: else ifmyCheck [agree] == false

14: myValue = sharedCoin[r]

15: r = r + 1

16: end while

17: returnmyValue

Algorithm 3.1 gives the framework of Aspnes and Herlihy [12]for deriving a randomized

binary consensus algorithm from a shared coin calledsharedCoin, with an agreement parameter

δ. It follows the presentation given by Saks, Shavit, and Woll[66]. However, the complexity is

improved by using multi-writer registers, based on the construction of Cheung [34].

The basic idea is that agreement is easy to detect, while the main challenge is in obtaining it.

The randomized consensus algorithm proceeds by (asynchronous) phases, in which the processes

try to obtain agreement (sometimes using the shared coin) and then detect whether agreement has

been reached. Each processp writes its own preference to a shared arrayPropose, checks if the

preferences agree on one value, and notes this in another shared arrayCheck . If p indeed sees

23



agreement, it also notes its preference inCheck .

Processp then checks the agreement arrayCheck . If p does not observe a note of disagreement,

it decides on the value of its preference. Otherwise, if there is a note of disagreement, but also a

note of agreement,p adopts the value associated with the agreement notificationas preference for

the next phase. Finally, if there is only a notification of disagreement, the process participates in a

shared-coin algorithm and prefers the output of the shared coin.

In every phase, it is guaranteed that only one value can be decided upon, and if some process

decides then all others either decide as well or adopt this decision value for the next phase. Also,

only one value can be adopted by processes for the next phase.This implies that for the processes

to have different preferences for the next phase, it must be that at least one process executes the

shared-coin algorithm. But with probability at leastδ all the processes that run the shared-coin

algorithm output the same value. This is true even if other processes have adopted a value without

participating in the shared-coin algorithm, since for eachof the two values we have a probability

δ for agreeing on that value. Therefore, after the first phase,in which the preferences are given

by the adversary, the number of phases until agreement is reached is a geometric random variable,

and so its expectation is1/δ.

For a complete proof, see Chapter 8, Section 8.1, where a generalized framework is presented,

allowing to obtain a randomized set-agreement algorithm from amulti-sided shared coin.
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Algorithms
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Chapter 4

A Randomized Consensus Algorithm

As discussed in Chapter 1, Aspnes and Herlihy [12] have shownthat a shared-coin algorithm

with agreement parameterδ, expected individual workI, and expected total workT , yields a ran-

domized consensus algorithm with expected individual workO(n + I/δ) and expected total work

O(n2 + T/δ). Our randomized consensus algorithm is obtained by constructing a shared coin, as

described and proved in the following section. For an explicit reduction from a randomized con-

sensus algorithm to a shared coin algorithm, we refer the reader to Section 8.1, where a generalized

and slightly improved framework is presented.

4.1 A Shared Coin withO(n2) Total Work

This section presents a randomized consensus algorithm with O(n2) total step complexity, by in-

troducing a shared coin algorithm with aconstantagreement parameter andO(n2) total step com-

plexity. Using a shared coin algorithm withO(n2) total step complexity and a constant agreement

parameter in the scheme of [12], implies a randomized consensus algorithm withO(n2) total step

complexity.

As in previous shared coin algorithms [28, 66], in our algorithm the processes flip coins until

the amount of coins that were flipped reaches a certain threshold. An array ofn single-writer multi-

reader registers records the number of coins each process has flipped, and their sum. A process

reads the whole array in order to track the total number of coins that were flipped.

Each process decides on the value of the majority of the coin flips it reads. Our goal is for the
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processes to read similar sets of coins, in order to agree on the same majority value. For this to

happen, we bound the total number of coins that are flipped (byany process) after some process

observes that the threshold was exceeded. A very simple way to guarantee this property is to have

processes frequently read the array in order to detect quickly that the threshold was reached. This,

however, increases the total step complexity. Therefore, as in previous shared coin algorithms, we

have to resolve the tradeoff between achieving a small totalstep complexity and a large (constant)

agreement parameter.

The novel idea of our algorithm in order to overcome this conflict, is to utilize a multi-writer

register calleddonethat serves as a binary termination flag; it is initialized tofalse. A process that

detects that enough coins were flipped, setsdoneto true. This allows a process to read the array

only once in everyn of its local coin flips, but check the registerdonebefore each local coin flip.

The pseudocode appears in Algorithm 4.1. In addition to the binary registerdone, it uses an ar-

rayA of n single-writer multi-reader registers, each with the following components (all initialized

to 0):

count: how many flips the process performed so far.

sum: the sum of coin flips values so far.

Each process keeps a local copya of the arrayA. The collect operation in lines 6 and 8 is an

abbreviation forn read operations of the arrayA.

For the proof, fix an executionα of the algorithm. We will show that all processes that ter-

minate agree on the value 1 for the shared coin with constant probability; by symmetry, the same

probability holds for agreeing on−1, which implies that the algorithm has a constant agreement

parameter.

The total count of a specific collect is the sum ofa[1].count, . . . , a[n].count, as read in this

collect. Note that the total count in Line 8 is ignored, but itcan still be used for the purpose of the

proof.

Although the algorithm only maintains the counts and sums ofcoin flips, we can (externally)

associate them with the set of coin flips they reflect; we denote byFC the collection of core coin

flips that are written in the shared memory by the first time that true is written todone. The size of

FC can easily be bounded, since each process flips at mostn coins before checkingA.

Lemma 4.1 FC contains at leastn2 coins and at most2n2 coins.

28



Algorithm 4.1 Shared coin algorithm: code for processpi.

local integernum, initially 0

array a[1..n]

1: while notdonedo

2: num + +

3: flip = random(−1,+1) // a fair local coin

4: A[i].〈count, sum〉 = 〈count + +, sum + flip〉 // atomically

5: if num == 0 mod n then // check if time to terminate

6: a = collect A // n read operations

7: if a[1].count + ... + a[n].count ≥ n2 thendone= true // raise termination flag

end while

8: a= collect A // n read operations

9: returnsign(
∑n

j=1 a[j].sum) // return+1 or −1, depending on the majority value of the coin flips

Proof: Clearly, true is written todonein line 7 only if the process reads at leastn2 flips, therefore

|FC | ≥ n2. Consider the point in the execution aftern2 coins were written. Each process can flip

at mostn more coins until reaching line 7, and then it writes true todone. Therefore when true is

written todonethere are at most2n2 coins written, and|FC | ≤ 2n2.

For a set of coinsF we letSum(F ) be the sum of the coins inF . We denote byFi the set of

coin flips read by the collect of processpi in Line 8. This is the set according to which the process

pi decides on its output, i.e.,pi returnsSum(Fi). Since each process may flip at most one more

coin after true is written todone, we can show:

Lemma 4.2 For everyi, FC ⊆ Fi, andFi \ FC contains at mostn − 1 coins.

Proof: Note that the collect of any processpi in Line 8 starts after true is written todone. Hence,

Fi containsFC .

After true is written todone, each process (except the process that had written true todone) can

flip at most one more coin before reading thatdoneis true in Line 1. Therefore, the set of coins

that are written when the process reads Line 8 is the set of coins that were written when true was

written todone(which isFC), plus at mostn − 1 additional coins.
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pi collects
in Line 8

FC

Figure 4.1:Phases of the shared coin algorithm.

We now show that there is at least a constant probability thatSum(FC) ≥ n. In this case,

by Lemma 4.2, all processes that terminate agree on the value1, sinceFi contains at mostn − 1

additional coins.

We partition the execution into three phases. The first phaseends whenn2 coins are written.

After every coin is written there may be up ton − 1 additional coins that are already flipped but

not yet written. The adversary has a choice whether to allow each of these coins to be written. We

assume an even stronger adversary that can choose then2 written coins out ofn2 +n−1 coins that

were flipped. The second phase ends when true is written todone. In the third phase, each process

reads the whole arrayA and returns a value for the shared coin. (See Figure 4.1.)

SinceFC is the set of coins written whendone is set to true, then it is exactly the set of

coins written in the first and second phases. LetFfirst be the firstn2 coins that are written, and

Fsecond = FC \ Ffirst. This implies thatSum(FC) = Sum(Ffirst) + Sum(Fsecond). Therefore,

we can bound (from below) the probability thatSum(FC) ≥ n by bounding the probabilities that

Sum(Ffirst) ≥ 3n andSum(Fsecond) ≥ −2n.

Consider the sum of the firstn2 + n − 1 coin flips. After these coins are flipped, the adversary

has to write at leastn2 of them, which will be the coins inFfirst. If the sum of the firstn2 + n − 1

coin flips is at least4n thenSum(Ffirst) ≥ 3n. We bound the probability that this happens using

the Central Limit Theorem.

Lemma 4.3 The probability thatSum(Ffirst) ≥ 3n is at least 1
8
√

2π
e−8.

Proof: There areN = n2 + n − 1 coins flipped whenn2 coins are written toFfirst. By the

Central Limit Theorem, the probability for the sum of these coins to be at leastx
√

N , converges

to 1 − Φ(x), whereΦ(x) =
1√
2π

∫ x

−∞
e−

1
2
y2

dy is the normal distribution function. By [40, Chap-

ter VII], we have1−Φ(x) > ( 1
x
− 1

x3 )
1√
2π

e−
1
2
x2

. Substitutingx = 4 we have that with probability
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at least 1
8
√

2π
e−8 the sum of theseN coins is at least4

√
N , which is more than4n, and hence

Sum(Ffirst) ≥ 3n.

We now need to boundSum(Fsecond). Unlike Ffirst, whose size is determined, the adversary

may have control over the number of coins inFsecond, and not only over which coins are in it.

However, by Lemma 4.1 we have|FC | ≤ 2n2, therefore|Fsecond| ≤ n2, which implies thatFsecond

must be some prefix ofn2 additional coin flips. We consider the partial sums of thesen2 additional

coin flips, and show that with high probability, all these partial sums are greater than−2n, and

therefore in particularSum(Fsecond) > −2n.

Formally, for everyi, 1 ≤ i ≤ n2, let Xi be thei-th additional coin flip, and denoteSj =
∑j

i=1 Xi. Since|Fsecond| ≤ n2, there existk, 1 ≤ k ≤ n2, such thatSk = Sum(Fsecond). If

Sj > −2n for everyj, 1 ≤ j ≤ n2, then specificallySum(Fsecond) = Sk > −2n.

The bound on the partial sums is derived using Kolmogorov’s inequality.

Kolmogorov’s Inequality [40, Chapter IX] Let X1, . . .Xm be independent random variables

such thatV ar[Xi] < ∞ for everyi, 1 ≤ i ≤ m, and letSj =
∑j

i=1 Xi for everyj, 1 ≤ j ≤ m.

Then for everyλ > 0, the probability that

|Sj − E[Sj ]| < λ
√

V ar[Sm] , for all j, 1 ≤ j ≤ m,

is at least1 − λ−2.

Lemma 4.4 The probability thatSj > −2n for all j, 1 ≤ j ≤ n2, is at least3
4
.

Proof: The results of then2 coin flips are independent random variablesX1, . . ., Xn2 , with

E[Xi] = 0 andV ar[Xi] = 1, for everyi, 1 ≤ i ≤ n2.

SinceSj is the sum ofj independent random variables, its expectation isE[Sj ] =
∑j

i=1 E[Xi] =

0, and its variance isV ar[Sj ] =
∑j

i=1 V ar[Xi] = j.

Kolmogorov’s inequality implies that|Sj| < 2n (and henceSj > −2n), for all j, 1 ≤ j ≤ n2,

with probability at least3
4
.

This bounds the probability of agreeing on the same value forthe shared coin as follows.

Lemma 4.5 Algorithm 4.1 is a shared coin algorithm with agreement parameterδ = 3
32

√
2π

e−8.
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Proof: By Lemma 4.3, the probability thatSum(Ffirst) ≥ 3n is at least 1
8
√

2π
e−8, and by

Lemma 4.4, the probability thatSum(Fsecond) ≥ −2n is at least 3
4
. Since Sum(FC) =

Sum(Ffirst) + Sum(Fsecond), this implies that the probability thatSum(FC) ≥ n is at least
3

32
√

2π
e−8.

By Lemma 4.2, for everyi, Fi \ FC contains at mostn − 1 coins, which implies that if

Sum(FC) ≥ n thenSum(Fi) ≥ 1, and therefore ifpi terminates, then it will decide1. Hence,

with probability at least 3
32

√
2π

e−8, Sum(FC) ≥ n and all processes which terminate agree on the

value1.

By symmetry, all processes that terminate agree on the value−1 with at least the same proba-

bility.

Clearly, Algorithm 4.1 flipsO(n2) coins. Moreover, all work performed by processes in read-

ing the arrayA can be attributed to coin flips. This can be used to show that Algorithm 4.1 has

O(n2) total step complexity.

Lemma 4.6 Algorithm 4.1 hasO(n2) total step complexity.

Proof: We begin by counting operations that are not part of a collect. There areO(1) such

operations per local coin flip, and by Lemmas 4.1 and 4.2 thereare at most2n2 + n− 1 local coin

flips, implyingO(n2) operations that are not part of a collect.

Each collect performed bypi in Line 6, can be associated with then local coins that can be

flipped bypi before it. By Lemma 4.1, there are at most2n2 coins inFC , i.e. at most2n2 coin flips

during the first and second phases of the algorithm. Therefore, during these phases there can be at

most 2n2

n
= 2n collects performed by processes in Line 6. In the third phase, every process may

perform another collect in Line 6, and another collect in Line 8, yielding at most2n additional

collects. Thus, there are at most4n collects performed during the algorithm, yielding a total of

O(n2) steps.

Using Algorithm 4.1 in the scheme of [12] (see also Algorithm8.1 in Section 8.1) yields a

randomized consensus algorithm. Informally, the scheme uses single-writer registers in which

the processes update their preferences (starting with their inputs), and allows the processes to

collect the values of these registers in order to detect agreement. If fast processes agree then they
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decide their preference and a slow process also adopts it, otherwise a process changes its preference

according to the result of the shared coin. Given a shared coin algorithm with agreement parameter

δ and step complexityT , the scheme yields a randomized consensus algorithm withO(δ−1T )

expected step complexity. This implies the next theorem:

Theorem 4.7 There is a randomized consensus algorithm withO(n2) total step complexity.
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Chapter 5

Combining Shared Coins

In this chapter we show how to combine shared-coin algorithms into a shared coin that integrates

their complexity measures. We begin by carefully defining the choices of our strong adversary.

A configurationconsists of the local states of all processes, and the valuesof all the registers.

Since we consider randomized algorithms with a strong adversary, we partition the configurations

into two categoriesCalg andCadv. In configurationsC ∈ Calg there is a process waiting to flip a

local coin, and in configurationsC ∈ Cadv all processes are pending to access the shared memory.

For each configurationC ∈ Calg wherepi is about to flip a local coin there is a fixed probability

space for the result of the coin, which we denote byXC
i . An elementy ∈ XC

i with probability

Pr[y] represents a possible result of the local coin flip ofpi from the configurationC. If there

is more than one process that is waiting to flip a coin inC, then we fix some arbitrary order of

flipping the local coins, for example according to the process identifiers. In this case,pi will be the

process with the smallest identifier that is waiting to flip a coin in C. The next process will flip its

coin only from the resulting configuration.

We can now define thestrong adversaryformally, as follows. For every configurationC ∈
Calg the adversary lets a processpi, with the smallest identifier, flip its local coin. For every

configurationC ∈ Cadv, the adversaryσ picks an arbitrary process to take a step which accesses

the shared memory. Having the adversary wait until all processes flip their current coins does not

restrict the adversary’s power, since any adversary that makes a decision before scheduling some

pending coin-flip, can be viewed as one that schedules the pending coin-flip but ignores its outcome

until after making that decision.
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Algorithm 5.1 Interleaving shared coin algorithmsA andB: code for processpi.

1: whiletrue do

2: take a step in algorithmA

3: if terminated inA by returningv then returnv // local computation

4: take a step in algorithmB

5: if terminated inB by returningv then returnv // local computation

5.1 Interleaving shared-coin algorithms

Let A andB be two shared-coin algorithms. InterleavingA andB is done by performing a loop

in which the process executes one step of each algorithm (seeAlgorithm 5.1). When one of the

algorithms terminates, returning some valuev, the interleaved algorithm terminates as well, and

returns the same valuev.

We denote byδA andδB the agreement parameters of algorithmA and algorithmB, respec-

tively.

We next show that the agreement parameter of the interleavedalgorithm is the product of the

agreement parameters of algorithmsA andB. The idea behind the proof is that since different

processes may choose a value for the shared coin based on either of the two algorithms, for all

processes to agree on some valuev we need all processes to agree onv in both algorithms. In order

to deduce an agreement parameter which is the product of the two given agreement parameters,

we need to show that the executions of the two algorithms are independent, in the sense that the

adversary cannot gain any additional power out of running two interleaved algorithms.

In general, it is not obvious that the agreement parameter ofthe interleaved algorithm is the

product of the two given agreement parameters. In each of thetwo algorithms it is only promised

that there is a constant probability that the adversary cannot prevent a certain outcome, but in the

interleaved algorithm the adversary does not have to decidein advance which outcome it tries to

prevent from a certain algorithm, since it may depend on how the other algorithm proceeds. For

example, it suffices for the adversary to have the processes in one algorithm agree on0 and have

the processes in the other algorithm agree on1.

The first theorem assumes that one of the algorithms always terminates within some fixed

bound on the number of steps, and not only with probability 1.We later extend this result to hold
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for any pair of shared coin algorithms.

Theorem 5.1 If algorithm A always terminates within some fixed bound on the number of steps,

then the interleaving of algorithmsA andB has agreement parameterδ ≥ δA · δB.

Proof: Since algorithmA always terminates within some fixed bound on the number of steps,

the interleaved algorithm also terminates within some fixedbound on the number of steps (at

most twice as many). We define the probability of reaching agreement on the valuev for every

configurationC in one of the algorithms, by backwards induction, as follows.

With every configurationC, we associate a values that is the maximal number of steps taken

by all the processes from configurationC, over all possible adversaries and all results of the local

coin flips, until they terminate in the interleaved algorithm (by terminating either inA or in B).

Since algorithmA always terminates within some fixed bound on the number of steps,s is well

defined.

We denote byC|A the projection of the configurationC on algorithmA. That is,C|A consists

of the local states referring to algorithmA of all processes, and the values of the shared registers

of algorithmA. Similarly we denote byC|B the projection ofC on algorithmB.

We denote bySC the set of adversaries possible from a configurationC. We consider a partition

of SC into SA
C andSB

C , which are the set of adversaries from configurationC whose next step is in

algorithmA andB, respectively.

We define the probability Prv[C] for agreeing in the interleaved algorithm by induction ons.

In a configurationC for which s = 0, all processes terminate in the interleaved algorithm, by

terminating either inA or in B. We define Prv[C] to be 1 if all the processes decidev, and 0

otherwise. LetC be any other configuration. IfC ∈ Cadv, then:

Prv[C] = min
σ∈SC

Prv[C
σ],

whereCσ is the resulting configuration after scheduling one process, according to the adversaryσ,

to access the shared memory1. If C ∈ Calg, then:

Prv[C] =
∑

y∈XC
i

Pr[y] · Prv[C
y],

1Notice that the minimum of the probabilities over all adversaries inSC is well defined, sinceSC is always finite

because there is a fixed bound on the number of steps in algorithmA and a finite number of processes.
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wherepi is the process waiting to flip a local coin in the configurationC andCy is the resulting

configuration after the coin is flipped. Notice that for the initial configurationCI , we have that

δ = min
v

Prv[CI ].

In order to prove the theorem, we use PrA
v [C] (and similarly PrBv [C]) for a configurationC

in the interleaved algorithm, which is the probability thatstarting fromC, all the processes that

terminate by terminating in algorithmA (algorithmB) agree on the valuev.

We define these probabilities formally by induction ons. We only state the definition of PrA
v [C];

the definition of PrBv [C] is analogous. Notice that PrA
v [C] depends only on the projectionC|A of

configurationC on algorithmA, and on the possible adversaries inSA
C . For a configurationC in

which s = 0, all the processes have terminated in the interleaved algorithm. We define PrAv [C] to

be 1 if all the processes that terminated by terminating in algorithmA agree on the valuev, and 0

otherwise (in the latter case there is at least one process that terminated by terminating in algorithm

A, but did not decide on the valuev).

Let C be any other configuration, i.e., withs > 0. If C ∈ Cadv, then:

PrAv [C] = PrAv [C|A, SA
C ] = min

σ∈SA
C

PrAv [Cσ|A, SA
Cσ ],

whereCσ is the resulting configuration after scheduling one process, according to the adversaryσ,

to access the shared memory. IfC ∈ Calg, then:

PrAv [C] = PrAv [C|A, SA
C ] =

∑

y∈XC
i

Pr[y] · PrAv [Cy|A, SA
Cy ],

wherepi is the process waiting to flip a local coin in the configurationC andCy is the resulting

configuration after the coin is flipped.

We now claim that for every configurationC, Prv[C] ≥ PrAv [C] · PrBv [C]; the proof is by

induction ons.

Base case:If s = 0, then all processes have terminated in the interleaved algorithm. Processes

agree onv if and only if every process decidesv, whether it terminates inA or in B, therefore

Prv[C] = PrAv [C] · PrBv [C].

Induction step:Assume the claim holds for any configurationC ′ with at mosts − 1 steps

remaining to termination under any adversary. LetC be a configuration with at mosts steps until

termination under any adversary. We consider two cases according to the type ofC.
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If C ∈ Cadv, then:

Prv[C] = min
σ∈SC

Prv[C
σ]

= min

{

min
σ∈SA

C

Prv[C
σ], min

σ∈SB
C

Prv[C
σ]

}

,

By the induction hypothesis on the configurationCσ, with one step less to termination, we get:

Prv[C] = min

{

min
σ∈SA

C

(
PrAv [Cσ] · PrBv [Cσ]

)
, min
σ∈SB

C

(
PrAv [Cσ] · PrBv [Cσ]

)
}

= min

{

min
σ∈SA

C

(
PrAv [Cσ|A, SA

Cσ ] · PrBv [Cσ|B, SB
Cσ ]

)
, min
σ∈SB

C

(
PrAv [Cσ|A, SA

Cσ ] · PrBv [Cσ|B, SB
Cσ ]

)
}

where the second equality follows by the definition of PrA
v [Cσ] and PrBv [Cσ]. If the step taken

from C by σ is in algorithmA thenCσ|B = C|B. Moreover,SB
Cσ ⊆ SB

C , because a process may

terminate in algorithmA and be unavailable for scheduling. Therefore we have

PrBv [Cσ|B, SB
Cσ ] ≥ PrBv [C|B, SB

C ].

Similarly, if the step taken fromC by σ is in algorithmB then PrAv [Cσ|A, SA
Cσ ] ≥ PrAv [C|A, SA

C ].

Thus,

Prv[C] ≥ min

{

min
σ∈SA

C

(
PrAv [Cσ|A, SA

Cσ ] · PrBv [C|B, SB
C ]

)
, min
σ∈SB

C

(
PrAv [C|A, SA

C ] · PrBv [Cσ|B, SB
Cσ ]

)
}

= min

{

PrBv [C|B, SB
C ]

(

min
σ∈SA

C

PrAv [Cσ|A, SA
Cσ ]

)

, PrAv [C|A, SA
C ]

(

min
σ∈SB

C

PrBv [Cσ|B, SB
Cσ ]

)}

= min
{

PrBv [C] · PrAv [C], PrAv [C] · PrBv [C]
}

= PrAv [C] · PrBv [C],

which completes the proof of the claim that Prv[C] ≥ PrAv [C]·PrBv [C] for a configurationC ∈ Cadv.

If C ∈ Calg, with processpi waiting to flip a local coin, then:

Prv[C] =
∑

y∈XC
i

Pr[y] · Prv[C
y]

=
∑

y∈XC
i

Pr[y] · PrAv [Cy] · PrBv [Cy]

=
∑

y∈XC
i

Pr[y] · PrAv [Cy|A, SA
Cy ] · PrBv [Cy|B, SB

Cy ],
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by the induction hypothesis on the configurationCy, with one step less to termination. If the

coin of pi is in algorithmA, thenCy|B = C|B. Moreover,SB
Cy ⊆ SB

C , because a process may

terminate in algorithmA and be unavailable for scheduling. Therefore we have PrB
v [Cy|B, SB

Cy ] ≥
PrBv [C|B, SB

C ]. Similarly, if the coin ofpi is in algorithmB then PrAv [Cy|A, SA
Cy ] ≥ PrAv [C|A, SA

C ].

Assume, without loss of generality, that the coin is in algorithm A, thus,

Prv[C] ≥
∑

y∈XC
i

Pr[y] · PrAv [Cy|A, SA
Cy ] · PrBv [C|B, SB

C ]

= PrBv [C|B, SB
C ]




∑

y∈XC
i

Pr[y] · PrAv [Cy|A, SA
Cy ]





= PrBv [C] · PrAv [C],

which completes the proof of the claim that Prv[C] ≥ PrAv [C] ·PrBv [C] for a configurationC ∈ Calg.

The theorem follows by applying the claim to the initial configurationCI , to get that Prv[CI ] ≥
PrAv [CI ] · PrBv [CI ]. Notice again that in the interleaved algorithm, the adversary is slightly more

restricted in scheduling processes to take steps in algorithmA than it is in algorithmA itself, since

a process might terminate in algorithmB and be unavailable for scheduling. This only reduces the

power of the adversary, implying that PrA
v [CI ] ≥ δA. The same applies for algorithmB and hence

PrBv [CI ] ≥ δB. Therefore we have that Prv[CI ] ≥ PrAv [CI ] ·PrBv [CI ] ≥ δA · δB, for everyv ∈ {0, 1},

which completes the proof sinceδ = min
v

Prv[CI ].

When neither algorithmA nor algorithmB have a bound on the number of steps until termi-

nation, the same result is obtained by consideringtruncatedalgorithms. In a truncated algorithm

Ah, we stop the original algorithmA after at mosth steps, for some finite numberh, and if not all

processes have terminated then we regard this execution as one that does not agree on any value.

This only restricts the algorithm, so the agreement parameter of a truncated algorithm is at most

the agreement parameter of the original algorithm, i.e.,δAh
≤ δA.

For any shared coin algorithm, we define Prh
v [CI ] to be the probability that all the processes

terminate and decidev within at mosth steps from the initial configurationCI . This is exactly the

probability Prv[CI ] of the truncated algorithmAh. The next lemma proves that the probabilities

Prhv [CI ] tend to the probability Prv[CI ], ash goes to infinity.

Lemma 5.2 Prv[CI ] = limh→∞ Prhv [CI ].
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Proof: For everyh, let Yh be the event that all the processes terminate and decidev within at

mosth steps from the initial configurationCI . By this definition, we have Pr[Yh] = Prhv [CI ], and

Pr[∪∞
h=1Yh] = Prv[CI ].

It is easy to see that the sequence of eventsY1, Y2, . . . is a monotone increasing sequence of

events, i.e.,Y1 ⊆ Y2 ⊆ · · · , therefore the limitlimh→∞ Pr[Yh] exists, and by [45, Lemma 5, p. 7]

we have Pr[∪∞
h=1Yh] = limh→∞ Pr[Yh]. This implies that Prv[CI ] = limh→∞ Prhv [CI ].

We use the above limit to show that we can truncate an algorithm to get as close as desired to

the agreement parameter by a bounded algorithm.

Lemma 5.3 In a shared coin algorithm with agreement parameterδ, for everyǫ > 0 there is an

integerhǫ such that Prhǫ
v [CI ] ≥ δ − ǫ.

Proof: Assume, towards a contradiction, that for everyh we have Prhv [CI ] < δ − ǫ. Since Prv[CI ]

is the probability that all the processes terminate and decidev (without a bound on the number of

steps), this implies that

Prv[CI ] = lim
h→∞

Prhv [CI ] ≤ δ − ǫ < δ,

which completes the proof.

We can now truncate the shared coin algorithmA after a finite number of steps as a function

of ǫ, and use Theorem 5.1 to get an interleaved algorithm with agreement parameterδAhǫ
· δB ≥

(δA − ǫ) · δB.

By truncating algorithmA we only restrict the interleaved algorithm (as we only restrict algo-

rithm A), and therefore we have that by interleaving algorithmsA andB we obtain an agreement

parameterδ that is at least(δA − ǫ) · δB for everyǫ > 0, which implies thatδ ≥ δA · δB, and gives

the following theorem.

Theorem 5.4 The interleaving of algorithmsA andB has agreement parameterδ ≥ δA · δB.
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5.2 Applications

5.2.1 Shared Coin Using Single-Writer Registers

We obtain a shared-coin algorithm using only single-writerregisters that has bothO(n2 log n) total

work andO(n log2 n) individual work, by interleaving the algorithm from [28] and the algorithm

from [13].

For two shared-coin algorithmsA andB, we denote byTA(n) andIA(n) the total and individual

work, respectively, of algorithmA, and similarly denoteTB(n) andIB(n) for algorithmB. We now

argue that the total and individual step complexities of theinterleaved algorithm are the minima of

the respective complexities of algorithmsA andB.

Lemma 5.5 The interleaving of algorithmsA andB has an expected total work of

2 min{TA(n), TB(n)} + n,

and an expected individual work of

2 min{IA(n), IB(n)} + 1.

Proof: We begin by proving the claim regarding the total work. Afterat most2TA(n) + n total

steps are executed by the adversary, at leastTA(n) of them are in algorithmA, and hence all

the processes have terminated in AlgorithmA, and have therefore terminated in the interleaved

algorithm. The same applies to AlgorithmB. Therefore the interleaved algorithm has a total work

of 2 min{TA(n), TB(n)} + n.

We now prove the bound on the individual work. Consider any processpi. After at most

2IA(n) + 1 total steps ofpi are executed by the adversary, at leastIA(n) of them are in algorithm

A, and hence the processpi has terminated in AlgorithmA, and has therefore terminated in the

interleaved algorithm. The same applies to AlgorithmB. This is true for all the processes, therefore

the interleaved algorithm has an individual work of2 min{TA(n), TB(n)} + 1.

Applying Lemma 5.5 and Theorem 5.1 to an interleaving of the algorithms of [28] and [13],

yields:

Theorem 5.6 There is a shared-coin algorithm with a constant agreement parameter, withO(n2 log n)

total work andO(n log2 n) individual work, using single-writer multi-reader registers.
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5.2.2 Shared Coin for Different Levels of Resilience

In this section we discuss the interleaving done by Saks, Shavit, and Woll [66]. They presented the

following three shared-coin algorithms, all having a constant agreement parameter. The complexity

measure they consider is oftime units: one time unit is defined to be a minimal interval in the

execution of the algorithm during which each non-faulty processor executes at least one step.

The first algorithm takesO( n3

n−f
) time, wheref is the number of faulty processes. It is wait-

free, i.e., it can toleratef = n−1 faulty processes. This is done by having each process repeatedly

flip a local coin and write it into an array, then collect the array to see if at leastn2 coins were

already flipped. Once a process observes that enough coins were flipped, it terminates and decides

on the majority of all the coins it collected. The individualwork of the first algorithm is inO(n3),

since in the worst case, the process does all the work by itself.

The second algorithm takesO(log n) time in executions with at mostf =
√

n faulty processes,

but may not terminate otherwise. This is done by having each process flip one local coin and write

it into an array, then repeatedly scan the array until it observes that at leastn − √
n coins were

already flipped. It then terminates and decides on the majority of all the coins it collected.

In the third algorithm there is one predetermined process that flips one local coin and writes

the result into a shared memory location. The other processes repeatedly read that location until

they see it has been written into, and then decide that value.This takesO(1) time in failure-free

executions, but may not terminate otherwise.

Theorem 5.1 shows that the interleaving of these three algorithm gives a shared coin algorithm

with a constant agreement parameter. Technically, we applythe theorem twice, first to interleave

the first algorithm (which is bounded) and the second algorithm; then we interleave the resulting

algorithm (which is bounded) with the third algorithm.

The interleaving of all three algorithms enjoys all of the above complexities, by an argument

similar to Lemma 5.5, which yields the following theorem.

Theorem 5.7 There is a shared-coin algorithm with a constant agreement parameter, which takes

O( n3

n−f
) time in any execution,O(logn) time in executions with at mostf =

√
n failures, andO(1)

time in failure-free executions, using single-writer multi-reader registers.

This can of course be further improved by replacing the first algorithm with the algorithm of

43



Section 5.2.1 or with the algorithm of Aspnes and Censor [11], if multi-writer registers can be

employed.
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Chapter 6

Polylogarithmic Concurrent Data

Structures from Monotone Circuits

All of the known shared coins mentioned in Chapter 2 are essentially based on a majority voting

mechanism, which varies in the way the votes are collected and the way termination is detected.

The number of votes needed is mainly influenced by the abilityof the strong adversary to delay

n − 1 votes in between the collection of votes performed by different processes, since our goal is

to provide a large (usually constant) probability of processes seeing the same value of the majority.

For example, in the shared coin we present in Chapter 4,n2 votes are needed.

Detecting that the number of votes reached the desired threshold is a counting problem. The

number of steps required for counting the votes induces a tradeoff in the design of shared-coin

algorithms: on one hand the processes should not perform thecounting procedure very often in

order to reduce the step complexity, and on the other hand performing frequent counting allows

the majorities seen by different processes to be similar, resulting in a good agreement parameter.

The simple counters used in previous shared coins were ofO(n) steps per counter-read oper-

ation, which implies that in order to obtain an individual step complexity ofO(n) for the shared

coin (and hence for randomized consensus) only a constant number of counter-read operations

can be invoked by each process. This, however, harms the attempt to have a constant agreement

parameter.

Therefore, we are interested in wait-free implementationsof counters and additional data struc-

tures, in which any operation on the data structure terminates within a sub-linear number of its
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steps regardless of the schedule chosen by the adversary, i.e., thecostof the implementation is

sub-linear.

We note that in this chapter we consider the set of processes to beP = {p0, . . . , pn−1}.

6.1 Max registers

Our basic data structure is amax register, which is an objectr that supports aWriteMax(r, t)

operation with an argumentt that records the valuet in r, and aReadMax(r) operation returning

the maximum value written to the objectr. A max register may be either bounded or unbounded.

For a bounded max register, we assume that the values it stores are in the range0..(m−1), wherem

is thesizeof the register. We assume that any non-negative integer canbe stored in an unbounded

max register. In general, we will be interested in unboundedmax registers, but will consider

bounded max registers in some of our constructions and lowerbounds.

One way to implement max registers is by using snapshots. Given a linear-time snapshot algo-

rithm (e.g., [49]), aWriteMax operation for processpi updates locationa[i], while aReadMax

operation takes a snapshot of all locations and returns the maximum value. Assuming no bounds

on the size of snapshot array elements, this gives an implementation of an unbounded max register

with linear cost (in the number of processesn) for bothWriteMax andReadMax. We show be-

low how to build more efficient max registers: a recursive construction that gives costs logarithmic

in the size of the register for bothWriteMax andReadMax.

Note that another approach is to usef -arrays, as proposed by Jayanti [50]. Anf -array is a

data structure that supports computation of a functionf over the components of an array. Instead

of having a process take a snapshot of the array and then locally apply f to the result, Jayanti

implements anf -array by having the write operations update a predetermined location according

to the new value off , which requires a read operation to only read that location.This construction

is then extended to a tree algorithm. For implementing anf -array ofm registers, wheref can be

any common aggregate function, including the maximum valueor the sum of values, this reduces

the number of steps required toO(logm) for a write operation, while a read operation takesO(1)

steps. These implementations use LL/SC objects, while we restrict our base objects to multi-writer

multi-reader registers.
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Figure 6.1:Implementing a max register.

In the remainder of this section we show how to construct a maxregister recursively from a

tree of increasingly large max registers. The resulting data structure can also be viewed as a tree

whose leaves represent the possible values that can be stored. However, the recursive description

facilitates the proof.

The smallest object is a trivialMaxReg0 object, which is a max registerr that supports only

the value0. The implementation ofMaxReg0 requires zero space and zero step complexity:

WriteMax(r, 0) is a no-op, andReadMax(r) always returns0.

To get larger max registers, we combine smaller ones recursively (see Figure 6.1). The base

objects will consist of at most one snapshot-based max register as described earlier (used to limit

the depth of the tree in the unbounded construction) and a large number of trivialMaxReg0 objects.

A recursiveMaxReg object has three components: twoMaxReg objects calledr.left andr.right,

wherer.left is a bounded max register of sizem, and one 1-bit multi-writer register calledr.switch.

The resulting object is a max register whose size is the sum ofthe sizes ofr.left andr.right, or

unbounded ifr.right is unbounded .

Writing a valuet to r is by theWriteMax(r, t) procedure, in which the process writes the

valuet to r.left if t < m andr.switch is off, or otherwise writes the valuet − m to r.right and

sets ther.switch bit. Reading the maximal value is by theReadMax(r) procedure, in which the

process returns the value it reads fromr.left if r.switch is off, and otherwise returns the value it

reads fromr.right plusm.
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Algorithm 6.1 WriteMax(r, t)

Shared variables:switch: a 1-bit multi-writer register, initially 0

left, aMaxReg object of sizem, initially 0,

right, aMaxReg object of arbitrary size, initially 0

1: if t < m

2: if r.switch == 0

3: WriteMax(r.left, t)

4: else

5: WriteMax(r.right, t − m)

6: r.switch = 1

Algorithm 6.2 ReadMax(r)

Shared Variables:switch: a 1-bit multi-writer register, initially 0

left, aMaxReg object of sizem, initially 0,

right, aMaxReg object of arbitrary size, initially 0

1: if r.switch == 0

2: returnReadMax(r.left)

3: else

4: returnReadMax(r.right) + m

An important property of this implementation is that it preserves linearizability, as shown in

the following lemma.

Lemma 6.1 If r.left andr.right are linearizable max registers, then so isr.

Proof: We assume that each of theMaxReg objectsr.left andr.right is linearizable. Thus, we

can associate each operation on them with one linearizationpoint and treat these operations as

atomic. In addition, we can associate each read or write to the registerr.switch with a single

linearization point since it is atomic.

We now consider a schedule ofReadMax(r) andWriteMax(r, t) operations. These consist

of reads and writes tor.switch and ofReadMax andWriteMax operations onr.left andr.right.

We divide the operations onr into three categories:

48



• Cleft: ReadMax(r) operations that read 0 fromr.switch, andWriteMax(r, t) operations

with t < m that read 0 fromr.switch.

• Cright: ReadMax(r) operations that read 1 fromr.switch, andWriteMax(r, t) operations

with t ≥ m (i.e., that write 1 tor.switch).

• Cswitch: WriteMax(r, t) operations witht < m that read 1 fromr.switch.

Inspection of the code shows that each operation onr falls into exactly one of these categories.

Notice that an operation is inCleft if and only if it invokes an operation onr.left, an operation is in

Cright if and only if it invokes an operation onr.right, and an operation is inCswitch if and only if it

invokes no operation onr.left or r.right. We order the operations by the following four rules:

1. We order all operations ofCleft before those ofCright. This preserves the execution order of

non-overlapping operations between these two categories,since an operation that starts after

an operation inCright finishes cannot be inCleft.

2. An operationop in Cswitch is ordered at the latest time possible before any operationop′ that

starts afterop finishes.

3. WithinCleft we order the operations according to the time at which they accessr.left, i.e., by

the order of their respective linearization points.

4. WithinCright we order the operations according to the time at which they accessr.right, i.e.,

by the order of their linearization points.

It is easy to verify that these rules are well-defined.

We first prove that these rules preserve the execution order of non-overlapping operations. For

two operations in the same category this is clearly implied by rules 2–4. Since rule 1 shows that

two operations fromCleft andCright are also properly ordered, it is left to consider the case that one

operation is inCswitch and the other is either inCleft or in Cright. In this case, rule 2 implies that their

order preserves the execution order.

We now prove that this order satisfies the specification of a max register, i.e., if aReadMax(r)

operationop returnst then t is the largest value written by operations onr of typeWriteMax

that are ordered beforeop. This requires showing that there is aWriteMax(r, t) operationopw
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ordered beforeop, and that there is noWriteMax(r, t′) operationopw′ with t′ > t ordered before

op.

This is obtained again by using the linearizability of the components. Ifop returns a valuet <

m (i.e., it is inCleft) then this is the value that is returned from its invocationop′ ofReadMax(r.left).

By the linearizability ofr.left, there is aWriteMax(r.left, t) operationop′w ordered beforeop′ in

the linearization ofr.left. By rule 3, this implies that theWriteMax(r, t) operationopw which

invokedop′w is ordered beforeop. A similar argument forr.right applies if op returns a value

t ≥ m.

To prove that no operation of typeWriteMax with a larger value is ordered beforeop, we

assume, towards a contradiction, that there is aWriteMax(r, t′) operationopw′ with t′ > t that

is ordered beforeop. If op returns a valuet < m (i.e., it is in Cleft) thenopw′ cannot be inCright,

otherwise it would be ordered afterop, by rule 1. Moreover,opw′ cannot be inCswitch, since rule

2 implies thatop starts afteropw′ finishes and hence must also read 1 fromr.switch which is

a contradiction toop ∈ Cleft. Therefore,opw ∈ Cleft, but this contradicts the linearizability of

r.left. If op returns a valuet ≥ m (i.e., it is inCright) thenopw′ cannot be inCleft becauset′ > t.

Moreover,opw′ cannot be inCswitch, sincet′ > t ≥ m. Therefore,opw is inCright, which contradicts

the linearizability ofr.right.

Using Lemma 6.1, we can build a max register whose structure corresponds to an arbitrary

binary search tree, where each internal node of the tree is represented by a recursive max register

and each leaf is aMaxReg0, or, for the rightmost leaf, aMaxReg0 or snapshot-basedMaxReg

depending on whether we want a bounded or an unbounded max register. There are several natural

choices, as we will discuss next.

6.1.1 Using a balanced binary search tree

To construct a bounded max register of size2k, we use a balanced binary search tree. LetMaxRegk

be a recursive max register built from twoMaxRegk−1 objects, withMaxReg0 being the trivial

max register defined previously. ThenMaxRegk has size2k for all k. It is linearizable by induction

onk, using Lemma 6.1 for the induction step.

We can also easily compute an exact upper bound on the cost ofReadMax andWriteMax on

aMaxRegk object. Fork = 0, bothReadMax andWriteMax perform no operations. For larger
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k, eachReadMax operation performs one register read and then recurses to perform a single

ReadMax operation on aMaxRegk−1 object, while eachWriteMax performs either a register

read or a register write plus at most one recursive call toWriteMax. Thus:

Theorem 6.2 A MaxRegk object implements a linearizable max register for which every

ReadMax operation requires exactlyk register reads, and everyWriteMax operation requires

at mostk register operations.

In terms of the size of the max register, operations on a max register that supportsm values,

where2k−1 < m ≤ 2k values, each take at most⌈lg m⌉ steps. Note that this cost does not depend

on the number of processesn; indeed, it is not hard to see that this implementation workseven

with infinitely many processes.

6.1.2 Using an unbalanced binary search tree

In order to implement max registers that support unbounded values, we use unbalanced binary

search trees.

Bentley and Yao [26] provide several constructions of unbalanced binary search trees with the

property that thei-th leaf is at depthO(log i). The simplest of these, calledB1, constructs the tree

by encoding each positive integer using a modified version ofa classic variable-length code known

as the Elias delta code [38]. In this code, each positive integerN = 2k + ℓ with 0 ≤ ℓ < 2k is

represented by the bit sequenceδ(N) = 1k−10β(ℓ), whereβ(ℓ) is the(k− 1)-bit binary expansion

of ℓ. The first few such encodings are0, 100, 101, 11000, 11001, 11010, 11011, 1110000, . . .. If we

interpret a leading0 bit as a direction to the left subtree and a leading1 bit as a direction to the right

subtree, this gives a binary tree that consists of an infinitely long rightmost path (corresponding

to the increasingly long prefixes1k), where thei-th node in this path has a left subtree that is a

balanced binary search tree with2i leaves. (A similar construction is used in [17].)

Let us consider what happens if we build a max register using the B1 search tree (see Fig-

ure 6.2). AReadMax operation that reads the valuev will follow the path corresponding to

δ(v + 1), and in fact will read precisely this sequence of bits from the switch registers in each

recursive max register along the path. This gives a cost to read valuev that is equal to|δ(v + 1)| =

2 ⌈lg(v + 1)⌉ + 1. Similarly, the cost ofWriteMax(v) will be at most2 ⌈lg(v + 1)⌉ + 1.
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Figure 6.2:An unbalanced max register.

Both of these costs are unbounded for unbounded values ofv. For ReadMax operations,

there is an additional complication: repeated concurrentWriteMax operations might set each

switch just before theReadMax reaches it, preventing theReadMax from terminating1. Another

complication is in proving linearizability, as the induction does not bottom without trickery like

truncating the structure just below the last node actually used by any completed operation.

For these reasons, we prefer to backstop the tree with a single snapshot-based max register

that replaces the entire subtree at position1n, wheren is the number of processes. Using this

construction, we have:

Theorem 6.3 There is a linearizable implementation ofMaxReg for which everyReadMax oper-

ation that returns valuev requiresmin(2 ⌈lg(v + 1)⌉+1, O(n)) register reads, and everyWriteMax

operation requires at mostmin(2 ⌈lg(v + 1)⌉ + 1, O(n)) register operations.

If constant factors are important, the2 can be reduced to1+o(1) by using a more sophisticated

unbalanced search tree; the interested reader should consult [26] for examples.

1Note that the infinite-tree construction does give anobstruction-freealgorithm, where an operation is only required

to terminate when running alone.
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6.2 Monotone circuits

In this section, we show how a max register can be used to construct more sophisticated data struc-

tures from arbitrary monotone circuits. Recall that a monotone circuit computes a function over

some finite alphabet of sizem, which is assumed to be totally ordered. The circuit is represented

by a directed acyclic graph where each node corresponds to a gate that computes a function of the

outputs of its predecessors. Nodes with in-degree zero are input nodes; nodes with out-degree zero

are output nodes. Each gateg, with k inputs, computes some monotone functionfg of its inputs.

Monotonicity means that ifxi ≥ yi for all i, thenfg(x1, . . . , xk) ≥ fg(y1, . . . , yk).

For each monotone circuit, we can construct a correspondingmonotone data structure. This

data structure supports operationsWriteInput andReadOutput, where eachWriteInput

operation updates the value of one of the inputs to the circuit and eachReadOutput operation

returns the value of one of the outputs. Like the circuit as a whole, the effects ofWriteInput

operations are monotone: attempts to set an input to a value less than or equal to its current value

have no effect. This restriction still allows for an interesting class of data structures, the most

useful of which may be the bounded counter described in Section 6.3.1.

The resulting data structure always providesmonotone consistency, which is generally weaker

than linearizability:

Definition 6.1 A monotone data structure ismonotone consistentif the following properties hold

in any execution:

1. For each output, there is a total ordering< on allReadOutput operations for it, such that

if some operationR1 finishes before some other operationR2 starts, thenR1 < R2, and if

R1 < R2, then the value returned byR1 is less than or equal to the value returned byR2.

2. The valuev returned by anyReadOutput operation satisfiesf(x1, . . . , xk) ≤ v, where

eachxi is the largest value written to inputi by aWriteInput operation that completes

before theReadOutput operation starts.

3. The valuev returned by anyReadOutput operation satisfiesv ≤ f(y1, . . . , yk), where

eachyi is the largest value written to inputi by aWriteInput operation that starts before

theReadOutput operation completes.
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Algorithm 6.3 WriteInput(g, v)

1: WriteMax(g, v)

2: Letg1, . . . gS be a topological sort of all gates reachable fromg.

3: for i = 1 to S

4: UpdateGate(gi)

Algorithm 6.4 UpdateGate(g)

1: Letx1, . . . , xd be the inputs tog.

2: for i = 1 to d

3: yi = ReadMax(xi)

4: WriteMax(g, fg(y1, . . . , yd))

The intuition here is that the values at each output appear tobe non-decreasing over time (the

first condition), all completedWriteInput operations are always observed byReadOutput

(the second condition), and no spurious larger values are observed byReadOutput (the third

condition). But when operations are concurrent, it may be that someReadOutput operations

return intermediate values that are not consistent with anyfixed ordering ofWriteMax operations,

violating linearizability (an example is given in Section 6.3).

We convert a monotone circuit to a monotone data structure byassigning a max register to

each input and each gate output in the circuit. We assume thatthese max registers are initialized

to a default minimum value, so that the initial state of the data structure will be consistent with the

circuit. A WriteInput operation on this data structure updates an input (usingWriteMax) and

propagates the resulting changes through the circuit as described in ProcedureWriteInput. A

ReadOutput operation reads the value of some output node, by performinga ReadMax oper-

ation on the corresponding output. The cost of aReadOutput operation is the same as that of

a ReadMax operation:O(min(log m, n)). The cost ofWriteInput operation depends on the

structure of the circuit: in the worst case, it isO(Sd min(log m, n)), whereS is the number of

gates reachable from the input andd is the maximum number of inputs to each gate.

Theorem 6.4 For any fixed monotone circuitC, theWriteInput andReadOutput operations

based on that circuit are monotone consistent.
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Algorithm 6.5 ReadOutput(g)

1: returnReadMax(g)

Proof: Consider some execution of a collection ofWriteInput andReadOutput operations.

We think of this execution as consisting of a sequence of atomic WriteMax andReadMax op-

erations and use time to refer to the total number of such operations completed at any point in the

execution.

The first clause in Definition 6.1 follows immediately from the linearizability of max regis-

ters, since we can just orderReadOutput operations by the order of their internalReadMax

operations.

For the remaining two clauses, we will jump ahead to the third, upper-bound, clause first. The

proof is slightly simpler than the proof for the lower bound,and it allows us to develop tools that

we will use for the proof of the second clause.

For each inputxi, let V t
i be the maximum value written to the register representingxi at or

before timet. For any gateg, let Cg(x1, . . . , xn) be the function giving the output ofg when the

original circuitC is applied tox1, . . . , xn (see Figure 6.3). For simplicity, we allowC in this case

to include internal gates, output gates, and the registers representing inputs (which we can think of

as zero-input gates). We thus can defineCg recursively byCg(x1, . . . , xn) = xi wheng = xi is an

input gate and

Cg(x1, . . . , xn) = fg(Cgi1
(x1, . . . , xn), . . . Cgi1

(xk, . . . , xn))

wheng is an internal or output gate with inputsgi1 . . . gik . Let gt be the actual output ofg in our

execution at timet, i.e., the contents of the max register representing the output of g. We claim

that for allg andt, gt ≤ Cg(V
t
1 , . . . , V t

n).

The proof is by induction ont and the structure ofC. In the initial state, all max registers

are at their default minimum value and the induction hypothesis holds. Suppose now that some

max registerg changes its value at timet. If this max register represents an input, the new value

corresponds to some input supplied directly toWriteInput, and we havegt = Cg(V
t
1 , . . . , V t

n).

If the max register represents an internal or output gate, its value is written during some call to

UpdateGate, and is equal tofg(g
t1
i1

, gt2
i2

, . . . , gtk
ik

) where eachgij is some register read by this call
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Figure 6.3: A gateg in a circuit computes a function of its inputsfg(gi1, . . . , gik). The inputs to

the circuit arex1, . . . , xn.

to UpdateGate andtj < t is the time at which it is read. Because max register values can only

increase over time, we have, for eachj, g
tj
ij
≤ gt

ij
= gt−1

ij
≤ Cgij

(V t−1
1 , . . . , V t−1

n ) by the induction

hypothesis, and the fact that only gateg changes at timet. This last quantity is in turn at most

Cgij
(V t

1 , . . . , V t
n) as only gateg changes at timet. By monotonicity offg we then get

gt = fg(g
t1
i1

, gt2
i2

, . . . , gtk
ik

)

≤ fg(Cg1(V
t
1 , . . . , V t

n), . . . , Cgk
(V t

1 , . . . , V t
n))

= Cg(V
t
1 , . . . , V t

n)

as claimed, which completes the proof of clause 3.

We now consider clause 2, which gives a lower bound on output values. For each time

t and inputxi, let vt
i be the maximum value written to the max register representing xi by a

WriteInput operation that finishes at or before timet. We wish to show that for any output

gateg, gt ≥ Cg(v
t
1, . . . , v

t
n). As with the upper bound, we proceed by induction ont and the struc-

ture ofC. But the induction hypothesis is slightly more complicated, in that in order to make the

proof go through we must take into account which gate we are working with when choosing which

input values to consider.

For each gateg, let vt
i(g) be the maximum value written to input registerxi by any instance

of WriteInput that completesUpdateGate(g) at or before timet. Our induction hypothesis

is that at each timet and for each gateg, gt ≥ Cg(v
t
1(g), . . . vt

n(g)). Although in general we have

vt
i ≥ vt

i(g), havinggt ≥ Cg(v
t
1(g), . . . vt

n(g)) implies gt ≥ Cg(v
t
1, . . . , v

t
n), as any process that
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writes to some inputxi that affects the value ofg as part of someWriteInput operation must

completeUpdateGate(g) before finishing the operation.

Suppose now that some max registerg changes its value at timet. If g is an input, the in-

duction hypothesis holds trivially. Otherwise, consider the set of allWriteInput operations

that write tog at or before timet. Among these operations, one of them is the last to com-

pleteUpdateGate(g′) for some inputg′ to g. Let this event occur at timet′ < t, and call

the process that completes this operationp. We now consider the effect of theUpdateGate(g)

procedure carried out as part of thisWriteInput operation. Because no other operation com-

pletes anUpdateGate procedure for any inputgij to g betweent′ andt, we have that for each

such input and eachi, vt
i(gij) = vt′

i (gij). Since theReadMax operation of eachgij in p’s call to

UpdateGate(g) occurs after timet′, it obtains a value that is at least

gt′

ij
≥ Cgij

(vt′

1 (gij), . . . , v
t′

n (gij )) ≥ Cgij
(vt

1(gij ), . . . , v
t
n(gij )),

by the induction hypothesis, monotonicity ofCgij
, and the previous observation on the relation

betweenvt′

i (gij) andvt
i(gij). But then

gt ≥ fg(Cgi1
(vt

1(gi1), . . . , v
t
n(gi1)), . . .

Cgik
(vt

1(gik), . . . , v
t
n(gik)))

≥ fg(Cgi1
(vt

1(g), . . . , vt
n(g)), . . . , Cgik

(vt
1(g), . . . , vt

n(g)))

= Cg(v
t
1(g), . . . , vt

n(g)).

6.3 Applications

In this section we consider applications of the circuit-based method for building data structures

described in Section 6.2. Most of these applications will bevariants on counters, as these are

the main example of monotone data structures currently found in the literature. Because we are

working over a finite alphabet, all of our counters will be bounded.

The basic structure we will use is a circuit consisting of a binary tree of adders, where each gate

in the circuit computes the sum of its inputs and each input tothe circuit is assigned to a distinct
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process to avoid lost updates. We may consider either bounded or unbounded counters, depending

on whether we are using bounded or unbounded max registers. For a bounded counter, we allow

only values in the range0 throughm−1 for somem; an adder gate whose output would otherwise

exceedm − 1 limits its output tom − 1. Because the circuit is a tree, aWriteInput operation

has a particularly simple structure since it need only update gates along a single path to the root; it

follows that aWriteInput operation costsO(min(log n log m, n)) time while aReadOutput

operation costsO(min(log m, n)) time. This is an exponential improvement on the best previously

known upper bound ofO(n) for exact counting, and on the boundO(n4/5+ǫ((1/δ) logn)O(1/ǫ)),

whereǫ is a small constant parameter, for approximate counting which isδ-accurate [11].

If each process is allowed to increase its input by arbitraryvalues, we get a generalized counter

circuit that supports arbitrary non-negative increases toits inputs (the assumption is that each

process’s input corresponds to the sum of all of its increments so far). Unfortunately, it is not hard

to see that the resulting generalized counter is not linearizable, even though it satisfies monotone

consistency; the reason is that it may return intermediate values that are not consistent with any

ordering of the increments.

Here is a small example of a non-linearizable execution, which we present to illustrate the

differences between linearizability and monotone consistency. Consider an execution with three

writers, and look at what happens at the top gate in the circuit. Imagine that processp0 executes a

WriteInput operation with argument0, p1 executes aWriteInput operation with argument

1, andp2 executes aWriteInput operation with argument2. Let p1 andp2 arrive at the top gate

through different intermediate gatesg1 andg2; we also assume that each process readsg2 before

g1 when executingUpdateGate(g). Now consider an execution in whichp0 arrives atg first,

reading0 from g2 just beforep2 writes2 to g2. Processp2 then readsg2 andg1 and computes the

sum2 but does not write it yet. Processp1 now writes1 to g1 andp0 reads it, causingp0 to compute

the sum1 which it writes to the output gate. Processp2 now finishes by writing2 to the output

gate. If both these values are observed by readers, we have a non-linearizable schedule, as there is

no sequential ordering of the increments0, 1, and2 that will yield both output values.

However, for restricted applications, we can obtain a fullylinearizable object, as shown in the

next subsections.

58



6.3.1 Linearizable counters with unit increments

Suppose we consider a standard atomic counter object supporting only read and increment opera-

tions, where the increment operation increases the value ofthe counter by exactly one. This is a

special case of the generalized counter discussed above, but here the resulting object is linearizable.

To prove linearizability, we consider the counterC as built of a max register at the root output

gateg, which adds up two sub-counters,C1 andC2, each supporting half of the processes. Our

linearizability proof is then by induction, where the base case is a counter for a single process.

Lemma 6.5 If C1 andC2 are linearizable unit-increment counters, then so isC.

Proof: Each increment operation ofC is associated with a value equal toC1 + C2 at the time it

incrementsC1 or C2, considering thatC1 andC2 are atomic counters according to the induction

hypothesis.

An increment operation with an associated valuek is linearized at the first time in which a

valueℓ ≥ k is written to the output max registerg. A read operation is linearized at the time it

reads the output max registerg (which we consider to be atomic).

To see that the linearization point for incrementk occurs within the interval of the operation,

observe that no increment can write a valueℓ ≥ k to g before incrementk finishes incrementing

the relevant sub-counterC1 or C2, because before thenC1 + C2 < k. Moreover, the incrementk

cannot finish beforeℓ ≥ k is first written tog, becausek writes a valueℓ ≥ k before it finishes.

Since the read operations are also linearized within their execution interval, this order is consistent

with the order of non-overlapping operations.

This clearly gives a valid sequential execution, since we now have exactly one increment oper-

ation associated with every integer up to any value read fromC, and there are exactlyk increment

operations ordered before a read operation that returnsk.

Theorem 6.6 There is an implementation of a linearizablem-valued unit-increment counter of

n processes where a read operation takesO(min(log m, n)) low-level register operations and an

increment operation takesO(min(log n log m, n)) low-level register operations.

Proof: Linearizability follows from the preceding argument. For the complexity, observe that the

read operation has the same cost asReadMax, while an increment operation requires reading and
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updatingO(1) max registers per gate at a cost ofO(min(log m, 2i)) for thei-th gate. The full cost

of a write is obtained by summing this quantity asi goes from0 from ⌈lg n⌉.

Note that for a polynomial number of increments, an increment takesO(log2 n) steps. It is also

possible to use unbounded max registers, in which case the valuem in the cost of a read or incre-

ment is replaced by the current value of the counter.

6.3.2 Threshold objects

Another variant of a shared counter that is linearizable is athreshold object. This counter allows

increment operations, and supports a read operation that returns a binary value indicating whether

a predetermined threshold has been crossed. We implement a threshold object with thresholdT

by having increment operations act as in the generalized counter, and having a read operation

return 1 if the value it reads from the output gate is at leastT , and 0 otherwise. We show that this

implementation is linearizable even with non-uniform increments, where the requirement is that a

read operation returns 1 if and only if the sum of the increment operations linearized before it is at

leastT .

Lemma 6.7 The implementation of a threshold objectC with thresholdT by a monotone data

structure with the proceduresWriteInput andReadOutput is linearizable.

Proof: We use monotone consistency to prove linearizability for the threshold objectC. Let C1

andC2 be the sub-counters that are added to the final output gateg.

We order read operations according to the ordering implied by monotone consistency, which is

consistent with the order of non-overlapping read operations, and implies that once a read operation

returns 1 then any following read operation returns 1. We order write operations according to their

execution order, which is clearly consistent with the orderof non-overlapping write operations. We

then interleave these orders according to the execution order of reads and writes, which implies that

this order is consistent with the order of non-overlapping read and write operations.

The interleaving is done while making sure that the sum of increments that are ordered before

any read that returns 0 is less thanT , and that the sum of increments that are ordered before the

first read that returns 1 is at leastT . Monotone consistency guarantees that we can do this. For

a read operation that returns 0, the value read ing is less thanT , therefore the second clause of
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monotone consistency implies that the sum of all writes thatfinish before the read starts is less than

T . For a read operation that returns 1, the value read ing is at leastT , therefore the third clause

implies that there enough increment operations that start before this read finishes that have a sum

at leastT .

Our proof of Lemma 6.7 does not use the specification of a threshold object, but rather the fact

that it is an implementation of a monotone circuit with a binary output. We therefore have:

Lemma 6.8 The implementation of any monotone circuit with a binary output by a monotone data

structure with the proceduresWriteInput andReadOutput is linearizable.

Note that for any binary-output circuit, we can represent the output using a 1-bit flag initialized

to 0 and set to 1 by anyWriteInput operation that produces1 as output (essentially, we use the

flag as a 2-valued bounded max register). A reader may then do only one operation which accesses

that flag and returns its value.
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Chapter 7

Randomized Consensus with Optimal

Individual Work

In this section we describe an application of our sub-linearcounter algorithm: an algorithm for

solving randomized consensus with optimalO(n) work per process. This improves the best pre-

viously known bound to match theΩ(n) lower bound that follows from the result of Chapter 11.

While the latter result showed a tight bound ofΘ(n2) on thetotal number of operations carried out

by all processes, the algorithm presented in this chapter guarantees that this work is in fact evenly

distributed among all the processes.

As in Chapter 4, we use the standard reduction [12] of randomized consensus to the problem of

implementing a shared coin. The code for each process’s actions in the shared coin implementation

is given as Algorithm 7.1, in which each process outputs either +1 or -1.

We now give a high-level description of the shared coin algorithm, which will be followed by

a formal proof. Each process generates votes whose sum is recorded in an array ofn single-writer

registers, and whose variance is recorded in2 log n counters. A process terminates and outputs the

majority of votes when the total variance of the votes reaches a certain threshold, which is small

enough to guarantee the claimed step complexity, and, at thesame time, large enough to have a

good probability for the votes to have a distinct majority.

In order to reduce the individual step complexity, the votesgenerated by a process have increas-

ing weights. This allows fast processes running alone to cast heavier votes and reach the variance

threshold after generating fewer votes.
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Algorithm 7.1 Shared coin algorithm withO(n) individual work.

shared data: arraycounters[0..(2 log n)] of counters

arrayvotes[1..n] of single-writer registers

multi-writer bit done

1: i = 0

2: v0 = 0

3: varianceWritten = 0

4: while vi < 1 and notdone do

5: i = i + 1

6: wi = min (max(vi−1, 1/n), 1/
√

n)

7: vi = vi−1 + w2
i

8: vote = LocalCoin() · wi

9: votes[pid] = votes[pid] + vote

10: if vi ≥ 2varianceWritten/n2 then

11: CounterIncrement(counters[varianceWritten])

12: varianceWritten = varianceWritten + 1

13: if
∑2 log n

k=0

(
2k · ReadCounter(counters[k])

)
≥ 3n2 then

14: break

15: done = true

16: returnsgn(
∑

p votes[p])

The weightwi of the i-th vote is a function of the total variancevi−1 of all previous votes, as

computed in Line 6; we discuss the choice of this formula in more detail in Section 7.1. The voting

operation consists of lines 6 through 9; each time the process votes, it computes the weightwi of

the next vote, updates the total variancevi, generates a random vote with value±wi with equal

probability, and adds this vote to the poolvotes[pid], wherepid is the current process id.

Termination can occur in one of three ways:

1. The process by itself produces enough variance to cross the threshold (first clause of while

loop test in Line 4).

2. All processes collectively produce enough variance for the threshold test to succeed (Line

13).
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3. The process observes that some other process has writtendone (second clause of while loop

test in Line 4). This last case can only occur if some other process previously observed

sufficient total variance to finish.

We use2 log n counters, since our counters can be incremented at most onceby each process.

Having sub-linear counters allows incrementing and reading them not very frequently, namely,

only when increasing amounts of variance are generated by the process, which gives the linear

complexity.

The counters give the total variance, which when large enough has constant probability for the

votes having a distinct majority, even in spite of small differences between the votes that different

processes read, which may be caused by the asynchrony of the system.

The proof of correctness for the shared coin algorithm proceeds in several steps. In Section 7.1

we prove some properties of the weight function. These will allow us to bound the expected

individual work of each process, and later will also be used to analyze the agreement parameter.

In Section 7.2 we bound the individual work (Lemma 7.3), and prove bounds on the probabilities

of terminating with a total variance of votes which is too lowor too high. Finally, in Section 7.3

we analyze the sums of votes in different phases of Algorithm7.1, which allows us to prove in

Theorem 7.10 that it implements a shared coin with a constantagreement parameter.

7.1 Properties of the weight function

The weight of thei-th vote is given by the formulawi = min (max(vi−1, 1/n), 1/
√

n), where

vi−1 =
∑i−1

j=1 w2
j is the total variance contributed by all previous votes.

The cap of1/
√

n keeps any single vote from being too large, which will help usshow in

Section 7.3 that the core votes are normally distributed in the limit. The use ofmax(vi−1, 1/n)

bounds the weight of all unwritten votes in any state by the total variance of all written votes,

plus a small constant corresponding to those processes thatare still casting the minimum votes of

weight1/n. This gives a bound on thebiasthat the adversary can create by selectively stopping a

process after it generates itsi-th vote in Line 8 but before it writes it in Line 9.

Lemma 7.1 For any valuesij ≥ 0, we have
∑n

j=1 wij ≤ 1 +
∑n

j=1 vij−1.
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Proof: This follows from the assignment in Line 6, by summingwij over allj:
∑n

j=1 wij ≤
∑n

j=1 max(vij−1, 1/n) ≤ ∑n
j=1

(
vij−1 + 1/n

)
= 1 +

∑n
j=1 vij−1

Despite wanting to keepwi small relative tovi, we still want to generate variance quickly. The

following lemma states that any single process can generatea total variancevi ≥ 1 after only

i = 4n votes. It follows immediately that the loop in Algorithm 7.1is executed at most4n times.

Lemma 7.2 All of the following conditions hold:

1. v1 = 1/n2

2. vi+1 ≤ 2vi [i ≥ 1]

3. v4n ≥ 1.

Proof: We observe that the following recurrence holds forvi:

vi = vi−1 + w2
i = vi−1 +

(
min(max(vi−1, 1/n), 1/

√
n)

)2
,

with a base case ofv0 = 0. We can immediately computev1 = 1/n2, giving (1).

It also follows thatvi ≥ v1 = 1/n2 for all i ≥ 1. Let i ≥ 1 and consider the possible values

of vi−1. If vi−1 ≤ 1/n thenw2
i = 1/n2, thereforevi = vi−1 + 1/n2 ≤ 2vi−1. Otherwise, if

1/n ≤ vi−1 < 1/
√

n thenw2
i = v2

i−1 < 1/n, thereforevi ≤ vi−1 + 1/n ≤ 2vi−1. Finally, if

vi−1 ≥ 1/
√

n thenw2
i = 1/n and we havevi = vi−1 + 1/n ≤ 2vi−1. So (2) holds for alli ≥ 1.

To prove (3), we consider three phases of the increase invi, depending on whetherwi = 1/n,

wi = vi−1 ≥ 1/n, or wi = 1/
√

n.

In the first phase, we have that for anyi > 0, vi ≥ vi−1 + 1/n2, and thusvi ≥ i/n2. In

particular, fori = n we havevi ≥ 1/n.

For the second phase, suppose thatvi−1 ≤ 1/
√

n. We then havevi ≥ vi−1 + v2
i−1. If this holds,

and there is somex ≥ 1 such thatvi ≥ 1/x, then

vi+1 ≥ vi + v2
i ≥ 1

x
+ 1/x2 =

x + 1

x2
=

(x + 1)(x − 1/2)

x2(x − 1/2)

=
x2 + x/2 − 1/2

x2(x − 1/2)
=

1 + 1/(2x) − 1/(2x2)

x − 1/2
≥ 1

x − 1/2
.
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By iterating this calculation, we obtain thatvi+t ≥ 1
x−t/2

, so long asvi+t−1 ≤ 1/
√

n. Starting

with vn ≥ 1/n, we thus getvn+t ≥ 1/(n− t/2), which givesvi ≥ 1/
√

n for somei ≤ (n + (2n−
√

n)) ≤ 3n.

At this point,wi is capped by1/
√

n; the increment tovi is thusw2
i = 1/n, so after a further

(n −√
n) ≤ n votes, we havevi ≥ 1. The total number of votes is bounded by4n, as claimed.

7.2 Termination

We begin analyzing the situation of termination, i.e., whenno more votes are generated, by bound-

ing the running time of the algorithm.

Lemma 7.3 Algorithm 7.1 executesO(n) local coin-flips andO(n) register operations, including

those incurred byReadCounter operations on the counters.

Proof: Lemma 7.2 implies that each process terminates after casting at most4n votes. This gives

anO(n) bound on the number of iterations of the main loop. Each iteration requires one call to

LocalCoin and two register operations (the read ofdone in Line 4 and the write tovotes[pid] in

Line 9, assuming the previous value ofvotes[pid] is cached in an internal variable), plus whatever

operations are needed to execute the threshold test in Lines11 through 13. These lines are executed

at most1 + 2 log n times (sincevarianceWritten rises by 1 for each execution), and their cost is

dominated by the1 + 2 log n calls toReadCounter at a cost ofO(polylogn) each. The cost of

the at most(1 + 2 log n)2 total calls toReadCounter is thus bounded byO(n).

Consider the sequence of votes generated by all processes, ordered by the interleaving of ex-

ecution of theLocalCoin procedure. WriteXt for the random variable representing the value

of the t-th such vote (or0 if there are fewer thant total votes); we thus have a sequence of votes

X1, X2, . . ..

We wish to bound any sum computed in Line 13 according to the total variance of the votes

that have been generated, where for a given number of votest their total variance is
∑t

i=1 X2
i .

For a givent, consider the state of the counters when thet-th vote is generated. For each

processj, let kt
j be the maximum index of any counter incounters for which j has completed a

CounterIncrement operation, and letℓt
j be the maximum index of any counter for whichj has
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started aCounterIncrement operation. If there is no such index, setkt
j or ℓt

j to −1. Let itj be

the total number of votes generated by processj among the firstt votes, i.e.,
∑t

i=1 X2
i =

∑n
j=1 vitj

.

We first boundkt
j andℓt

j in terms ofvitj
.

Lemma 7.4 For everyt, we have2ℓt
j ≤ vitj

n2 + 1/2 and2kt
j+1 ≥ vitj

n2.

Proof: We begin with an upper bound on2ℓt
j . Observe that the test in Line 10 means that

CounterIncrement(counters[k]) can have started only ifvitj
≥ 2k/n2; it follows that either

ℓt
j = −1 or 2ℓt

j ≤ vitj
n2; in either case we have

2ℓt
j ≤ vitj

n2 + 1/2.

Getting a lower bound on2kt
j is slightly harder, since we can’t rely solely on the test in Line 10

succeeding but must also show thatvarianceWritten is large enough that2varianceWritten is in fact

close tov2
i . We do so by proving, by induction oni, that at the end of each iteration of the main

loop in Algorithm 7.1,vi ≤ 2varianceWritten/n2. To avoid ambiguity (and excessive text), we will

write Wi for the value ofvarianceWritten at the end of thei-th iteration.

The base case isi = 1, where inspection of the code revealsv1 = 1/n2 andW1 = 1; in

this casev1 ≤ 2W1/n2 = 2/n2. For largeri, suppose that it holds thatvi−1 ≤ 2Wi−1/n2. Then

vi ≤ 2vi−1 ≤ 2Wi−1+1/n2 (the first inequality follows from (2) of Lemma 7.2). It is possible thatvi

is much smaller than this bound, indeed, small enough thatvi < 2Wi−1/n2; in this caseWi = Wi−1

and the invariant continues to hold. If not, Line 12 is executed, and so we haveWi = Wi−1 + 1.

But thenvi ≤ 2Wi−1+1/n2 = 2Wi/n2, so the invariant holds here as well.

In bounding2kt
j , the worst case (forkt

j ≥ 0) is whenkt
j = Witj−1, the value ofvarianceWritten

at the end of the previous iteration of the loop. In this case we havevitj
≤ 2vitj−1 ≤ 2 · 2kt

j/n2 =

2kt
j+1/n2. Forkt

j = −1, we haveitj ≤ 1, sovitj
≤ 1/n2 = 2−1+1/n2 = 2kt

j+1/n2. In either case we

get

2kt
j+1 ≥ vitj

n2.

We now consider the interaction betweenCounterIncrement andReadCounter opera-

tions in order to bound any sum computed in Line 13. The next lemma shows a small upper bound

on the probability that the sum is too large.
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Lemma 7.5 If S is a sum computed in Line 13, where the firstReadCounter operation is started

after t total votes are generated, then

S ≥ n2
t∑

i=1

X2
i − n.

Proof: For eachk let r[k] be the value returned by theReadCounter(counters[k]) operation

included in the sum, and letc[k] be the number of calls toCounterIncrement(counters[k])

that have finished before the summation starts. Thenr[k] ≥ c[k] for everyk, which implies that

S =

2 log n
∑

k=0

2kr[k] ≥
2 log n
∑

k=0

2kc[k] =

n∑

j=1

kt
j∑

m=0

2m =

n∑

j=1

(

2kt
j+1 − 1

)

≥
n∑

j=1

vitj
n2 − n = n2

t∑

i=1

X2
i − n,

where the fourth inequality follows from Lemma 7.4. This completes the proof.

Similarly, the next lemma shows a small upper bound on the probability that the sum is too

small.

Lemma 7.6 If S ′ is a sum computed in Line 13, where the lastReadCounter operation is com-

pleted beforet′ total votes are generated, then

S ′ ≤ 2n2
t′∑

i=1

X2
i .

Proof: For eachk let r′[k] be the value returned by theReadCounter(counters[k]) operation

included in the sum, and letc′[k] be the number that start before the summation finishes. Then

r′[k] ≤ c′[k] for everyk, which implies that

S ′ =

2 log n
∑

k=0

2kr′[k] ≤
2 log n
∑

k=0

2kc′[k] =
n∑

j=1

ℓt′

j∑

m=0

2m =
n∑

j=1

(

2ℓt′

j +1 − 1
)

≤
n∑

j=1

(

2
(

vit
′

j
n2 + 1/2

)

− 1
)

= 2
n∑

j=1

vit
′

j
n2 = 2n2

t′∑

i=1

X2
i .

where the fourth inequality follows from Lemma 7.4. This completes the proof.
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Using the two previous lemmas, we now prove upper and lower bounds on the total variance

of all the generated votes.

Lemma 7.7 LetT be the total number of votes generated by all processes during an execution of

the shared coin algorithm, and letV =
∑T

i=1 X2
i be the total variance of these votes. Then we

have1 < V < 7 + 4
n
.

Proof: Termination withV < 1 cannot occur as the result of some process failing the main loop

testvi < 1, as if this test fails, that process alone givesV ≥ 1. So the only possibility is that the

threshold test in Line 13 succeeds for some process despite the low total variance. But since the

total variance of all votes is less than1, for any particular sum of observed counter valuesS ′ we

have from Lemma 7.6 thatS ′ ≤ 2n2 and so termination cannot occur.

For the upper bound onV , suppose that aftert1 votes we have
∑t1

i=1 X2
i ≥ 3 + 1/n. If there is

no sucht1, thenV < 7 + 4
n
; otherwise, lett1 be the smallest value with this property. Becauset1

is least, we have
∑t1

i=1 X2
i < 3 + 1/n + X2

t1 ≤ 3 + 2/n.

From Lemma 7.5 we have that, for any execution of Line 13 that starts after theset1 votes, the

return valueS satisfiesS ≥ n2(3 + 1/n) − n ≥ 3n2.

This implies every process that executes the threshold testaftert1 total votes will succeed, and

as a result will cast no more votes. So we must bound the amountof additional variance each

process can add before it reaches this point. Recall thatit1j is the number of votes cast by processj

among the firstt1 votes, and leti′j be the total number of votes cast by processj before termination.

Then under the assumption thatj’s next threshold test succeeds, we havevi′j
< 2v

i
t1
j

+ 1/n, asj

can at most double its variance and cast one additional vote before seeingvi ≥ 2varianceWritten. So

now we have

V =

T∑

i=1

X2
i =

n∑

j=1

vi′j
<

n∑

j=1

(2v
i
t1
j

+ 1/n) = 1 + 2

n∑

j=1

v
i
t1
j

= 1 + 2

t1∑

i=1

X2
i < 1 + 2(3 + 2/n) = 7 +

4

n
.

Thus the upper bound onV holds.
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7.3 Core votes and extra votes

We will assume for convenience that the adversary scheduleris deterministic, in particular that the

choice of which process generates voteXt is completely determined by the outcomes of votesX1

throughXt−1; this assumption does not constrain the adversary’s behavior, because any random-

ized adversary strategy can be expressed as a weighted average of deterministic strategies. Under

this assumption, we have that the weight|Xt| of Xt is a constant conditioned onX1 . . .Xt−1, but

because the adversary cannot predict the outcome ofLocalCoin, the expectation ofXt is zero

even conditioning on the previous votes. ThatE[Xt = 0|X1, . . .Xt−1] is the defining property of a

class of stochastic processes known asmartingales(see [3, 45, 46]); in particular theXt variables

form amartingale difference sequencewhile the variablesSt =
∑t

i=1 Xt form a martingale proper.

Martingales are a useful class of stochastic processes because for many purposes they act like

sums of independent random variables: there is an analog of the Central Limit Theorem that holds

for martingales [46, Theorem 3.2], which we use in the proof of Lemma 7.8; and as with indepen-

dent variables, the variance ofSt is equal to the sum of the variances ofX1 throughXt [46, p. 8],

a fact we use in the proof of Lemma 7.9.

Martingales can also be neatly sliced bystopping times, where a stopping time is a random

variableτ which is finite with probability1 and for which the event[τ ≤ t] can be determined by

observing only the values ofX1 throughXt (see [45, Section 12.4]); the process{S ′
t =

∑t
i=1 X ′

i}
obtained by replacingXt with X ′

t = Xt for t ≤ τ and0 otherwise, is also a martingale [45,

Theorem 12.4.5], as is the sequenceS ′′
t =

∑t
i=1 Xτ+i [45, Theorem 12.4.11]. We will use a

stopping time to distinguish the core and extra votes.

Defineτ as the least value such that either (a)
∑τ

t=1 X2
t ≥ 1 or (b) the algorithm terminates

afterτ votes. Observe thatτ is always finite, because if the algorithm does not otherwiseterminate,

any process eventually generates1 unit of variance on its own (as shown in Lemma 7.2). Because

the weights of votes vary,τ is in general a random variable; but for a fixed adversary strategy, the

conditionτ = t can be detected by observing the values ofX1 . . .Xt. Thusτ is a stopping time

relative to theXt. The quantitySτ will be called thecore voteof the algorithm. The remaining

votesXτ+1, Xτ+2, . . . form theextra votes.

First, we show a constant probability of the core vote being at least a constant. This will follow

by an application of the martingale Central Limit Theorem, particularly in the form of Theorem 3.2
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from [46]. This theorem considers a zero-meanmartingale array, which is a sequence of tuples

{Smt,Fmt, 1 ≤ t ≤ km, m ≥ 1} parameterized bym, where for each fixedm the sequence of

random variables{Smt} is a zero-mean martingale with respect to the correspondingsequence

of σ-algebras{Fmt}, with difference sequenceXmt = Smt − Sm,t−1. Specializing the theorem

slightly, if it holds that:

1. maxt |Xmt| p−→ 0,

2.
∑

t X
2
mt

p−→ 1,

3. E [maxt X2
mt] is bounded inm, and

4. Fm,t ⊆ Fm+1,t for 1 ≤ t ≤ km, m ≥ 1,

thenSmt
d−→ N(0, 1), whereN(0, 1) has a normal distribution with zero mean and unit variance.

Here
p−→ denotes convergence in probability and

d−→ denotes convergence in distribution.

Lemma 7.8 For any fixedα andn sufficiently large, there is a constant probabilitypα such that,

for any adversary strategy,Pr[Sτ ≥ α] ≥ pα.

Proof: We construct our martingale array by considering, for each number of processesn, the set

of all deterministic adversary strategies for scheduling Algorithm 7.1. The first rows of the array

correspond to all strategies forn = 1 (in any fixed order); subsequent rows hold all strategies for

n = 2, n = 3, and so forth. Because each set of strategies is finite (for anexecution withn process,

each choice of the adversary chooses one ofn processes to execute the next coin-flip in response

to some particular pattern ofO(n2) preceding coin-flips, giving at mostnO(n2) possible strategies),

every adversary strategy eventually appears as some rowm in the array. We will writenm as the

value ofn corresponding to this row and observe that it grows without bound.

For each row in the array, we setkm to include all possible votes, but truncate the actual set of

coin-flips at timeτ . Formally, we defineXmt = Xt for t ≤ τ , but setXmt = 0 for largert. This

ensures thatSmkm
= Sτ , the total core vote from each execution, while maintainingthe martingale

property and the fixed-length rows required by the theorem. We ensure the nesting condition (4)

by using the same random variable to set the sign of each vote at time t in each row; in effect,

we imagine that we are carrying out an infinite collection of simultaneous executions for different

values ofn and different adversary strategies using the same sequenceof random local coin-flips.

72



We now show the remaining requirements of the theorem hold. For (1), we have thatmaxt |Xmt| ≤
1/
√

nm, which converges to0 absolutely (and thus in probability as well). For (2), by construction

of τ and Lemma 7.7, we have that1 ≤ ∑

t X
2
mt ≤ 1 + X2

mτ ≤ 1 + 1/nm. Thus
∑

t X2
mt converges

in probability to1. For (3), we again use the fact thatX2
mt ≤ 1/nm for all t.

It follows thatSmt converges in distribution toN(0, 1). In particular, for any fixedα, we have

that limm→∞ Pr[Smt ≥ α] = Pr[N(0, 1) ≥ α], which is a constant. By choosingpα strictly less

than this constant, we have that for sufficiently largem (and thus for sufficiently largen = nm),

Pr[Sτ ≥ α] = Pr[Smt ≥ α] ≥ pα.

By symmetry, we also havePr[Sτ ≤ −α] ≥ pα.

We now consider the effect of the extra votes. Our goal is to bound the probability that the total

extra vote is too large using Chebyshev’s inequality, obtaining a bound on the variance of the extra

votes from a bound on the sum of the squares of the weights of all votes as shown in Lemma 7.7.

Lemma 7.9 Defineτ ′ to be the maximum index such that (a)Xτ ′ 6= 0 and (b)
∑τ ′

i=1 X2
i ≤ 7+4/n.

Let p13 be the probability from Lemma 7.8 thatSτ is at least13. Then for sufficiently largen and

any adversary strategy,Pr[Sτ ′ > 9] ≥ (1/8)p13.

Proof: From Lemma 7.8, the probability that the sum of the core votesSτ is at least13 is at least

p13. We wish to show that, conditioning on this event occurring,adding the extra votes up toτ ′

does not drive this total below9.

Observe thatτ ′ is a stopping time. For the rest of the proof, all probabilistic statements are

conditioned on the values ofX1 . . .Xτ .

DefineYi = Xτ+i for τ + i ≤ τ ′ and0 otherwise. LetUi =
∑i

j=1 Yj. Then{Ui} is a martingale

andE[Ui] = 0 for all i. Let imax be such thatYi = 0 for i > imax with probability1 (imax exists by

Lemma 7.3). Then

Var[Uimax ] = Var

[
imax∑

i=1

Yi

]

=

imax∑

i=1

Var [Yi] =

imax∑

i=1

E
[
Y 2

i

]

= E

[
imax∑

i=1

Y 2
i

]

≤ E[7 + 4/n] = 7 + 4/n.

So by Chebyshev’s inequality,

Pr [|Uimax | ≥ 4] ≤ 7 + 4/n

42
= 7/16 + 1/4n ≤ 7/8,
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whenn ≥ 4. But if |Uimax| < 4, we haveSτ ′ = Sτ + Uimax ≥ 13 − 4 = 9. As the event

|Uimax | < 4 occurs with conditional probability at least1/8, the total probability thatSτ ′ ≥ 9 is at

least(1/8)p13.

7.4 Full result

We are now ready to prove the main theorem of having a constantagreement parameter.

Theorem 7.10 For sufficiently largen, Algorithm 7.1 implements a shared coin with constant

agreement parameter.

Proof: Let T be the total number of votes generated.

The total voteZi computed by any process in Line 16 is equal toST minus at most one vote

for each process because of the termination bit. From Lemma 7.1, these unwritten votes have

total size bounded by1 +
∑T

i=1 X2
i . We show there is at least a constant probability that both

1 +
∑T

i=1 X2
i ≤ 8 + 4/n andST > 9, which implies that for sufficiently largen there is a constant

probability for havingZi > 0 for all i, and therefore all processes agree on the value+1.

From Lemma 7.7, we have
∑T

i=1 X2
i ≤ 7 + 4/n. From Lemma 7.9, the probability that

Sτ ′ ≤ 9 is at most1 − (1/8)p13. Therefore, for at least some constantδ, we haveST ≥ Sτ ′ > 9

and1 +
∑T

i=1 X2
i ≤ 8 + 4/n with probabilityδ.

This proves that there is a constant probability of all processes deciding+1; the same results

hold for−1 by symmetry.
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Chapter 8

Randomized Set Agreement

In this chapter we present several algorithms for solving set-agreement with different parame-

ters. In Section 8.1 we present a framework for randomized algorithms which solve(k, k + 1, n)-

agreement using amulti-sided shared-coinalgorithm. We now formally define such a procedure,

which is a generalization of a shared coin (which in our termsis a 2-sided shared coin). A(k + 1)-

sided shared-coinalgorithm withagreement parameterδ is an algorithm in which every non-faulty

processp produces an output value in{0, . . . , k}, such that for every subset of sizek there is prob-

ability at leastδ that all the outputs are within that subset. Alternatively,for every valuev in

{0, . . . , k} there is probability at leastδ thatv is not the output of any process. We emphasize that

unlike the requirement of set agreement, the probability ofdisagreement in a shared coin may be

greater than 0. Notice that there are no inputs to this procedure.

In Section 8.3, we present set-agreement algorithms that are designed for agreeing onℓ values

out ofk+1, for ℓ < k. In particular, they can be used for the caseℓ = 1, where the processes agree

on the same value, i.e., formulti-valued consensus. By definition, solving multi-valued consensus

is at least as hard as solvingbinary consensus(where the inputs are in the set{0, 1}, i.e.,k = 1),

and potentially harder. One algorithm uses multi-sided shared coins, while the other two embed

binary consensus algorithms in various ways.

To the best of our knowledge, these are the first wait-free algorithms for set agreement in the

shared-memory model under a strong adversary, other than binary consensus. Table 8.1 shows the

properties of the different algorithms we present. Forℓ < k one of our algorithms is better than the

others; however, intrigued by the question of whether multi-valued consensus is inherently harder
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Algorithm Parameters Method Individual Step Total Step

Complexity Complexity

Section 8.1 k, k + 1 multi-sided shared coin O(n/k + k) O(n2/k + nk)

Section 8.3.1 ℓ, k + 1 space reduction O(n(log k − log ℓ)) O(n2(log k − log ℓ))

Section 8.3.2 ℓ, k + 1 iterative O((k − ℓ + 1)k O((k − ℓ + 1)nk

+n(log k − log ℓ)) +n2(log k − log ℓ))

Section 8.3.3 1, k + 1 bit-by-bit O(n log k) O(n2 log k)

Table 8.1:The set agreement algorithms presented in Chapter 8.

than binary consensus, we find the different methods interesting in hope that one of them could

lead to a lower bound.

Finally, we note that in this chapter we will consider the setof processes as{p0, . . . , pn−1}.

8.1 A (k, k + 1, n)-Agreement Algorithm using a (k + 1)-Sided

Shared Coin

In this section we present a framework for randomized(k, k + 1, n)-agreement algorithms. It is

a generalization of the framework of Aspnes and Herlihy [12]for deriving a randomized binary

consensus algorithm from a shared coin, and specifically follows the presentation given by Saks,

Shavit, and Woll [66]. However, its complexity is improved by using multi-writer registers, based

on the construction of Cheung [34].

We assume a(k + 1)-sided shared-coin algorithm calledsharedCoink+1, with an agreement

parameterδk+1. The set-agreement algorithm is given in Algorithm 8.1. Throughout this chapter,

we assume that shared arrays are initialized to a special symbol ⊥. Informally, the set-agreement

algorithm proceeds by (asynchronous) phases, in which eachprocessp writes its own preference

to a shared arrayPropose, checks if the preferences agree onk values, and notes this in another

shared arrayCheck . If p indeed sees agreement, it also notes its preference inCheck .

Processp then checks the agreement arrayCheck . If p does not observe a note of disagreement,

it decides on the value of its preference. Otherwise, if there is a note of disagreement, but also a
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Algorithm 8.1 A (k, k + 1, n)-agreement algorithm, code forpi

Local variables:r = 1, decide = false,myValue = input,

myPropose = [ ], myCheck = [ ]

Shared arrays:Propose [ ][0..k],Check [ ][agree, disagree]

1: whiledecide == false

2: Propose [r][myValue ] = true

3: myPropose = collect(Propose [r])

4: if the number of values inmyPropose is at mostk

5: Check [r][agree] = 〈true,myValue〉
6: else

7: Check [r][disagree] = true

8: myCheck = collect(Check [r])

9: if myCheck [disagree] == false

10: decide = true

11: else ifmyCheck [agree] == 〈true, v〉
12: myValue = v

13: else ifmyCheck [agree] == false

14: myValue = sharedCoink+1[r]

15: r = r + 1

16: end while

17: returnmyValue

note of agreement,p adopts the value associated with the agreement notificationas preference for

the next phase. Finally, if there is only a notification of disagreement, the process participates in a

(k + 1)-sided shared-coin algorithm and prefers the output of the shared coin.

Lemma 8.1 Consider a phaser ≥ 1 and a non-faulty processp that finishes phaser. If all the

processes that start phaser beforep finishes it have at mostk preferences in{v1, . . . , vk}, thenp

decidesv ∈ {v1, . . . , vk} in this phaser.

Proof: We claim thatp readsCheck [r][disagree] == false in line 9 of phaser, and therefore

decides in phaser. This will also imply that its decision valuev is in {v1, . . . , vk}, otherwise
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p is among the processes that start phaser beforep finishes, but does not have a preference in

{v1, . . . , vk}, which contradicts our assumption. Assume towards a contradiction, thatp reads

Check [r][disagree] == true in line 9 of phaser. This implies that there is a processq that writes

Check [r][disagree] = true in line 7 of phaser, and this happens beforep finishes. Therefore,q

reads more thank values inPropose[r] in line 3 of phaser, which means that there arek + 1

processes that writek + 1 different values toPropose[r] in line 2 of phaser, and all this happens

beforep finishes. But this contradicts our assumption that all the processes that start phaser before

a non-faulty processp finishes it have at mostk preferences.

Lemma 8.1 implies validity, by applying it for phaser = 1. The next two lemmas are used to

prove the agreement condition. Below, we use the notation〈true, ?〉 for an entry in the arrayCheck

which hastrueas its first element, and any value as its second element.

Lemma 8.2 For every phaser ≥ 1, all the processes that readCheck [r][agree] == 〈true, ?〉 and

finish phaser have at mostk different preferences at the end of phaser.

Proof: We first claim that all the processes that write toCheck [r][agree] wrote at mostk different

preferences toPropose[r]. Assume, towards a contradiction, that among the processesthat write to

Check [r][agree] there arek + 1 processes{pi1 , . . . , pik+1
} that wrotek + 1 different preferences to

Propose[r]. Let pij be the last process to write toPropose[r]. Whenpij collectsPropose[r] in line

3, it readsk + 1 values, and therefore does not write toCheck [r][agree], which is a contradiction.

The above claim implies that at mostk different preferences may be written toCheck [r][agree].

Since a process that readsCheck [r][agree] == 〈true, v〉 adoptsv as its preference, at mostk values

can be a preference of such processes at the end of phaser.

Lemma 8.3 For every phaser ≥ 1, if processes decide on values in{v1, . . . , vk} in phaser, then

every non-faulty process decides on a value in{v1, . . . , vk} in phaser′, wherer′ is eitherr or r+1.

Proof: We first claim that if a process decidesv in phaser, then every non-faulty process that

finishes phaser readsCheck [r][agree] == 〈true, ?〉. To prove the claim, letp be a process that

decidesv in phaser. Let q be a non-faulty process that finishes phaser, and assume towards

a contradiction thatq readsCheck [r][agree] == false. This implies thatq collectsCheck [r] in
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line 8 beforep writes toCheck [r] in line 5, and thereforep collectsCheck [r] after q writes to

Check [r][disagree], which implies thatp does not decide in phaser, a contradiction.

Now, letp be a process that decides in phaser, and letq be a non-faulty process. By the above

claim,q readsCheck [r][agree] == 〈true, ?〉 in line 8. By Lemma 8.2, there are at mostk different

values that can become a preference of a process at the end of phaser. Therefore, ifq decides at

the end of phaser then it decides a value in{v1, . . . , vk}. Otherwise, all the non-faulty processes

write at mostk preferences toPropose[r + 1], and by Lemma 8.1, they decide on one of these

values at the end of phaser + 1.

Lemma 8.3 implies agreement. Notice that both validity and agreement arealwayssatisfied,

and not only with probability 1. For termination, we prove the following lemma. Below, we denote

the agreement parameter of the(k + 1)-sided shared coin byδ = δk+1.

Lemma 8.4 The expected number of phases until all non-faulty processes decide is at most1+1/δ.

Proof: For every subset{v1, . . . , vk} ⊆ {0, . . . , k} there is a probability of at leastδ for all

processes that runsharedCoink+1 to output values in{v1, . . . , vk}. Therefore, for any valuev

in {0, . . . , k}, there is a probability of at leastδ that v is not the output of any process running

sharedCoink+1. This is because{0, . . . , k} \ {v} has probability of at leastδ for containing the

outputs of all the processes.

Consider a phaser ≥ 2. By Lemma 8.2, all the processes that finish phaser − 1 and in line 8

readCheck [r−1][agree] == 〈true, ?〉 propose at mostk values toPropose[r]. The other processes

propose toPropose[r] a value obtained from their shared coin. Therefore, there isa probability

of at leastδ that all processes write at mostk different values toPropose[r], and by Lemma 8.1,

decide by the end of phaser.

Therefore, after phaser = 1, the expected number of phases until all non-faulty processes

decide, is the expectation of a geometrically distributed random variable with success probability

at leastδ, which is at most1/δ.

For the first phaser = 1, the values written toPropose[1] are the inputs and are therefore

controlled by the adversary. This implies that the expectednumber of phases until all non-faulty

processes decide is at most1 + 1/δ.
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Algorithm 8.2 A (k + 1)-sided shared coin algorithm, code for processpi

Local variables:j = ⌊ ik
n ⌋

1: returnsharedCoin[j] + j

Consider a(k + 1)-sided shared coin algorithm with an agreement parameterδ = δk+1, a total

step complexity ofT = Tk+1, and an individual step complexity ofI = Ik+1. In each phase,

a process takesO(k) steps in addition to theI steps it takes in thesharedCoink+1 algorithm.

Combining this with Lemma 8.4, which bounds the expected number of phases until all non-faulty

processes decide, gives:

Theorem 8.5 Algorithm 8.1 solves(k, k+1, n)-agreement withO( I+k
δ

) individual step complexity

andO(T+nk
δ

) total step complexity.

8.2 A (k + 1)-Sided Shared Coin

We present, in Algorithm 8.2, a(k +1)-sided shared-coin algorithm which is constructed by using

k instances of a 2-sided shared coin. We statically partitionthe processes intok sets of at mostn
k

processes each. That is, for everyj, 0 ≤ j ≤ k − 1, we have a setPj =
{

p jn
k
, . . . , p (j+1)n

k
−1

}

(for

j = k−1 the set may be smaller). The processes of each setPj run a 2-sided shared-coin algorithm

sharedCoin[j] and output the result plus the valuej. The idea is that in order to have a valuej

that is not the output of any process, it is enough that all processes runningsharedCoin[j − 1]

agree on the value 0 and therefore outputj − 1, and that all the processes runningsharedCoin[j]

agree on the value 1 and therefore outputj + 1.

Let δ = δ2 be the agreement parameter of the 2-sided shared coin. We bound the agreement

parameter of thek + 1-sided shared coin in the next lemma.

Lemma 8.6 Algorithm 8.2 is a(k + 1)-sided shared coin with an agreement parameterδ2.

Proof: There is a probability of at leastδ for all processes who runsharedCoin[j] to return the

valuej, and a probability of at leastδ for all processes who runsharedCoin[j] to return the value

j + 1. Therefore, for any value in{0, . . . , k}, there is a probability of at leastδ2 that this value is

not the output of any process runningsharedCoin[j], for any0 ≤ j ≤ k − 1 (becausej = 0 may
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be the output only ofsharedCoin[0], j = k only of sharedCoin[k − 1], andj ∈ {1, . . . , k − 1}
only of sharedCoin[j−1] andsharedCoin[j]). Therefore, Algorithm 8.2 is a(k+1)-sided shared

coin with an agreement parameterδ2.

The next lemma gives the complexity of thek + 1-sided shared coin, and follows immediately

from the fact that each process runs a 2-sided shared coin algorithm for n
k

processes. Since the

complexities depend on the number of processest that may run an algorithm, we now carefully

consider this in the notation. LetI(t) = I2(t) andT (t) = T2(t) be the individual and total step

complexities, respectively, of the 2-sided shared coin with t processes.

Lemma 8.7 Algorithm 8.2 has individual and total step complexities ofO(I(n
k
)) andO(k ·T (n

k
)),

respectively.

Plugging Lemmas 8.6 and 8.7 into Theorem 8.5 gives:

Theorem 8.8 Algorithm 8.1 solves(k, k + 1, n)-agreement with individual step complexity of

O((I(n
k
) + k)/δ2) and total step complexity ofO((k · T (n

k
) + nk)/δ2).

By using an optimal 2-sided shared coin [11] with a constant agreement parameter, an individ-

ual step complexity ofO(t), and a total step complexity ofO(t2), we get that Algorithm 8.2 is a

(k + 1)-sided shared coin with a constant agreement parameter, andindividual and total step com-

plexities ofO(n
k
) andO(n2

k
), respectively. Therefore, Algorithm 8.1 solves(k, k+1, n)-agreement

with individual step complexity ofO(n
k

+ k) and total step complexity ofO(n2

k
+ nk). Note that

for n ≥ k2, Algorithm 8.1 hasO(n
k
) individual step complexity, andO(n2

k
) total step complexity,

which are the same as the complexities of binary consensus divided byk.

8.3 (ℓ, k + 1, n)-Agreement Algorithms

In this section we construct several algorithms for the solving (ℓ, k+1, n)-agreement, whereℓ < k.

8.3.1 An(ℓ, k + 1, n)-Agreement Algorithm by Space Reduction

For agreeing on one value out of{0, . . . , k} we can get a total step complexity ofO(n2 log k) by

reducing the possible values by half until we have one value.We later show how this construction

can be used for agreeing onℓ > 1 values.
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Algorithm 8.3 A (1, k + 1, n)-agreement algorithm by space reduction, code forpi

Local variablesmyValue = input, myPair , mySide

Shared arrays:Agree[1..⌈log (k + 1)⌉][1..k/2j ],

Values[1..⌈log (k + 1)⌉][1..k/2j ][0..1]

1: for j = 1 . . . ⌈log (k + 1)⌉
2: myPair = ⌊myValue

2j ⌋
3: if myValue − myPair · 2j < 2j−1

4: mySide = 0

5: elsemySide = 1

6: Values [j][myPair ][mySide ] = myValue

7: side = Agree[j][myPair ](mySide)

8: myValue = Values[j][myPair ][side]

9: end for

10: returnmyValue

In Algorithm 8.3 we assume an arrayAgree of binary consensus instances, which a process can

execute with a proposed value. Algorithm 8.3 can be modelledas a binary tree, where the processes

begin at the leaves, which represent all of the values, and inevery iterationj the processes agree

on the value of the next node, going up to the root. This means that at most half of the suggested

values are decided in each iteration. In addition, all decided values are valid because this is true

for each node.

Lemma 8.9 (Validity) For everyj, the variablemyValue of a processp at the end of iterationj is

an input of some process.

Proof: The proof is by induction onj. The base casej = 1 is clear sincemyValue is initialized

with the input of the process. For the induction step, assumethe lemma holds up toj−1, and notice

thatmyValue is updated only in line 8, to the value written in theValues array in the locationside

which is returned from the binary consensus algorithm. Since the consensus algorithm satisfies

validity, side has to be the input of some process to the consensus algorithm, and this only happens

if that process first writes to that location in theValues array in line 6. By the induction hypothesis,

that value is the input of some process.
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Lemma 8.10 (Agreement) Every two process executing Algorithm 8.3 output the same value.

Proof: We claim that there can be at most one value written toValues [j][pair][side], and

prove this by induction, where the base case is trivial sinceat the beginning a process writes

to Values [1][pair][side] only if its input value is2 · pair + side. Assume this holds up to it-

erationj − 1. By the agreement property of the consensus algorithm, all processes that exe-

cuteAgree[j − 1][pair] output the same value. Therefore, in iterationj, only one value out of

{2j · pair, . . . , 2j(pair + 1) − 1} can be written toValues [j][pair][side]. The lemma follows by

applying the claim to the root, which satisfies agreement.

Termination follows from the termination property of the binary consensus instances. For each

j, a process executes one consensus algorithm, plusO(1) additional accesses to shared variables.

By using an optimal binary consensus algorithm where a process completes withinO(n) steps, this

implies:

Theorem 8.11 Algorithm 8.3 solves(1, k + 1, n)-agreement with an individual step complexity of

O(n log k) and a total step complexity ofO(n2 log k).

Note that we can backstop this construction at any levelj at the tree to get an agreement onℓ =

2log k−j values. This means that instead of havingj iterate from 1 to⌈log (k + 1)⌉, the algorithm

changes so thatj iterates from 1 to⌈log (k + 1)⌉ − ⌈log ℓ⌉. The individual step complexity is

O(n(log k − log ℓ)), and the total step complexity isO(n2(log k − log ℓ)).

8.3.2 An Iterative (ℓ, k + 1, n)-Agreement Algorithm

In Algorithm 8.4, we construct an(ℓ, k+1, n)-agreement algorithm by iterating Algorithm 8.1 and

reducing the number of possible values by one until all processes output no more thanℓ values.

The idea is that the processes execute consecutive iterations of(s, s + 1, n)-agreement algorithms

for values ofs decreasing fromk to ℓ. In each iteration the number of possible values is reduced

until it reaches the desired boundℓ.

This procedure is less trivial than it may appear because, for example, after the first iteration

outputs no more thank values out ofk + 1, in order to decide onk − 1 out of thek values that are

possible, the processes need to knowwhichare thek possible values. However, careful inspection
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shows that they need to know thesek values only if they disagree upon choosing thek − 1 values

out of them. In this case, a process that seesk values indeed knows which are these values among

the initialk + 1.

We now present the pseudocode of Algorithm 8.4 which solves(ℓ, k+1, n)-agreement by itera-

tively decreasing the number of possible values using Algorithm 8.1, as discussed in Section 8.3.2.

Notice that Algorithm 8.1 is correct for agreeing onk values out ofk + 1 values, even if the

k + 1 possible input values are not necessarily{0, . . . , k}, as long as they are a fixed and known

set{v0, . . . , vk}. This is done by having a bijective mapping between the two sets.

The following lemma guarantees the correctness of the algorithm.

Lemma 8.12 For each iterations, ℓ ≤ s ≤ k, the number of different values that appear in the

myValue variables of the processes that finish iterations is at mosts, and each of these values is

the input of some process.

Proof: The proof is by induction over the iterations, where the basecase is fors = k and its

proof is identical to that of Algorithm 8.1. For the induction step, we assume the lemma holds up

to s + 1 and prove it fors. A process finishes iterations when it assignsdecide = true in line

13. This can only happen after it readsmyCheck [disagree] == false in line 10, which implies

that the number of different entries inmyPropose that containtrue is at mosts. Moreover, every

value that is written to thePropose[s] array is themyValue variable of some process at the end of

iterations + 1, and therefore is the input of some process, by the inductionhypothesis.

Applying Lemma 8.12 tos = ℓ gives the validity and agreement properties. This leads to the

following theorem:

Theorem 8.13 Algorithm 8.4 solves(ℓ, k + 1, n)-agreement withO(
∑ℓ

s=k
Is+1+k

δs+1
) individual step

complexity andO(
∑ℓ

s=k
Ts+1+nk

δs+1
) total step complexity, whereδs+1, Is+1, andTs+1 are the agree-

ment parameter, individual step complexity, and total stepcomplexity, respectively, of the(s + 1)-

sided shared coins.

Proof: For each value ofs, a process runs an iteration of the agreement algorithm fors out of

s + 1 values. By an analog of Theorem 8.1, this takesO( Is+1+k
δs+1

) individual step complexity, and

O(Ts+1+nk
δs+1

) individual step complexity. Notice that we addO(k) steps for collecting the arrays and
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Algorithm 8.4 An (ℓ, k + 1, n)-agreement algorithm, code for processpi

local variables:myValue, myPropose = [0..k],

myCheck = [agree, disagree],s,m,r,decide

shared arrays:Propose [1..k][ ][0..k],

Check [1..k][ ][agree, disagree]

1: for s = k down toℓ

2: r = 1

3: decide = false

4: whiledecide == false

5: Propose [s][r][myValue ] = true

6: myPropose = collect(Propose [s][r])

7: if the number of entries inmyPropose that contains true

is at mosts

8: Check [s][r][agree] = 〈true,myValue〉
9: else

10: Check [s][r][disagree] = true

11: myCheck = collect(Check [s][r])

12: if myCheck [disagree] == false

13: decide = true

14: else ifmyCheck [agree] == 〈true, v〉
15: myValue = v

16: else ifmyCheck [agree] == false

17: m = sharedCoins+1[r]

18: myValue = them-th entry inmyPropose that

contains true // At mosts + 1 such values

19: r = r + 1

20: end while

21: end for

22: returnmyValue

85



notO(s) steps, since it may be that a process does not know which are the s + 1 current possible

values among the initialk + 1 values.

Summing over all iterations gives the resulting complexities.

When using the(s + 1)-sided shared coins of Section 8.2 we have:

Theorem 8.14 Algorithm 8.4 solves(ℓ, k+1, n)-agreement withO((k−ℓ+1)k+n(log k−log ℓ))

individual step complexity andO((k − ℓ + 1)nk + n2(log k − log ℓ)) total step complexity.

Proof: For the individual step complexity we have:

ℓ∑

s=k

Is+1 + k

δs+1
= O(

ℓ∑

s=k

n

s
+ k)

= O((k − ℓ + 1)k + n
ℓ∑

s=k

1

s
)

= O((k − ℓ + 1)k + n(log k − log ℓ)),

where the last equality follows from the fact that the harmonic seriesHk =
∑k

s=1
1
s

is in the order

of log k. Similarly, we have that the total step complexity isO((k − ℓ + 1)nk + n2(log k − log ℓ)).

Note that forℓ = 1, i.e., for agreeing on exactly one value out of the initialk+1 possible inputs,

we get an individual step complexity ofO((k− ℓ+1)k +n(log k− log ℓ)) = O(k2 +n log k), and

a total step complexity ofO((k − ℓ + 1)nk + n2(log k − log ℓ)) = O(nk2 + n2 log k).

8.3.3 A Bit-by-Bit (1, k + 1, n)-Agreement Algorithm

For agreeing on one value out of{0, . . . , k} we construct Algorithm 8.5, which agrees on each bit

at a time while making sure that the final value is valid. A similar construction appears in [72,

Chapter 9], but does not address the validity condition. In this algorithm, obtaining validity is a

crucial point in the construction, since simply agreeing onenough bits does not guarantee an output

that is the input of some process.

The idea of our algorithm is that in every iterationj, all themyValue local variables share the

same firstj − 1 bits, and they are all valid values (each is the input of at least one process).
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Algorithm 8.5 A (1, k + 1, n)-agreement algorithm by agreeing onlog k bits, code forpi

local variables:myValue = input, myPropose = [0.. log k],

myCheck = [agree, disagree],r = 0,decide = false

shared arrays:Propose [1..k][ ][0.. log k],

Check [1..k][ ][agree, disagree]

1: for j = 1 . . . ⌈log (k + 1)⌉
2: while (decide == false)

3: r+ = 1

4: Propose [j][r][myValue [j]] = myValue

5: myPropose = collect(Propose [j][r])

6: if myPropose [0] 6= ⊥ andmyPropose [1] 6= ⊥
7: Check [j][r][disagree] = myPropose

8: elseCheck [j][r][agree] = myValue

9: myCheck = collect(Check [j][r])

10: if myCheck [disagree] 6= ⊥
11: coin = sharedCoin2(j, r)

12: if myCheck [agree] 6= ⊥
13: myValue = Propose [j][r][myCheck [agree]]

14: elsemyValue = myCheck [disagree][coin]

15: elsedecide = true andr = 0

16: end while

17: end for

18: returnmyValue
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We now present the pseudocode of Algorithm 8.5 which solves(1, k + 1, n)-agreement by

agreeing on every bit of the value, as discussed in Section 8.3.3.

Lemma 8.15 For everyj, 1 ≤ j ≤ ⌈log (k + 1)⌉, at the beginning of iterationj every process has

myValue that is the input of some process, and all the processes havemyValue with the same first

j − 1 bits.

Proof: The proof is by induction onj. The base case forj = 1 clearly holds since at the beginning

of the algorithmmyValue is initialized to the input of the process, andj − 1 = 0 so there is no

requirement from the first bits ofmyValue.

Induction step: Assume that the lemma holds up to valuej − 1. That is, the variablemyValue

of all processes at the beginning of iterationj − 1 has the samej − 2 first bits, and they are all

inputs of processes.

First, we notice that in iterationj − 1 the variablemyValue can only change to a value written

in thePropose array in line 13, or to a value written in theCheck array in line 14. This implies

thatmyValue is always an input of some process.

Next, assume that at the end of the iteration processesp andq havemyValue variables with

different firstj−1 bits. By the induction hypothesis, this implies that theirj−1-th bit is different.

Let r be the first phase in which such two processes exist and decidein that phase. Assume,

without loss of generality, thatp executes line 4 afterq does. This implies that whenp reads the

arrayPropose in line 5, both entries are non-empty. But thenp writes its value into thedisagree

location of the arrayCheck and therefore cannot decide in that phase.

Lemma 8.15, in an analog to Section 8.1, implies validity andagreement.

We denote byδ = δ2 the agreement parameter of the 2-sided shared coin, andT = T2 and

I = I2 are its total and individual step complexities, respectively.

Theorem 8.16 Algorithm 8.5 solves(1, k + 1, n)-agreement withO(⌈log (k + 1)⌉ · I
δ
) individual

step complexity andO(⌈log (k + 1)⌉T
δ
) total step complexity.

Proof: In each iterationj, 1 ≤ j ≤ ⌈log (k + 1)⌉, by an analog to Lemma 8.4, the expected num-

ber of phases until all non-faulty process decide is1+1/δ which isO(1
δ
). In each phase, a process

takesO(1) steps in addition to theI steps it takes in thesharedCoin2 algorithm. Therefore, the
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individual step complexity of Algorithm 8.5 isO(⌈log (k + 1)⌉ · I
δ
), and the total step complexity

is O(⌈log (k + 1)⌉T
δ
).

Using an optimal shred coin with a constant agreement parameter, an individual step complex-

ity of O(n), and a total step complexity ofO(n2), we get a(1, k + 1, n)-agreement algorithm with

an individual step complexity ofO(n log k) and a total step complexity ofO(n2 log k). Notice that

the step complexity could be improved if agreement on the bits could be run in parallel. However,

this is not trivial because of the need to maintain validity.
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Part II

Lower Bounds for Randomized Consensus
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Chapter 9

Layering Randomized Executions

This part of the thesis presents lower bounds for randomizedconsensus under a weak adversary

(Chapter 10) and under a strong adversary (Chapter 11). We begin, in this chapter, by providing

formal definitions and by setting the common grounds to both lower bounds, namely, layered

randomized executions. This includes a formal presentation of the two types of adversaries that

captures the difference in their ability to control the execution.

9.1 Preliminaries

The lower bounds presented in this part also address themessage-passingmodel, in addition to

the shared-memory model. We therefore define a step of a process as consisting of some local

computation, including an arbitrary number of local coin flips and one communication operation,

which depends on the communication model.

In a message passing system, processes communicate by sending and receiving messages: the

communication operation of a process is sending messages tosome subset of the processes, and

receiving messages from some subset of them. For the lower bounds, we assume that a process

sends a message to all the processes in each step. In a shared memory system processes commu-

nicate by reading and writing to shared (atomic) registers as defined in Section 3; each step of a

process is either a read or a write to some register. The typesof the registers that are assumed will

be explicitly defined later.

For the purpose of the lower bound, we restrict our attentionto a constrained set of executions,
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which proceed in layers. Anf -layer is a sequence of at leastn − f distinct process id’s. When

executing a layerL, each processp ∈ L takes a step, in the order specified by the layer.

An f -executionis an execution of the algorithm under a (finite or infinite) sequence off -layers.

A configurationC consists of the local states of all the processes, and the values of all the

registers. We will consider only configurations that are reachable by finite sequence off -layers.

We define faulty processes as follows: a processpi is non-faultyin layerr if it appears in the

layer. A processpi crashesin layer r if it does not take a step in any layerℓ ≥ r. A process is

skippedin layerr, if it does not appear in layerr but appears in one of the following layers.

Since we consider randomized algorithms, for each configuration C there is a fixed probability

for every step a process will perform when next scheduled. Denote byXC
i the probability space

of the steps that processpi will preform, if scheduled by the adversary. The probability spaceXC
i

depends only on the local state ofpi in configurationC, and therefore, delayingpi does not change

this probability space.

Let XC = XC
1 ×XC

2 ×· · ·×XC
n be the product probability space. A vector~y ∈ XC represents

a possible result of the local coin flips from a configurationC.

9.2 Adversaries

Since we are discussing randomized algorithms, different assumptions on the power of the adver-

sary may yield different results. We now model two types of adversaries, one calledstrongand the

otherweak. We first define a strong adversary, followed by the definitionof a weak adversary as

a restricted case. However, the lower bounds are presented in reverse order, since the case of the

strong adversary is more involved.

9.2.1 Strong Adversary

A strongadversary observes the processes’ local coin flips, and chooses the nextf -layer knowing

what is the next step each process will take. The adversary applies a functionσ to choose the next

f -layer to execute for each configurationC and vector~y ∈ XC , i.e.,

σ : {(C, ~y) | C is a configuration and~y ∈ XC} → {L | L is anf -layer}.
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When the configurationC is clear from the context we will use the abbreviationσ(~y) = L~y.

Denote by(C, ~y, L~y) the configuration that is reached by applying steps of the processes inL~y,

for a specific vector~y ∈ XC . ThenC ◦ σ is a random variable whose values are the configurations

(C, ~y, L~y), when~y is drawn from the probability spaceXC .

An f -adversaryσ = σ1, σ2, . . . is a (finite or infinite) sequence of functions.

Given a configurationC and a finite prefixσℓ = σ1, σ2, . . . , σℓ of the adversaryσ, C ◦ σℓ is

a random variable whose values are the configurations that can be reached by the algorithm. For

every vector~y1 ∈ XC , by abuse of notation, let Pr[~y1] = Pr[~y1 is drawn fromXC ] denote the

probability of~y1 in the probability spaceXC . The probability that a configurationC ′ is reached is

defined inductively1:

Pr[C ◦ σℓ is C ′] =
∑

~y1∈XC

Pr[~y1] · Pr[(C, ~y1, L~y1) ◦ σ′
ℓ is C ′],

whereσ′
ℓ is the remainder of the prefix afterσ1, i.e.,σ′

ℓ = σ2, . . . σℓ, and the basis of the induction

for σ1 = σ1 is:

Pr[C ◦ σ1 is C ′] =
∑

~y1∈XC

Pr[~y1] · χC′(~y1),

where χC′(~y1) = χC′(C, σ1, ~y1) characterizes whether the configurationC ′ is reached if~y1 is

drawn, i.e.,

χC′(~y1) =







1 (C, ~y1, L~y1) is C ′

0 otherwise.

The probability of decidingv when executing the algorithm underσ from the configura-

tion C is defined as follows: ifC is a configuration in which there is a decisionv, then

Pr[decision fromC underσ is v] = 1, if C is a configuration in which there is a decisionv̄, then

Pr[decision fromC underσ is v] = 0, otherwise,

Pr[decision fromC underσ is v] =
∑

~y1∈XC

Pr[~y1] · Pr[decision from(C, ~y1, L~y1) underσ′ is v],

whereσ′ is the remainder of the adversary afterσ1, i.e.,σ′ = σ2, σ3, . . . .

1For simplicity, we assume that all the probability spaces are discrete, but a similar treatment holds for arbitrary

probability spaces.
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9.2.2 Weak Adversary

A weak adversary is non-adaptive and decides the entire schedule in advance. The adversary

does not observe neither the results of any local coins a process flips, nor any operation a process

performs. We model this adversary as applying the functionσ based only on the number of layers

that have been scheduled, i.e.,

σ : IN → {L | L is anf -layer}.

In other words, a weakf -adversary is a (finite or infinite) sequence of layersσ = L1, L2, . . . .

An adversaryσ, together with an initial configurationI andn coin-flip strings~c = (c1, · · · , cn),

determine anexecutionα(σ,~c, I). For a finite adversaryσ, we identify the executionα(σ,~c, I) with

the configuration it results in.

9.3 Manipulating Layers

Like many impossibility results, our proof relies on havingconfigurations that are indistinguishable

to all processes, except some setP . Intuitively, two configurationsC andC ′ are indistinguishable

to a processp if it cannot tell the difference between them. The idea behind identifying indistin-

guishable configurations is that processes that do not distinguish between them do the same thing

in any extension where they are the only processes taking steps. Specifically, they decide the upon

same value in the same extension fromC andC ′. Thus, comparing what happens in indistinguish-

able executions allows us to reason about the decision valuein different executions, which is one

of the main techniques in deriving lower bounds in distributed computing.

The formal definition of indistinguishability is model-dependent.

In the message-passing model, we say that the configurationsC andC ′ are indistinguishable to

the set of processesP and denoteC
P∼ C ′, if each process inP goes through the same local states

throughout both executions up toC andC ′, More specifically, in both executions each process in

P sends and receives the same messages, in the same order. We further require that processes inP

are not crashed up toC andC ′.

In the shared-memory model, the definition of indistinguishability is slightly different than in

the message-passing model. For two configurationsC andC ′ to be indistinguishable to a process
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p, we not only requirep to have the same local states throughout both executions (which implies

that in both executionsp performs the same shared-memory operations, including reading the same

values from registers), but also that the values of the shared registers are the same throughout both;

otherwise, for example, havingp perform a read operation afterC andC ′ might result in different

executions. However, we allow the value of a shared registerto be different inC andC ′ if it is

no longer accessed by any process. This slight modification still captures the requirement that

if a processp decidesv in C and does not distinguish betweenC andC ′ then it also decides in

C ′ on the same valuev. We say that the configurationsC andC ′ are indistinguishable to the set

of processesP and denoteC
P∼ C ′, if the state of all processes that are inP is equal in both

configurationsC andC ′, these processes are not crashed inC andC ′, and the values of all the

registers are equal. Similarly, we denoteC
¬P∼ C ′ if the state of all processes that arenot in P

is equal in both configurationsC andC ′, and the values of all the registers are equal. In both

communication models we writeC
p∼ C ′ or C

¬p∼ C ′ whenP = {p}.

In order to obtain indistinguishable configurations, we manipulate schedules by performing

very small changes to the order of processes in a given layer.Every small change results in config-

urations that are indistinguishable to some processes. Intuitively, after many small changes we get

achainof indistinguishable configurations, which we formally define later. These chains allow us

to argue about the decision value in each execution, and derive our lower bounds.

In the remainder of this section, we show a couple of manipulations that can be done to layers in

the shared memory model and result in indistinguishable configurations (additional manipulations

of layers appear separately in Chapters 10 and 11). We first consider a shared-memory model

where processes communicate through multi-writer registers, and use a simplifying assumption

that each read step accesses the registers of all processes.We call this themulti-writer cheap-

snapshotmodel, since each register is written to by any process, and all registers are read by any

process in a single snapshot. This snapshot is charged one step, hence the term “cheap”.

We manipulate sets of processes, and then consider them as singletons when manipulations

on single processes are needed. We consider a layerL as a sequence of disjoint sets of processes

L = [Pi1 . . . Piℓ ], where for everyj, 1 ≤ j ≤ ℓ, all the processes inPij perform the same operation:

either a write operation or a cheap-snapshot operation.

The following claim handles swapping the order of consecutive sets of processes in a layer.
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Claim 9.1 Let C be a configuration, letL = [Pi1 , . . . , Piℓ ] be a layer, and letL′ =

[Pi1 , . . . , Pij−1
, Pij+1

, . . . , Piℓ ] be the layerL after swappingPij and Pij+1
. If processes

in Pij and Pij+1
do not write to the same registers, then(C, ~y1, L)

¬Pij∼ (C, ~y1, L
′) or

(C, ~y1, L)
¬Pij+1∼ (C, ~y1, L

′).

Proof: If all processes inPij and Pij+1
access different registers or all of them perform a

cheap-snapshot operation, then(C, ~y1, L)
{p1,...,pn}∼ (C, ~y1, L

′). If processes inPij perform a cheap

snapshot operation and processes inPij+1
write, then(C, ~y1, L)

¬Pij∼ (C, ~y1, L
′), and otherwise

(C, ~y1, L)
¬Pij+1∼ (C, ~y1, L

′).

The above claim assumes that the processes in the two swappedsets do not write to the same

registers. The case where they do write to the same registersis more complex, since swapping

such processes might change values of registers, and effectthe rest of the execution. Instead of

swapping two such sets of processes, we first remove the first set from the layer, attach it to the

end of the modified layer, and finally swap it in reverse order until it reaches the desired location

in the layer. The next claim address the first component of this manipulation, which removes such

a set of processes from the layer.

Claim 9.2 Let C be a configuration, letL = [Pi1, . . . , Piℓ ] be a layer where for somej,

1 ≤ j < ℓ, all the processes inPij and Pij+1
write to the same registerR, and let L′ =

[Pi1 , . . . , Pij−1
, Pij+1

, . . . , Piℓ ] be the layerL after removingPij . Then(C, ~y1, L)
¬{Pij

}
∼ (C, ~y1, L

′).

Proof: Since all the processes inPij andPij+1
write to the same registerR, after the processes

in Pij+1
take steps in both layers the values of all the registers are same, and so are the local states

of all the processes except those inPij . This implies that this is also the case after executing the

whole layers, and therefore(C, ~y1, L)
¬Pij∼ (C, ~y1, L

′).

The remaining component of attaching the set of processes tothe end of the modified layer will

be handled separately in Section 11.1, as it involves further definitions required for the case of a

strong adversary.
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Chapter 10

A Lower Bound for a Weak Adversary

In this chapter, we obtain our lower bounds for randomized consensus under a weak adversary in

the different communication models. We begin by introducing the framework we use, which is

common to all models.

As mentioned in Section 9.3, our lower bound under a weak adversary will make use of indis-

tinguishable chains of executions. We proceed to formally define indistinguishability chains, as

follows.

Recall that we identify an executionα with the configuration it results in. Given two executions

α1 andα2 with the samen coin-flip strings~c = (c1, · · · , cn), we denoteα1
pi∼ α2 if processpi does

not distinguish betweenα1 andα2, and does not crash in them. In this case,pi decides on the same

value inα1 and inα2. We denoteα1 ≈m α2 if there is a chain of executionsβ1, · · · , βm+1 such

that

α1 = β1

pi1∼ β2 · · ·
pim∼ βm+1 = α2 .

We call such a chain anindistinguishability chainof lengthm + 1. Clearly, ifα ≈m β ≈m′ γ then

α ≈m+m′ γ, for every pair of integersm andm′. Moreover, notice that this relation is commutative,

i.e., if α1 ≈m α2 thenα2 ≈m α1.

For every pair of consecutive executions in the chain, thereis a process that decides on the same

value in both executions. By the agreement condition, the decision in α1 and inα2 must be the

same. This is the main idea of the lower bound proof, which is captured in Theorem 10.1: we take

two executions that must have different agreement values and construct an indistinguishability

chain between them, which bounds the probability of terminating in terms of the length of the

99



chain. Two such executions exist by the validity condition,as we formalize next.

We partition the processes intoS = max{3, ⌈n
f
⌉} setsP1, . . . , PS, each with at mostf pro-

cesses. For example, ifn > 2f , Pi = {p(i−1)f+1, · · · , pi·f} for every i, 1 ≤ i < S, and

PS = {p(S−1)f+1, · · · , pn}.

Consider initial configurationsC0, . . . , CS, such that inC0 all the inputs are 0, and inCi,

1 ≤ i ≤ S, all processes inP1, . . . , Pi have input 1 and all other processes have input 0; in

particular, inCS all processes have input 1.

Definition 10.1 For a scheduleσ, let crash(σ, p, r) be the schedule that is the same asσ, except

that p crashes in layerr, i.e., does not take a step in any layerℓ ≥ r. For a setP of processes,

crash(σ, P, r) is defined similarly.

Let σfull be the full synchronous schedule withk layers, in which no process fails. The next

theorem is the main tool for boundingqk as a function ofm, the length of an indistinguishability

chain. This theorem distills the technique we borrow from [36]. At the end of Section 10.1 we

discuss how asynchrony allows to construct shorter chains.

Theorem 10.1 Assume there is an integerm such that for all sequences of coins~c,

α(σfull,~c, C0) ≈m α(σfull,~c, CS). Then the probability thatA does not terminate afterk(n − f)

steps isqk ≥ 1
m+1

.

Proof: Assume, by way of contradiction, thatqk(m + 1) < 1. Since α(σfull,~c, C0) ≈m

α(σfull,~c, CS), there is a chain ofm + 1 executions,

α(σfull,~c, C0) = β1

pi1∼ β2 · · ·
pim∼ βm+1 = α(σfull,~c, CS) .

(See Figure 10.1.) The probability thatA does not terminate in at least one of thesem+1 executions

is at mostqk(m + 1). By assumption,qk(m + 1) < 1, and hence, the setB of sequences of

coins~c such thatA terminates in allm + 1 executions has probability Pr[~c ∈ B] > 0. Since

α(σfull,~c, C0) ≈m α(σfull,~c, CS), the agreement condition implies that the decision in allm + 1

executions is the same. However, the validity condition implies that the decision inα(σfull,~c, C0)

is 0, and the decision inα(σfull,~c, CS) is 1, which is a contradiction.
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β1 = α(σfull,~c, C0)

β2

βm+1 = α(σfull,~c, CS)

decision is 0

decision is 1

terminates with probability at least1 − qk

βm terminates with probability at least1 − qk

pi1∼

pim∼

Figure 10.1:Illustration for the proof of Theorem 10.1.

A slight extension of the above theorem handlesMonte-Carloalgorithms, where processes

may terminate without agreement with some small probability ǫ. This extension is presented in

Section 10.3.

The statement of Theorem 10.1 indicates that our goal is to show the existence of an integer

m such thatα(σfull,~c, C0) ≈m α(σfull,~c, CS); clearly, the smallerm, the higher the lower bound.

The next lemma comes in handy when we construct these chains.

Lemma 10.2 Assume there is an integerm such that for every scheduleσ, initial config-

uration I, sequence of coins~c and set Pi, α(σ,~c, I) ≈m α(crash(σ, Pi, 1),~c, I). Then

α(σfull,~c, C0) ≈S(2m+1) α(σfull,~c, CS), for every sequence of coins~c.

Proof: Consider the schedulesσ0 = σfull, andσi = crash(σ0, Pi, 1) for everyi, 1 ≤ i ≤ S, and

the corresponding executionsαi,j = α(σi,~c, Cj) for everyi andj, 1 ≤ i ≤ S and0 ≤ j ≤ S.

Note that the executionαi,j starts from the initial configurationCj with a schedule which is almost

full, except that processes inPi never take steps.

By assumption,α0,j ≈m αi,j for everyi, 1 ≤ i ≤ S, and everyj, 0 ≤ j ≤ S. (See Figure 10.2.)

Since processes inPi are crashed inσi for everyi, 1 ≤ i ≤ S, we have thatαi,i−1
p∼ αi,i, for every

processp ∈ P \ Pi. This implies thatαi,i−1 ≈1 αi,i, for everyi, 1 ≤ i ≤ S. Thus,

α(σfull,~c, C0) = α0,0 ≈m α1,0 ≈1 α1,1 ≈m α0,1 ≈m α2,1 ≈1 α2,2 · · ·αS,S ≈m α0,S = α(σfull,~c, CS) .

Therefore,α(σfull,~c, C0) ≈S(2m+1) α(σfull,~c, CS).
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C1 = (1, 0, . . . , 0)

C0 = (0, 0, . . . , 0)

C0 = (0, 0, . . . , 0)

C1 = (1, 0, . . . , 0)

Cs = (1, 1, . . . , 1)

σfull

crash(σfull, P0, 1)

crash(σfull, P0, 1)

σfull

σfull

≈m

≈1

≈m

≈m

Figure 10.2:Illustration for the proof of Lemma 10.2.

10.1 Tradeoff for the Message-Passing Model

In this section we derive the lower bound for the message-passing model. Notice that in the

message-passing model, since a step consists of both sending and receiving messages, a layer

L is not only a sequence of processes, but also specifies for each processp ∈ L the set of pro-

cesses it receives a message from (recall that we assumed that it sends messages to all processes).

The reception of messages in a certain layer is done after allmessages of that layer are sent, and

therefore the order of processes in a layer is insignificant.

Formally, anf -layer is a sequencepi1 , . . . , pim of distinct process id’s, followed by a sequence

Mi1 , . . . , Mim of subsets of process id’s, whereMij is the set of process id’s from whichpij receives

a message in this layer. In the executions we construct, a message is either delivered in the same

layer, or it is delayed and delivered after the last layer, and is effectively omitted in the execution.

Recall that the processes are partitioned intoS = max{3, ⌈n
f
⌉} setsP1, . . . , PS, each with at

mostf processes. We manipulate schedules in order to delay messages, as follows.

Definition 10.2 Letσ be a finite schedule. Letdelay(σ, Pi, Pj , r) be the schedule that is the same

asσ, except that the messages sent by processes inPi in layer r are received by processes inPj

only after the last layer. More formally, ifMp is the subset of processes that a processp receives a

message from in layerr in σ, then for every processp ∈ Pj the subset of processes that it receives

a message from in layerr in delay(σ, Pi, Pj, r) is Mp \ Pi.

Clearly, at the end of layerr, any process not inPj does not distinguish between the execution
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so far of a scheduleσ and an execution so far ofdelay(σ, Pi, Pj, r). Therefore we have:

Lemma 10.3 Let σ be a schedule withk layers. For any sequences of coins~c, and initial

configurationI, at the end of layerr only processes inPj distinguish betweenα(σ,~c, I) and

α(delay(σ, Pi, Pj , r),~c, I).

Recall thatS = max{3, ⌈n
f
⌉} is the number of setsPi. We define the following recursive

function for everyr andk, 1 ≤ r ≤ k:

mr,k =







S if r = k

(2(S − 1) + 1)mr+1,k + S if 1 ≤ r < k

A simple induction shows thatmr,k ≤ (2S)k−r+1.

The following lemma proves thatm1,k is the integer required in Lemma 10.2 for the message-

passing model, by inductively constructing indistinguishability chains between executions in which

a set of processes may crash from a certain layerr.

Lemma 10.4 Let σ be a schedule withk layers such that for somer, 1 ≤ r ≤ k, no process is

skipped in layersr, r + 1, . . . , k. Thenα(σ,~c, I) ≈mr,k
α(crash(σ, Pi, r),~c, I) for every sequence

of coins~c, every initial configurationI, and everyi ∈ {1, . . . , S}.

Proof: Let σ = σ0. Throughout the proof we denoteαi = α(σi,~c, I) for any scheduleσi. The

proof is by backwards induction onr.

Base case:r = k. We construct the following schedules. Letσ1 be the same asσ0 except that

the messages sent by processes inPi in thek-th layer are received by processes inP(i+1) mod S only

after thek-th layer, i.e.,σ1 = delay(σ, Pi, P(i+1) mod S, k). By Lemma 10.3, we haveα0
p∼ α1, for

every processp ∈ P \ P(i+1) mod S. We continue inductively to define schedules as above in the

following way, for everyh, 0 ≤ h ≤ S − 1: σh+1 is the same asσh except that the messages sent

by processes inPi in thek-th layer are received by processes inP(i+h+1) mod S only after thek-th

layer, i.e.,σh+1 = delay(σh, Pi, P(i+h+1) mod S, k). By Lemma 10.3, we haveαh
p∼ αh+1, for every

processp ∈ P \ P(i+h+1) mod S.

Since inσS no messages sent by processes inPi in layerk are ever received. Except for local

states of the processes inPi, this is the same as if the processes inPi are crashed in layerk:

αS = α(crash(σ, Pi, k),~c, I),
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Figure 10.3:How messages fromPi to Pi+1 are removed in the induction step of Lemma 10.4.

which implies that

α(σ,~c, I) = α0 ≈1 α1 ≈1 · · · ≈1 αS = α(crash(σ, Pi, k),~c, I) .

Therefore,α(σ,~c, I) ≈S α(crash(σ, Pi, k),~c, I).

Induction step:Informally, this is similar to the base case, except that we crashPj in layerr+1

before “erasing” messages fromPi to Pj in layerr, and afterwards revivePj in layerr + 1.

Formally, we assume that the lemma holds for layerr + 1, 1 ≤ r < k, and prove that it holds

for layerr. Let σ1 = crash(σ0, P(i+1) mod S, r + 1); by the induction hypothesis,α0 ≈mr+1,k
α1.

Let σ2 be the same asσ1 except that the messages received by processes inP(i+1) mod S

from processes inPi in layer r are received only after thek-th layer, i.e., σ2 =

delay(σ1, Pi, P(i+1) mod S, r). By Lemma 10.3, at the end of layerr only processes inP(i+1) mod S

distinguish between the executions, but since they are crashed in layerr + 1 we haveα1
p∼ α2, for

every processp ∈ P \ P(i+1) mod S, implying thatα1 ≈1 α2.

Let σ3 be the same asσ2, except that the processes inP(i+1) mod S do not crash in layerr + 1.

This implies that

σ2 = crash(σ3, P(i+1) mod S, r + 1).

By the induction hypothesis, we haveα2 ≈mr+1,k
α3. (See Figure 10.3.)

We continue inductively to define schedules as above in the following way for everyh, 0 ≤
h ≤ S − 1. We defineσ3h+1 = crash(σ3h, P(i+h+1) mod S, r + 1), and therefore by the induction

hypothesisα3h ≈mr+1,k
α3h+1. Letσ3h+2 be the same asσ3h+1 except that the messages received by
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processes inP(i+h+1) mod S from processes inPi in layerr are received only after thek-th layer, i.e.,

σ3h+2 = delay(σ3h+1, Pi, P(i+h+1) mod S, r). By Lemma 10.3, at the end of layerr only processes

in P(i+h+1) mod S distinguish between the executions, but since they are crashed in layerr + 1 we

haveα3h+1
p∼ α3h+2, for every processp ∈ P \ P(i+h+1) mod S, implying thatα3h+1 ≈1 α3h+2.

Finally, we defineσ3h+3 to be the same asσ3h+2, except that processes inP(i+h+1) mod S do not

crash. This implies thatσ3h+2 = crash(σ3h+3, P(i+h+1) mod S, r + 1). By the induction hypothesis

we haveα3h+2 ≈mr+1,k
α3h+3.

The construction implies that inσ3(S−1)+2 no messages are sent by the processes inPi in layer

r, and they are crashed from layerr + 1. Except for local states of the processes inPi, this is the

same as if the processes inPi are crashed from layerr. Therefore

α(σ3(S−1)+2,~c, I) = α(crash(σ0, Pi, r),~c, I),

and hence

α0 ≈mr+1,k
α1 ≈1 α2 ≈mr+1,k

α3 ≈mr+1,k
· · · ≈mr+1,k

α3(S−1)+1 ≈1 α3(S−1)+2 .

Sincemr,k = (2(S − 1) + 1)mr+1,k + S, this implies thatα0 ≈mr,k
α(crash(σ0, Pi, r),~c, I).

Note that in all executions constructed in the proof, at mostone set of processesPi does not

appear in a layer; since|Pi| ≤ f , this implies that at leastn − f processes take a step in every

layer, and hence every execution in the construction contains at leastk(n − f) steps.

Lemmas 10.2 and 10.4 imply that for any sequence of coinsC, α(σfull,~c, C0) ≈S(2m1,k+1)

α(σfull,~c, CS). Sincem1,k ≤ (2S)k, substitutingS(2m1,k+1) in the parameterm of Theorem 10.1

yields thatqk ≥ 1
(2S)k+1+S+1

. Recall thatS = max{3, ⌈n
f
⌉}. Taking⌈n

f
⌉ to be a constant, we obtain

the main result of this section:

Theorem 10.5 LetA be a randomized consensus algorithm in the asynchronous message passing

model. There are a weak adversary and an initial configuration, such that the probability thatA

does not terminate afterk(n − f) steps is at least1
ck , wherec is a constant if⌈n

f
⌉ is a constant.

In the original construction for the synchronous model ( [37, 42], see also [18, Chapter 5]), a

process that does not appear in a roundr must be crashed in that round, and therefore must be

counted within thef failures allowed. Hence, in order to change all the inputs from 0 to 1, we
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must crash and revive fewer processes at a time at each round.For example, in order to continue

k ≤ f rounds only one process may be crashed at each round. This adds a factor ofk to the base

of the power in the denominator of the bound onqk, which results in a lower bound of1
c·kk for the

synchronous message-passing model [36].

10.2 Tradeoff for the Shared-Memory Model

We now derive a similar lower bound for two shared-memory models, where processes commu-

nicate through shared read/write registers. The first modelconsists of single-writer registers and

a cheap-snapshot operation that costs one step, described formally in Subsection 10.2.1. In Sub-

section 10.2.2 we consider multi-writer registers. The lower bounds clearly hold for the more

restricted model, where processes read only a single register in each memory access.

10.2.1 Single-Writer Cheap-Snapshot

We first consider a shared-memory model where processes communicate through single-writer

registers. The lower bound is proved under a simplifying assumption that each read step accesses

the registers of all processes. We call this thesingle-writer cheap-snapshotmodel, since each

register is written to by one specific process, and all registers are read by any process in a single

snapshot.

As in a standard shared-memory model, a step of a process consists of accessing the shared

memory, and performing local computations. We further assume that in the algorithm, the steps of

every process alternate between a write and a cheap-snapshot, starting with a write. Any algorithm

can be transformed to satisfy this requirement by having a process rewrite the same value to its

register if it is forced to take a write operation, or read allof the registers and ignore some of

(or all) their values if it is forced to take a cheap-snapshotoperation. This only doubles the step

complexity.

Recall that the processes are partitioned intoS = max{3, ⌈n
f
⌉} setsP1, . . . , PS, each with at

mostf processes. We consider a restricted set of layered schedules.

Definition 10.3 A scheduleσ is regularif for every layerL and everyi, 1 ≤ i ≤ S, either all

processesp ∈ Pi take a step inL consecutively (one after the other, without steps of processes not
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in Pi in between), or none of the processesp ∈ Pi take a step inL. We denote byπ the permutation

of the setsPi that take steps inL, i.e., if processesp ∈ Pi take a step inL, thenπ−1(i) is their

index in the layer. We denote by|π| the number of setsPi that take steps in the layer.

Note that, in contrast to the message-passing model, in a shared-memory model the order of

the processes in a layerL is significant, since different orderings result in different executions.

Regular schedules are useful in our proofs since in every layer, all the processes in some set

Pi perform the same operation, as argued in the next lemma. Since processes in the same setPi

either all write to different registers (recall that registers are single-writer) or read all registers, this

means that in a regular execution, the order of processes in the setPi does not matter.

Lemma 10.6 Let σ be a regular schedule withk layers. Then in every layerL in σ, for everyi,

1 ≤ i ≤ S, either all processp ∈ Pi do not take a step inL, or all processesp ∈ Pi perform a

write operation inL, or all processesp ∈ Pi perform a cheap-snapshot operation inL.

Proof: The proof is by induction on the layer numberr.

Base case:Let r = 1, i.e.,L is the first layer ofσ. Sinceσ is regular, either all processp ∈ Pi

take a step inL, or none of the processesp ∈ Pi take a step inL. If all take a step then by our

assumption on the algorithm, it is a write operation. Otherwise, none take a step, which proves the

base case.

Induction step:Assume the lemma holds for layerℓ, 1 ≤ ℓ ≤ r. We prove the lemma for layer

r +1. By the induction hypothesis, in every layerℓ, 1 ≤ ℓ ≤ r, either all processesp ∈ Pi perform

a cheap-snapshot operation, or all perform a write operation, or none perform an operation. If none

preform any operation in any layerℓ ≤ r, then at the beginning of layerr+1 the pending operation

of all processesp ∈ Pi is a write operation by our assumption on the algorithm. Otherwise, letℓ be

the maximal layer in which all processesp ∈ Pi took a step. If they are cheap-snapshot operations,

then at the beginning of layerr+1 the pending operation of all processesp ∈ Pi is a write operation

by our assumption on the algorithm. If they are write operations, then at the beginning of layer

r+1 the pending operation of all processesp ∈ Pi is a cheap-snapshot operation by our assumption

on the algorithm. In any case, at the beginning of layerr + 1, either all processesp ∈ Pi have a

pending cheap-snapshot operation, or all have a pending write operation. Sinceσ is regular, either

none of the processesp ∈ Pi take a step in layerr + 1, or all take a step in layerr + 1, in which
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case it would either be a cheap-snapshot operation for all processes, or a write operation for all

processes.

In the proof, we apply certain manipulations to regular schedules, allowing us to delay and

crash sets of processes, as follows.

Definition 10.4 Letσ be a schedule such that everyp ∈ Pi is non-faulty in layerr, and such that

Pi is not the last set of processes in the layer. Letswap(σ, Pi, r) be the schedule that is the same

asσ, except that the steps of processes inPi are swapped with steps of the next set of processes in

that layer. Formally, ifπ is the permutation of layerr in σ andπ′ is the permutation of layerr in

swap(σ, Pi, r), and ifj = π−1(i), then we haveπ′(j) = π(j + 1) andπ′(j + 1) = π(j).

Inductively, we define

swapj(σ, Pi, r) = swap(swapj−1(σ, Pi, r), Pi, r),

that is,Pi is swappedj times and movedj sets later in the layer.

Definition 10.5 Let σ be a schedule andr be a layer such that no process is skipped in any layer

ℓ > r. Letdelay(σ, Pi, r) be the schedule that is the same asσ, except that the steps ofPi starting

from layerr are delayed by one layer. Thus, there is no step ofp ∈ Pi in layerr, the step ofp ∈ Pi

in layer r + 1 is the step that was in layerr, and so on. The permutations of the layersℓ ≥ r + 1

do not change.

Note that this definition assumes a scheduleσ in which no process is skipped in any layer

ℓ > r. Specifically, this implies thatPi appears in every layerℓ ≥ r + 1, which allows to keep the

permutations in layersℓ ≥ r + 1 unchanged indelay(σ, Pi, r).

Delaying a setPi from layerr can be seen as delayingPi from layerr+1, swappingPi in layer

r until it reaches the end of the layer, accounting forPi as the first set in layerr + 1 instead of the

last set in layerr, and then swappingPi in layerr +1 until it reaches its original place in the layer.

Although accounting forPi as the first set in layerr + 1 instead of the last set in layerr does

not change the order of steps taken, it is technically a different schedule (recall that the schedules

are defined as sequences of layers, which in this case are different in layersr andr +1). Therefore

we define:
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Definition 10.6 Let σ be a schedule where the last set of processes in layerr is Pi, and this set

does not appear in layerr + 1. Letrollover(σ, Pi, r) be the schedule that is the same asσ, except

thatPi is the first set in layerr + 1 instead of the last set in layerr.

Effectively, such two schedulesσ androllover(σ, Pi, r) have the same order of steps, which im-

plies that the executions of these schedules is the same:

α(σ,~c, I) = α(rollover(σ, Pi, r),~c, I).

Definitions 10.4, 10.5, and 10.6 imply:

Corollary 10.7 Let σ be a regular schedule withk layers, and for everyr, 1 ≤ r ≤ k, let πr be

the permutation of layerr in σ. Then,

delay(σ, Pi, r) = swapπ−1
r+1(i)−1(rollover(swap|πr|−π−1

r (i)(delay(σ, Pi, r+1), Pi, r), Pi, r), Pi, r+1).

Figure 10.4 depicts the schedules used when delaying a setPi in layer r of a scheduleσ,

according to this corollary.

Recall thatcrash(σ, Pi, r) is the schedule that is the same asσ, except that processes inPi

crash in layerr. Crashing a setPi in layer r can be seen as delaying it from layerr, and then

crashing it from layerr + 1. Definitions 10.1 and 10.5 imply that:

Corollary 10.8 For every regular scheduleσ,

crash(σ, Pi, r) = crash(delay(σ, Pi, r), Pi, r + 1).

An important property of regular schedules is that swapping, delaying, or crashing a set of

processesPi yields a regular schedule as well, because the sets are manipulated together.

Lemma 10.9 Let σ be a regular schedule withk layers. Then for everyi, 1 ≤ i ≤ S, and every

r, 1 ≤ r ≤ k, the schedulesswap(σ, Pi, r), delay(σ, Pi, r), rollover(σ, Pi, r), andcrash(σ, Pi, r)

are regular.

Proof: Every layerℓ 6= r in swap(σ, Pi, r) is the same as inσ and therefore satisfies the re-

quirement of a regular schedule. In layerr, all processes that took steps inσ also take steps in
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σ · · · . . . Pi . . .
︸ ︷︷ ︸

layerr

. . . Pi . . .
︸ ︷︷ ︸

layerr + 1

· · ·

delay(σ, Pi, r + 1) · · · . . . Pi . . .
︸ ︷︷ ︸

layerr

. . . . . .
︸ ︷︷ ︸

layerr + 1

· · ·

swap(delay(σ, Pi, r + 1), Pi, r) · · · . . . . . . Pi

︸ ︷︷ ︸

layerr

. . . . . .
︸ ︷︷ ︸

layerr + 1

· · ·

rollover(swap(delay(σ, Pi, r + 1), Pi, r), Pi, r) · · · . . . . . .
︸ ︷︷ ︸

layerr

Pi . . . . . .
︸ ︷︷ ︸

layerr + 1

· · ·

swap(rollover(swap(delay(σ, Pi, r + 1), Pi, r), Pi, r), Pi, r + 1) · · · . . . . . .
︸ ︷︷ ︸

layerr

. . . Pi . . .
︸ ︷︷ ︸

layerr + 1

· · ·

= delay(σ, Pi, r) · · · . . . . . .
︸ ︷︷ ︸

layerr

. . . Pi . . .
︸ ︷︷ ︸

layerr + 1

· · ·

Figure 10.4:An example showing howswap operators are applied to delay a set of processesPi; assume

Pi is the penultimate set in layerr and the third set in layerr + 1. Note that the third transition does not

modify the execution, and only accounts the steps ofPi to layerr + 1 instead of layerr; the last transition

just notes that we have obtaineddelay(σ, Pi, r).

swap(σ, Pi, r), and each set remains consecutive. Therefore,swap(σ, Pi, r) is regular. It is also

easy to see thatrollover(σ, Pi, r) is regular.

The proof fordelay(σ, Pi, r) andcrash(σ, Pi, r) is by backwards induction on the layer number

r.

Base case:For r = k, delaying a setPi in the last layer, is the same as crashingPi. Denote

σ′ = delay(σ, Pi, k) = crash(σ, Pi, k). Every layerℓ < k in σ′ is the same as inσ, and the last

layerk is the same inσ′ except that the processes inPi do not take a step. Hence,σ′ is also regular.

Induction step:We assume the lemma holds for every layerℓ, r + 1 ≤ ℓ ≤ k, and prove it

for layer r. By Corollary 10.7, the induction hypothesis and since swapping results in a regular

schedule,delay(σ, Pi, r) is regular. By Corollary 10.8, the induction hypothesis andsince delaying

results in a regular schedule,crash(σ, Pi, r) is regular.

We next construct an indistinguishability chain of schedules between any regular schedule

and a schedule in which some set of processes is delayed or crashed. The construction relies on
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Corollary 10.7 and Corollary 10.8 to delay or crash a set of processes through a sequence of swaps.

The elementary step in this construction, where a set is swapped with the following one, is provided

by the next lemma.

Lemma 10.10 Letσ be a regular schedule withk layers. For any sequences of coins~c, and initial

configurationI, if Pi is not the last set of processes in layerr, 1 ≤ r ≤ k, then there is a setPj

such that at the end of layerr only processes inPj (at most) distinguish betweenα(σ,~c, I) and

α(swap(σ, Pi, r),~c, I).

Proof: Considerswap(σ, Pi, r) and letπ be the permutation corresponding to layerr. SincePi

is not the last set in the layer, we haveπ−1(i) 6= |π|. Let i′ = π(π−1(i) + 1), i.e.,Pi is swapped

with Pi′ . By Lemma 10.6, either all the processes inPi perform a cheap-snapshot operation or all

processes inPi perform a write operation. The same applies forPi′ .

Let C be the configuration resulting from both executions after layerr − 1 and~y1 the vector of

the resulting coin flips of the processes at the configurationC. Further, letL be layerr in σ, and

L′ be layerr in swap(σ, Pi, r). By Claim 9.1, there is a setPj such that the configurations at the

end of layerr of both executions are indistinguishable to processes not in Pj (wherej is eitheri or

i′).

Notice that the setPj (the value of the indexj) depends only on the types of operations per-

formed, i.e, only onσ, and not on the sequences of coins~c or the initial configurationI. This is

crucial for ensuring that the adversary is non-adaptive.

For everyr andk, 1 ≤ r ≤ k, we define:

sr,k =







1 if r = k

2 · cr+1,k + 1 if 1 ≤ r < k

dr,k =







S if r = k

dr+1,k + S · sr,k + S · sr+1,k if 1 ≤ r < k

cr,k =







S if r = k

dr,k + cr+1,k if 1 ≤ r < k

whereS = max{3, ⌈n
f
⌉} is the number of setsPi. These recursive functions will be used for

bounding the lengths of the indistinguishability chains inour construction.
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The next proposition shows a bound on these functions; its proof is a simple backwards induc-

tion.

Proposition 10.11 cr,k ≤ (2S + 4)k−r+1.

The main technical result of this section is the following lemma, which will be used to show an

indistinguishability chain between the executions that result from schedulesσ andcrash(σ, Pi, 1),

in order to apply Lemma 10.2. Additional claims, regardingswap anddelay, are proved in order

to carry through with the proof.

Lemma 10.12 Let σ be a regular schedule withk layers such that no process is skipped at any

layer ℓ ≥ r, for somer, 1 ≤ r ≤ k. For any sequences of coins~c, and initial configurationI, and

for everyi, 1 ≤ i ≤ S, the following all hold:

α(σ,~c, I) ≈sr,k
α(swap(σ, Pi, r),~c, I),

α(σ,~c, I) ≈dr,k
α(delay(σ, Pi, r),~c, I),

α(σ,~c, I) ≈cr,k
α(crash(σ, Pi, r),~c, I).

Proof: Let σ0 = σ. Throughout the proof, we denoteαi = α(σi,~c, I) for every scheduleσi, and

α′
i = α(σ′

i,~c, I) for every scheduleσ′
i.

The proof is by backwards induction onr.

Base case:r = k. Considerswap(σ, Pi, k), wherePi is not the last set in the layer (otherwise

swapping is undefined). By Lemma 10.10, there is a setPj, which does not depend on~c or I,

such thatα(σ,~c, I)
p∼ α(swap(σ, Pi, r),~c, I), for every processp 6∈ Pj. Therefore,α(σ,~c, I) ≈sk,k

α(swap(σ, Pi, k),~c, I).

Delaying Pi in the last layer is equivalent to failing it, thereforedelay(σ, Pi, k) =

crash(σ, Pi, k). Denote this schedule byσ′. We crashPi by swapping it until it reaches the

end of the layer and then removing it. In more detail, letπ be the permutation of the last layer of

σ, and define:

σ′′ = swap|π|−π−1(i)(σ, Pi, k).

The proof of the base case forswap(σ, Pi, k) implies that there is a chain of lengthsk,k ·
(|πr| − π−1

r (i)) ≤ (S − 1) · sk,k = S − 1 between the executions, i.e.,α0 ≈S−1 α(σ′′,~c, I).
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Clearly, α(σ′′,~c, I)
p∼ α(σ′,~c, I), for every processp 6∈ Pi, and therefore,α(σ,~c, I) ≈dk,k

α(delay(σ, Pi, r),~c, I) andα(σ,~c, I) ≈ck,k
α(crash(σ, Pi, r),~c, I).

Induction step:Assume the lemma holds for layerr + 1 ≤ k. We prove that it holds for layer

r.

We first deal with swapping; assume thatPi is not the last set in the layer and consider

swap(σ, Pi, r). By Lemma 10.10, there is a setPj , which does not depend on~c or I, such that

at the end of layerr only process inPj distinguish betweenα(σ,~c, I) andα(swap(σ, Pi, r),~c, I).

We defineσ1 to be the same asσ except that processes inPj are crashed in layerr + 1, i.e.,

σ1 = crash(σ, Pj, r + 1). By the induction hypothesis,α0 ≈cr+1,k
α1. Let σ2 be the same as

σ1 except thatPi and Pj are swapped in layerr, i.e., σ2 = swap(σ1, Pi, r). Since only pro-

cesses inPj observe the swapping, but are all crashed in the next layer, we have thatα1
p∼ α2

for every processp 6∈ Pj. Finally, let σ3 be the same asσ2, except that processes inPj

are not crashed in layerr + 1, i.e., σ2 = crash(σ3, Pj, r + 1). By the induction hypothesis,

α2 ≈cr+1,k
α3. Notice thatσ3 = swap(σ, Pi, r), and2cr+1,k + 1 = sr,k, which implies that

α(σ,~c, I) ≈sr,k
α(swap(σ, Pi, r),~c, I).

Next, we consider the case of delaying a process, i.e.,delay(σ, Pi, r)). (Recall Figure 10.4.)

By Corollary 10.7,

delay(σ, Pi, r) = swapπ−1
r+1(i)−1(rollover(swap|πr|−π−1

r (i)(delay(σ, Pi, r+1), Pi, r), Pi, r), Pi, r+1).

Recall that applyingrollover does not change the execution. Hence, by the proof for swapping,

the induction hypothesis, and since

dr+1,k + sr,k · (|πr| − π−1
r (i)) + sr+1,k · (π−1

r+1(i) − 1) ≤ dr+1,k + S · sr,k + S · sr+1,k = dr,k

it follows thatα(σ,~c, I) ≈dr,k
α(delay(σ, Pi, r),~c, I).

Finally, we consider the case of crashing a process, i.e.,crash(σ, Pi, r). By Corollary 10.8,

crash(σ, Pi, r) = crash(delay(σ, Pi, r), Pi, r + 1).

By the proof for delaying, the induction hypothesis, and sincedr,k + cr+1,k = cr,k, it follows that

α(σ,~c, I) ≈cr,k
α(crash(σ, Pi, r),~c, I).
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Note that in all executions constructed in the proof, at mostone set of processesPi does not

appear in a layer; since|Pi| ≤ f , this implies that at leastn − f processes take a step in every

layer, and hence every execution in the construction contains at leastk(n − f) steps.

Lemmas 10.2 and 10.12 imply that for every sequence of coins~c, α(σfull,~c, C0) ≈S(2c1,k+1)+1

α(σfull,~c, CS), Sincec1,k ≤ (2S + 4)k, we have thatS(2c1,k + 1) +1 ≤ (2S +4)k+1. Substituting

in Theorem 10.1 yields thatqk ≥ 1
(2S+4)k+1+1

. SinceS can be taken to be a constant when⌈n
f
⌉ is a

constant, we get the next theorem:

Theorem 10.13LetA be a randomized consensus algorithm in the asynchronous shared-memory

model, with single-writer registers and cheap snapshots. There are a weak adversary and an initial

configuration, such that the probability thatA does not terminate afterk(n − f) steps is at least
1
ck , wherec is a constant if⌈n

f
⌉ is a constant.

10.2.2 Multi-Writer Cheap-Snapshot

We derive the lower bound for multi-writer registers by reduction to single-writer registers. In a

simple simulation of a multi-writer register from single-writer registers (e.g., [73]), performing a

high-level read or write operation (to the multi-writer register) involvesn low-level read operations

(of all single-writer registers) and possibly one low-level write operation (to the process’ own

single-writer register). This multiplies the total step complexity byO(n).

However, with cheap-snapshots, we can read all single-writer registers in one step, yielding

a simulation that only doubles the total step complexity (since writing includes a cheap-snapshot

operation). The pseudocode of the simulation appears in Algorithm 10.1, which uses an arrayRR

of single-writer variables.RR[i] is the last value written bypi, together with a timestamp. The

correctness of this algorithm follows along the proof of Algorithm 10.3 from [18].

Since in the single-writer cheap-snapshot model each snapshot operation accounts for one ac-

cess to the shared memory, every algorithm in the multi-writer model can be transformed to an

algorithm in the single-writer cheap-snapshot model, where the step complexity is only multiplied

by a constant factor. Combining this with Theorem 10.13 yields the next theorem.

Theorem 10.14LetA be a randomized consensus algorithm in the asynchronous shared-memory

model, with multi-writer registers and cheap snapshots. There are a weak adversary and an initial
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Algorithm 10.1 Simulating a multi-writer registerR from single-writer registers.

Processpi has a shared registerRR[1], each consisting of the pair〈v, t〉;
initially, each register holds〈0, init〉, whereinit is the desired initial value

1: read(R):

2: snapshotRR array into local(t, v) array

3: returnv[j] such thatt[j] is maximal

4: write(R, v) by pw:

5: snapshotRR array into local(t, v) array

6: let lts be the maximum oft[1], . . . , t[n]

7: write the pair(v, lts + 1) to RR[w]

8: return

configuration, such that the probability thatA does not terminate afterk(n − f) steps is at least
1
ck , wherec is a constant if⌈n

f
⌉ is a constant.

10.3 Monte-Carlo Algorithms

Another way to overcome the impossibility of asynchronous consensus is to allow Monte-Carlo

algorithms. This requires us to relax the agreement property and allow the algorithm to decide

on conflicting values, with small probability. Letǫk be the maximum probability, over all weak

adversaries and over all initial configurations, that processes decide on conflicting values after

k(n − f) steps. The next theorem is the analogue of Theorem 10.1, for bounding the probability

of terminating afterk(n − f) steps.

Theorem 10.15Assume there is an integerm such that for all sequences of coins~c,

α(σfull,~c, C0) ≈m α(σfull,~c, CS). Thenqk ≥ 1−(m+1)ǫk

m+1
.

Proof: Assume, by way of contradiction, that(m + 1)qk < 1 − (m + 1)ǫk. Consider them +

1 executions in the sequence implied by the fact thatα(σfull,~c, C0) ≈m α(σfull,~c, CS). The

probability thatA does not terminate in at least one of thesem+1 executions is at most(m+1)qk.
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By assumption,qk(m+1) < 1− (m+1)ǫk, and hence, the setB of sequences of coins~c such that

A terminates in allm + 1 executions has probability Pr[~c ∈ B] > (m + 1)ǫk.

If the agreement property is satisfied in allm + 1 executions, then by the validity condition, as

in the proof of Theorem 10.1, we get that the decision inα(σfull,~c, C0) is the same as the decision

in α(σfull,~c, CS), which is a contradiction. Hence, for every~c ∈ B, the agreement condition does

not hold in at least one of these executions.

Since we havem + 1 schedules in the chain, there exists a schedule for which theagreement

condition does not hold with probability greater thanǫk. But this means thatA satisfies agreement

with probability smaller than1 − ǫk, which is a contradiction.

Substituting with Lemma 10.2 and Lemma 10.4, yields the lower bound for the message pass-

ing model.

Theorem 10.16LetA be a randomized consensus algorithm in the asynchronous message passing

model. There are a weak adversary and an initial configuration, such that the probability thatA

does not terminate afterk(n− f) steps is at least1−ckǫk

ck , wherec is a constant if⌈n
f
⌉ is a constant,

andǫk is a bound on the probability for disagreement.

Substituting with Lemma 10.2 and Theorem 10.14 yields the lower bound for the shared mem-

ory model.

Theorem 10.17LetA be a randomized consensus algorithm in the asynchronous shared-memory

model with multi-writer registers and cheap snapshots. There are a weak adversary and an ini-

tial configuration, such that the probability thatA does not terminate afterk(n − f) steps is at

least 1−ckǫk

ck , wherec is a constant if⌈n
f
⌉ is a constant, andǫk is a bound on the probability for

disagreement.

The bound we obtain in Theorem 10.15 on the probabilityqk of not terminating increases as

the allowed probabilityǫk of terminating without agreement decreases, and coincideswith Theo-

rem 10.1 in case the agreement property must always be satisfied (i.e.,ǫk = 0). In case an algorithm

always terminates ink(n− f) steps (i.e.,qk = 0), we can restate Theorem 10.15 as a bound onǫk:

Corollary 10.18 Assume there is an integerm such that for all sequences of coins~c,

α(σfull,~c, C0) ≈m α(σfull,~c, CS). Moreover, assume that the algorithm always terminates after

k(n − f) steps, i.e.,qk = 0. Thenǫk ≥ 1
m+1

.
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For example, the algorithms for the message-passing model given by Kapron et al. [52] are

Monte-Carlo, i.e., have a small probability for terminating without agreement. They present an

algorithm that always terminates withinpolylog(n) asynchronous rounds, and has a probability
1

polylog(n)
for disagreeing. For comparison, our lower bound of Corollary 10.18 for disagreeing

whenk = polylog(n) andqk = 0 is ǫk ≥ 1
cpolylog(n) , wherec is a constant if⌈n

f
⌉ is a constant. Their

second algorithm always terminates within2Θ(log7 n) asynchronous rounds, and has a probability
1

poly(n)
for disagreeing, while our lower bound isǫk ≥ 1

c2
Θ(log7 n)

.
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Chapter 11

A Lower Bound for a Strong Adversary

In this section we prove a lower bound for randomized consensus under a strong adversary, as

defined in Section 9.2. We begin, in Section 11.1, by laying the setting for the framework we use.

This section defines the key notions used in our lower bound proof—potenceandvalence—and

proves that layered executions in the multi-writer shared-memory model arepotence connected.

The lower bound proof appears in Section 11.2.

We emphasize that we are considering multi-writer registers, which we could not have assumed

when manipulating layers for the lower bound under the weak adversary because there the register

written to by a process has to be fixed in advance for the adversary to be non-adaptive. However,

under a strong adversary we cannot directly employ the reduction of Section 10.2.2 from single-

writer cheap-snapshot registers to multi-writer registers because the adaptiveness of our strong ad-

versary may imply a weakening of the algorithm (splitting operations that are modelled as atomic

operations into several memory accesses). Dealing with multi-writer registers directly imposes

some subtle challenges when proving indistinguishabilityof configurations, therefore the manip-

ulations we perform on the layers for proving the lower boundin this section are more involved.

Moreover, coping with these manipulations requires additional definitions which are specific for

this lower bound, and hence do not appear in Chapter 9.
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11.1 Potence and Valence of Configurations

In order to derive our lower bound, we are interested in the probability of reaching each of the

possible decision values, from a given configuration. As thealgorithm proceeds towards a decision,

we expect the probability of reaching a decision to grow, where for a configuration in which a

decision is reached, this probability is 1. This intuition is formalized as follows. Letk ≥ 0 be an

integer, and define

ǫk =
1

n
√

n
− k

(n − f)3
.

Our proof makes use of adversaries that have a probability of1− ǫk for reaching a certain decision

value from a configuration reached afterk layers. As the layer numberk increases, the value of

ǫk decreases, and the probability1 − ǫk required for a decision grows. The value ofǫk is set with

foresight to achieve the stated bound.

An adversary with a high probability of deciding is defined asfollows.

Definition 11.1 Anf -adversaryα from a configurationC that is reachable from an initial config-

uration by anf -execution withk ≥ 0 layers, isv-decidingif Pr[decision fromC underα is v] >

1 − ǫk.

Next, we classify configurations according to the probabilities of reaching each of the possible

decisions from them. We adapt the notion ofpotence[60] to fit randomized algorithms.

Instead of considering all possible adversaries, we further restrict our attention to a certain

subset of them, which will be specified later.

Definition 11.2 A configurationC that is reachable from an initial configuration by anf -

execution withk ≥ 0 layers, is(v, k, S)-potent, for v ∈ {0, 1} and a setS of f -adversaries, if

there is av-deciding adversaryα ∈ S fromC.

Definition 11.3 A configuration is(v, k, S)-valentif it is (v, k, S)-potent but not(v̄, k, S)-potent.

Such a configuration is also called(k, S)-univalent.

A configuration is(k, S)-bivalentif it is both (0, k, S)-potent and(1, k, S)-potent.

A configuration is(k, S)-null-valentif it is neither(0, k, S)-potent nor(1, k, S)-potent.
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-

1 − ǫk

1 − ǫk

1

1

max
α

Pr[decision fromC underα is 0]

max
α

Pr[decision fromC underα is 1]

null-valent

bivalent0-valent

1-valent

Figure 11.1:Classifying configurations according to their valence.

We often say thatC is v-potent (v-valent, bivalent, null-valent)with respect toS, when the

number of layersk is clear from the context. Further, if the setS is also clear from the context, we

will sometimes use the notationv-potent (v-valent, bivalent, null-valent). Figure 11.1 illustrates

the valence of configurations as follows. A configurationC is mapped to a point in the figure,

according to the maximum probabilities over all adversaries for deciding 0 and for deciding 1 from

C; the valence ofC is determined by the area in which the respective point lies.For example, if

this point lies beyond1 − ǫk on thex axis, it implies that there is an adversaryσ from C with

probability at least1 − ǫk for deciding 1. Therefore,C is either bivalent or 1-valent, depending on

whether it lies beyond1 − ǫk on they axis or not.

Note that a configuration can have a certain valence with respect to one set of adversariesS

and another valence with respect to a different setS ′. For example, it can be univalent with respect

to S and null-valent with respect toS ′ 6= S; however, this cannot happen whenS ⊆ S ′. (Another

example appears in Lemma 11.1 below.)

The set off -adversaries we consider, denotedSP , is induced by a subset of processesP ⊆
{p1, . . . , pn}. An adversaryα is in SP , if all of the layers it may choose areP -free, where a

layer isP -free if it does not include any processp ∈ P . Specifically, the setS∅ is the set of all

f -adversaries.

A layer is full with respect toSP if it contains then − |P | distinct process identifiers

{p1, . . . , pn} \ P ; otherwise, the layer ispartial. Scheduling a partial layer without some pro-

cessp 6∈ P , does not imply thatp is failed, since the system is asynchronous, andp may appear in
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later layers. However, considering only adversaries inSP for some nonempty setP , is equivalent

to failing the processes inP since they do not take further steps.

Restricting a set of adversaries can only eliminate possible adversaries, and therefore cannot in-

troduce potence that does not exist in the original set of adversaries, as formalized in the following

simple lemma.

Lemma 11.1 If a configurationC, reached afterk layers, isv-valent with respect toSP , then it is

not v̄-potent with respect toSP∪{p} for any processp.

Proof: Assume towards a contradiction, that there is a processp such thatC is v̄-potent with

respect toSP∪{p}. Then there exists āv-deciding adversaryα in SP∪{p}, i.e.,

Pr[decision inC ′ ◦ α is v̄] > 1 − ǫk.

But α is also an adversary inSP becauseSP∪{p} ⊆ SP , which implies thatC is v̄-potent also with

respect toSP , contradicting the fact thatC is v-valent with respect toSP .

Let C be a configuration reached after some number of layersk, and fix a vector~y1 ∈ XC .

We consider every configuration that can be reached by applying a single layer toC. We define

a relation between these various configurations, based on their potence, which generalizes notions

for deterministic algorithms suggested by [60].

Definition 11.4 For a given vector~y1, two configurations(C, ~y1, L) and (C, ~y1, L
′) haveshared

potence with respect toSP , if they are bothv-potent with respect toSP for somev ∈ {0, 1}.

We definepotence connectivitybetween two layers, as the transitive closure of the above rela-

tion.

Definition 11.5 For a given vector~y1, two configurations(C, ~y1, L) and (C, ~y1, L
′) are potence

connected with respect toSP , if there is a sequence of layersL = L0, L1, . . . , Lh = L′ such

that for everyi, 0 ≤ i < h, there exists a processp such that the configurations(C, ~y1, Li) and

(C, ~y1, Li+1) have shared potence with respect toSP∪{p}.
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In particular, if(C, ~y1, L) and(C, ~y1, L
′) have shared potence with respect toSP∪{p} for some

processp, then they are potence connected.

Our goal is to show that givenC, ~y1 andSP , if the set of all configurations of the form(C, ~y1, L)

does not contain a null-valent configuration, then these configurations are potence connected with

respect toSP . Therefore, if there are both 0-potent and 1-potent configurations in this set, then

there must also be a bivalent configuration in it. This would imply that there is a non-univalent

configuration among this set, namely, a configuration that isnotv-valent, for anyv.

The following claims are used to prove this connectivity, byshowing that specific configura-

tions are potence connected. They are proved under the following assumption:

Assumption 1 LetC be a configuration,~y1 ∈ XC , andSP a set of adversaries. For every process

p and every layerL, the configuration(C, ~y1, L) is univalent with respect toSP andSP∪{p}.

We proceed to stating and proving our connectivity claims.

Claim 11.2 Under Assumption 1, ifL = [pi1 , pi2, . . . , piℓ ] is a layer where for somej, 1 ≤ j < ℓ,

pij andpij+1
both write to the same registerR, andL′ = [pi1, . . . , pij−1

, pij+1
, . . . , piℓ ] is the layer

L after removingpij , then(C, ~y1, L) and(C, ~y1, L
′) have shared potence with respect toSP∪{pij

}.

Proof: By Claim 9.2, taking each set to be a single process, we have that

(C, ~y1, L)
¬P∪{pij

}
∼ (C, ~y1, L

′), which implies that (C, ~y1, L) and (C, ~y1, L
′) have the same

potence with respect toSP∪{pij
}. By Assumption 1, this implies that they have shared potence

with respect toSP∪{pij
}, since they are not null-valent.

Claim 11.3 Under Assumption 1, ifL = [pi1 , pi2, . . . , piℓ ] is a layer,p is a process not inL, and

L′ = [pi1 , pi2 , . . . , piℓ, p] is the layerL after addingp at the end, then(C, ~y1, L) and (C, ~y1, L
′)

have shared potence with respect toSP∪{p}.

Proof: If p performs a read operation, then(C, ~y1, L)
¬P∪{p}∼ (C, ~y1, L

′), which implies that these

two configurations have shared potence with respect toSP∪{p}, and the claim follows.

If p performs a write operation to registerR, then the states of all processes not inP ∪ {p} are

the same in(C, ~y1, L) and in(C, ~y1, L
′), but the value ofR may be different.

If (C, ~y1, L) and(C, ~y1, L
′) do not have shared potence with respect toSP∪{p}, then since we

assume they are univalent with respect toSP∪{p} (Assumption 1), we have that for somev ∈ {0, 1},
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(C, ~y1, L) is v-valent with respect toSP∪{p} and(C, ~y1, L
′) is v̄-valent with respect toSP∪{p}. In

particular, there is āv-deciding adversaryα ∈ SP∪{p} from (C, ~y1, L
′). Addingp at the beginning

of the first layer ofα yields a new adversary which is inSP , and isv̄-deciding when applied to

(C, ~y1, L), since it is the same as applyingα to (C, ~y1, L
′). However, by Lemma 11.1,(C, ~y1, L) is

v-valent with respect toSP , which is a contradiction.

Claim 11.4 Under Assumption 1, ifL = [pi1 , pi2, . . . , piℓ ] is a layer and L′ =

[pi1 , . . . , pij−1
, pij+1

, pij , pij+2
, . . . , piℓ ] is the layerL after swappingpij andpij+1

, then(C, ~y1, L)

and(C, ~y1, L
′) are potence connected with respect toSP .

Proof: By Claim 9.1, taking each set to be a single process, ifpij and pij+1
access different

registers, or if they both read, or ifpij reads registerR andpij+1
writes toR or vice versa, then

(C, ~y1, L)
¬P∪{p}∼ (C, ~y1, L

′) ,

wherep is eitherpij or pij+1
. Both cases imply that(C, ~y1, L) and(C, ~y1, L

′) are potence connected

with respect toSP . The remaining case is whenpij and pij+1
both write to the same register

R. It may be that all the rest of the processes in the layer read from registerR, and therefore

distinguish between the two resulting configurations. Hence, we cannot argue in this case that the

configurations have shared potence, but we can prove that they are potence connected. This is done

by reverse induction onj.

Basis: If j = ℓ − 1, let L0 = L, L1 = [pi1 , . . . , piℓ−2
, piℓ ] be the layerL after removingpiℓ−1

,

andL2 = L′. By Claim 11.2,(C, ~y1, L0) and(C, ~y1, L1) are potence connected with respect to

SP , and by Claim 11.3,(C, ~y1, L1) and(C, ~y1, L2) are potence connected with respect toSP . The

transitivity of potence connectivity implies that(C, ~y1, L0) and(C, ~y1, L2) are potence connected

with respect toSP .

Induction step:Let

L0 = L = [pi1 , pi2, . . . , piℓ ]

and let

L1 = [pi1 , . . . , pij−1
, pij+1

, pij+2
, . . . , piℓ ]

be the layerL0 after removingpij . By Claim 11.2,(C, ~y1, L0) and(C, ~y1, L1) are potence con-

nected with respect toSP . Let

L2 = [pi1 , . . . , pij−1
, pij+1

, pij+2
, . . . , piℓ , pij ]
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L0 = p1:r(R1) . . . pi:w(R2) pi+1:r(R2) pi+2:w(R2) . . . pn−1:r(R3) pn:r(R4)

L′ = p1:r(R1) . . . pi:w(R2) pi+1:r(R2) pi+2:w(R2) . . . pn−1:r(R3)

L′′ = p1:r(R1) . . . pi+1:r(R2) pi:w(R2) pi+2:w(R2) . . . pn−1:r(R3)

L1 = p1:r(R1) . . . pi+1:r(R2) pi+2:w(R2) . . . pn−1:r(R3)

Figure 11.2:Example of potence connected configurations: the first and second configuration are con-

nected by Claim 11.3, the second and third are connected by Claim 11.4, while the third and fourth are

connected by Claim 11.2.

be the layerL1 after addingpij at the end. By Claim 11.3,(C, ~y1, L1) and(C, ~y1, L2) are potence

connected with respect toSP .

For everym, 3 ≤ m ≤ ℓ − j + 1, let

Lm = [pi1 , . . . , pij−1
, pij+1

, pij+2
, . . . , pij , piℓ−m+3

, . . . , piℓ ]

be the previous layerLm−1 after swappingpij with the process before it, until it reachespij+1
.

Specifically,

Lℓ−j+1 = L′ = [pi1 , . . . , pij−1
, pij+1

, pij , pij+2
, . . . , piℓ ].

By the induction hypothesis,(C, ~y1, Lm) and (C, ~y1, Lm+1) are potence connected with respect

to SP , for everym, 2 ≤ m < ℓ − j + 1. The transitivity of potence connectivity implies that

(C, ~y1, L0) and(C, ~y1, Lℓ−j+1) are potence connected with respect toSP .

Figure 11.2 shows an example of using the claims, for the fulllayerL0 and the partial layer

L1 obtained by removing the steps ofpi andpn from L0. We show two layersL′ andL′′ such

that only one process,pn, distinguishes between the configurations lead to byL0 andL′, only one

process,pi+1, distinguishes between the configurations lead to byL′ andL′′, and only one process,

pi, distinguishes between the configurations lead to byL′′ andL1. Thus, the configurations lead to

by L0 andL1 must be potence connected.

The following lemma shows that given a configurationC and a vector~y ∈ XC , if there is

a layer that extendsC into a v-valent configuration and a layer that extendsC into a v̄-valent

configuration, then we can find a layer that extendsC into a non-univalent configuration, possibly

by failing one additional process.
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Lemma 11.5 LetC be a configuration and let~y1 be a vector inXC . If there are layersLv andLv̄,

such that(C, ~y1, Lv) is (v, k + 1, SP )-valent and(C, ~y1, Lv̄) is (v̄, k + 1, SP )-valent, then there is

a layerL such that(C, ~y1, L) is either not(k + 1, SP )-univalent or not(k + 1, SP∪{p})-univalent,

for some processp.

Proof: Assume towards a contradiction that for every layerL and every processp, the configu-

ration (C, ~y1, L) is univalent with respect to bothSP andSP∪{p} (this implies that Assumption 1

holds). LetLF be the full layer with respect toSP consisting of all processes not inP , according

to the order of their id’s. Then,LF is univalent with respect toSP , say it is(v̄, k + 1, SP )-valent.

(Otherwise, we follow the same proof withLv̄.)

DenoteLv = [pi1 , . . . , piℓ ] and consider the layerL′ = [pi1 , . . . , piℓ , . . . ] that is full with respect

to SP , and hasLv as a prefix. (Lv may be full with respect toSP , in which caseL′ is equal toLv.)

We start with the layerLF and repeatedly swap processes until we reach the layerL′, in a

chain of configurations which, by Claim 11.4, are potence connected with respect toSP . From

L′, we repeatedly remove the last process until reaching the layer Lv, in a chain of configurations

which, by Claim 11.3, are potence connected with respect toSP . This implies that(C, ~y1, L
F ) and

(C, ~y1, Lv) are potence connected with respect toSP .

Since(C, ~y1, Lv) is (v, k+1, SP )-valent, and(C, ~y1, L
F ) is (v̄, k+1, SP )-valent, it follows that

there are layersL1 andL2 such that(C, ~y1, L1) is (v, k+1, SP )-valent,(C, ~y1, L2) is (v̄, k+1, SP )-

valent, and(C, ~y1, L1) and(C, ~y1, L2) have shared potence with respect toSP∪{p}, for some process

p. By Lemma 11.1 and our assumption that all layers lead to univalent configurations,(C, ~y1, L1)

is (v, k+1, SP∪{p})-valent, and(C, ~y1, L2) is (v̄, k+1, SP∪{p})-valent, and hence, they cannot have

shared potence with respect toSP∪{p}. This yields a contradiction and proves the lemma.

11.2 The Lower Bound

Before presenting the lower bound proof, let us recall lowerbound proofs and impossibility results

for deterministic consensus algorithms. In these proofs, the configurations are classified intouni-

valentandbivalentconfigurations. Since a deciding configuration has to be univalent, these proofs

aim to avoid univalent configurations by showing that there is an initial bivalent configuration, and

by moving from one bivalent configuration to another bivalent configuration.
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Our proof generalizes the above technique to randomized algorithms as follows. Recall that

in addition to bivalent and univalent configurations, we have null-valent configurations, since va-

lence is now a probabilistic notion. We first show that some initial configuration is not univalent

(Lemma 11.6); namely, it is either bivalent or null-valent.

Ideally, we would like to complete the proof by showing that anon-univalent configuration can

be extended by a single layer to a non-univalent configuration, while (permanently) failing at most

one more process. Doing so would allow us to construct a layered execution withf layers, each

containing at leastn − f process steps, which implies the desired lower bound.

In Lemma 11.11 (Section 11.2.4), we show that this can be donewith high probability in the

case of null-valent configurations, i.e., we can extend a null-valent configuration by one layer and

reach another null-valent configuration.

A bivalent configuration, can be extended with both av-deciding adversary and āv-deciding

adversary, which we would like to use in Lemma 11.5 to obtain anon-univalent configuration.

However, some complications arise here, which are taken care of in Lemmas 11.7 and 11.8 (Sec-

tion 11.2.2).

We extend the execution in this manner, with high probability, for f layers. Sincen − f

processes take a step in each layer, we obtain the bound of an expectedΩ(f(n − f)) steps (Theo-

rem 11.12).

11.2.1 Initial Configurations

We start by applying Lemma 11.1 to show that some initial configuration is not univalent.

Lemma 11.6 There exists an initial configurationC that is not univalent with respect to eitherS∅

or S{p}, for some processp.

Proof: Assume that all initial configurations are univalent with respect toS∅. Consider the initial

configurationsC0, C1, . . . , Cn such that inCi, 0 ≤ i ≤ n, the input of processpj is 1 if j ≤ i and

0, otherwise. By the validity condition,C0 is (0, 0, ∅)-valent andCn is (1, 0, ∅)-valent. Therefore,

there is ani, 1 ≤ i ≤ n, such thatCi−1 is (0, 0, ∅)-valent andCi is (1, 0, ∅)-valent. Clearly,

Ci−1
¬pi∼ Ci, and hence,Ci−1 andCi have the same valence with respect toS{pi}. By Lemma 11.1,

Ci−1 is not1-potent with respect toS{pi}, andCi is not0-potent with respect toS{pi}. Hence, they

are null-valent with respect toS{pi}.
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11.2.2 Bivalent and Switching Configurations

As mentioned before, from a bivalent configuration we have both a v-deciding adversary and a

v̄-deciding adversary. However, we cannot use them directly in Lemma 11.5 to obtain a non-

univalent configuration, since the first layer of av-deciding adversary may still lead to av̄-valent

configuration, because these definitions are probabilistic. If ǫk was an increasing function ofk, the

above situation would have small enough probability in order to simply neglect it. However, this

cannot be done, sinceǫk is defined as a decreasing function ofk, in order to handle the null-valent

configurations.

Instead, we prove (Lemma 11.7) that by failing at most one more process, a bivalent configura-

tion can be extended by a single layer to a non-univalent configuration, or to a configuration which

is v̄-valent although reached while following av-deciding adversary. Such a configuration, as will

be formalized below, is called̄v-switching.

We also prove that there is a small probability of deciding ina switching configuration and

thus, from a switching configuration, the execution can be extended (with high probability) to a

non-univalent configuration, by at least one layer (Lemma 11.8).

We formally define switching configurations as follows.

Definition 11.6 Let C be a (v, k, SP )-potent configuration, letα = σ1, σ2, . . . be av-deciding

adversary fromC in SP , and let~y1 be a vector inXC such that the configuration(C, ~y1, σ1(~y1)) is

(v̄, k + 1, SP )-valent. Then(C, ~y1, σ1(~y1)) is a v̄-switching configuration with respect toSP from

C by ~y1 andα.

Lemma 11.7 implies that a bivalent configuration can be extended with one layer to a configu-

ration that is either switching or non-univalent.

Lemma 11.7 If a configurationC is (k, SP )-bivalent, then there is an adversaryσ such that for

every vector~y1 ∈ XC , (C, ~y1, σ(~y1)) is eitherv̄-switching for somev ∈ {0, 1}, or not(k + 1, SP )-

univalent or not(k + 1, SP∪{p})-univalent, for some processp.

Proof: Assume that for every layerL and every processp, the configuration(C, ~y1, L) is univalent

with respect toSP and toSP∪{p}.
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Consider the extension ofC with LF , the full layer with respect toSP . Fix a vector~y1 ∈ XC

and assume thatC ′′ = (C, ~y1, L
F ) is (v̄, k + 1, SP )-valent. SinceC is bivalent, there is av-

deciding adversaryα = σ1, σ2, . . . in SP . Consider the configurationC ′ = (C, ~y1, σ1(~y1)). By

the assumption,C ′ is univalent. If it is(v̄, k + 1, SP )-valent then it is̄v-switching with respect

to SP from C by ~y1 andα. Otherwise, it is(v, k + 1, SP )-valent. SinceC ′′ is (v̄, k + 1, SP )-

valent, by Lemma 11.5, there exists a layerL and a processp such that(C, ~y1, L) is either not

(k + 1, SP )-univalent or not(k + 1, SP∪{p})-univalent.

The main issue when reaching av̄-switching configuration is that we cannot rule out the pos-

sibility that all the other layers lead tōv-valent configurations as well. However, although av̄-

switching configuration is̄v-valent, the adversary that leads to it isv-deciding. This allows us to

look several layers ahead, for the desired situation of one layer leading to av-valent configuration,

and another layer leading to āv-valent configuration. From such a setting, Lemma 11.5 can be

used to reach a non-univalent configuration again. The following lemma presents the details of

this argument.

Lemma 11.8 LetC ′ be av̄-switching configuration with respect toSP fromC by~y1 andα. Then

with probability at least1 − 1
n
√

n
, C ′ can be extended with at least one layer to a configuration

which is eitherv-switching, or not univalent with respect toSP , or not univalent with respect to

SP∪{p}, for some processp.

Proof: Let α = σ1σ2 . . .; note thatC ′ = (C, ~y1, σ1(~y1)). DenoteC0 = C, C1 = C ′ and for every

k ≥ 2, fix a vector~yk ∈ XCk−1 and letCk = (Ck−1, ~yk, σk(~yk)).

Assume that for everyk ≥ 1, Ck is univalent, and letCℓ be the first configuration which is

v-valent with respect toSP . If such a configuration does not exist then the execution either reaches

a configuration that decides̄v, or does not reach any decision. Sinceα is v-deciding fromC, the

probability thatCℓ does not exist is at mostǫk ≤ 1
n
√

n
.

SinceCℓ is the first configuration which isv-valent, Cℓ−1 is v̄-valent. Therefore, there is

a v̄-deciding adversaryβ = ρ1, ρ2, . . . from Cℓ−1 in SP . Consider the configurationC ′′ =

(Cℓ−1, ~yℓ, ρ1(~yℓ)). If C ′′ is not (k + ℓ, SP )-univalent then we are done. IfC ′′ is v̄-valent, then

sinceCℓ is v-valent, by Lemma 11.5, there exists a layerL such that(Cℓ−1, ~yℓ, L) is either not

(k + ℓ, SP )-univalent or not(k + ℓ, SP∪{p})-univalent, for some processp, in which case we are

129



also done. OtherwiseC ′′ is v-valent, which implies that it isv-switching with respect toSP from

Cℓ−1 by ~yℓ andβ.

11.2.3 One-Round Coin-Flipping Games

The remaining part of the lower bound proof deals with null-valent configurations, and it relies

on results about one-round coin-flipping games. As defined in[23], a U-valued one-round coin

flipping game ofm playersis a function

g : {X1 ∪⊥} × {X2 ∪⊥} × · · · × {Xm ∪⊥} −→ {1, 2, . . . , U},

whereXi, 1 ≤ i ≤ m, is thei-th probability space. At-hiding adversarymay hide at mostt of the

random choices inX1, . . . , Xm, by replacing them with a⊥.

Before presenting the formal definitions for the adversary and the game, we describe one main

difference in the way that null-valent and bivalent configurations are handled. We have shown

in Section 11.2.2 that in order to reach a bivalent configuration from a bivalent configuration, it

suffices to fail one process per layer. This process is failedpermanently, and may not take steps

in any later layer. The case of a null-valent configuration isdifferent. We may need to hide many

more processes in a layer in order to reach another null-valent configuration. Fortunately, these

processes are onlyhiddenin this layer and may take steps in subsequent layers, which implies

that they are not failed according to the definition of an asynchronous system. Therefore, we do

not need to account for them towards thef processes that we are allowed to fail, and hence their

number can be non-constant.

Formally, letX = X1 × · · · × Xm be the product probability space implied by the game.

For every vector~y ∈ X, andI ⊆ {1, . . . , m}, the vector reached when the adversary hides the

coordinates ofI is defined as follows:

~y
I
(i) =







~y(i), i /∈ I

⊥, i ∈ I.

For every possible outcome of the gameu ∈ {1, . . . , U}, define the set of all vectors inX for

which not-hiding adversary can force the outcome of the game to beu, to be

W u = {~y ∈ X|g(~y
I
) 6= u for everyI ⊆ {1, . . . , m} such that|I| ≤ t }.
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We prove that when|U | = 3, there is an outcome for which there is high probability for hiding

values in a way that forces this outcome; that is, for someu ∈ {1, 2, 3}, Pr[~y ∈ W u] is very small.

The proof relies on an isoperimetric inequality, followinga result of [69]. The idea is to show

that if all three setsW 1, W 2, W 3 ⊆ X have large enough probability, then there is a non-zero

probability for an element~z ∈ X that is close to all three sets according to the Hamming distance.

This will imply the existence of at-hiding adversary for~z, for which the value of the game cannot

be any of 1, 2 or 3, and hence there is a point for which the game is undefined.

Formally, the space(X, d) is a finite metric space where for every pair of vectors~x and~y in

X, d(~x, ~y) is the Hamming distance between~x and~y (the number of coordinates in which~x and~y

differ). ForA ⊆ X, B(A, t) is theball of radiust around the setA, i.e.,

B(A, t) = {~y ∈ X| there is~z ∈ A such thatd(~y, ~z) ≤ t}.

The next lemma is the isoperimetric inequality we rely on. Weshow that given the probability of

a setA, there is a lower bound on the probability of the ball of a certain radius aroundA.

Lemma 11.9 Let X = X1 × · · · × Xm be a product probability space andA ⊆ X such that

Pr[~x ∈ A] = c. Letλ0 =
√

2m log 2
c
, then forℓ ≥ λ0,

Pr[~x ∈ B(A, ℓ)] ≥ 1 − 2e−
(ℓ−λ0)2

2m .

Proof: Consider an element~x as a random function~x : D = {1, . . . , m} → X1 ∪ · · · ∪ Xm

such that~x(i) ∈ Xi. Define a sequence of partial domains∅ = D0 ⊂ D1 ⊂ · · · ⊂ Dm = D such

thatDi = {1, . . . , i}. Let f : X → R be a function that measures the distance of elements from

the given subsetA ⊆ X, i.e.,f(~x) = d(A, ~x).

Choose a random element of~w ∈ X according to the given distribution. Define the sequence

Y0, . . . , Ym by Yi = E[f(~x) | ~x|Di
= ~w]. Specifically,Y0 = E[f(~x)] with probability 1, and

Ym = f(~w) with the probability of choosing~w. It is well known thatY0, . . . , Ym is a Doob

martingale (see [3, Chapter 7] and [63, Chapter 4]).

Notice thatX1, ..., Xm are independent and therefore for everyi ∈ D, the random variable~x(i)

is independent of other values of~x.

The functionf satisfies the Lipschitz condition, i.e., for every 2 vectors~x, ~y that differ only

in Di \ Di−1 for somei, we have|f(~x) − f(~y)| ≤ 1, by the triangle inequality of the Hamming
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metricd. This implies that the martingaleY0, . . . , Ym satisfies the martingale Lipschitz condition,

i.e., |Yi − Yi−1| ≤ 1 for everyi, 0 < i ≤ m.

By Azuma’s inequality we have that for every real numberλ > 0

Pr[|f(~x) − E[f(~x)]| > λ] < 2e−
λ2

2m . (11.1)

We now claim that E[f(~x)] ≤ λ0. Assume the contrary, that E[f(~x)] > λ0. Sinceλ0 =
√

2m log 2
c
, we have that2e−

λ2
0

2m = c. For every~x ∈ A we havef(~x) = 0, therefore

Pr[|f(~x) − E[f(~x)]| > λ0] ≥ Pr[f(~x) = 0] = c,

contradicting (11.1).

Hence, for everyℓ ≥ λ0 we have

Pr[~x /∈ B(A, ℓ)] = Pr[f(~x) > ℓ] ≤ Pr[|f(~x) − E[f(~x)]| > ℓ − λ0] < 2e−
(ℓ−λ0)2

2m ,

which completes the proof.

We now use Lemma 11.9 to show that one of the setsW u has a small probability, and deduce

that foru = 1, 2 or 3 the outcome of the game can be forced to beu with high probability.

Lemma 11.10 For every3-valued one-round coin-flipping game ofm players, there is at-hiding

adversary,t = 6
√

2m log(m3), that can force the outcome of the game to be someu ∈ {1, 2, 3}
with probability greater than1 − 1

m3 .

Proof: Recall that for everyu ∈ {1, 2, 3}, the setW u is the set of all vectors inX for which no

t-hiding adversary can force the outcome of the game to beu. We wish to prove that Pr[~y ∈ W u] <

1
m3 , for someu ∈ {1, 2, 3}.

DenoteBu = B(W u, t
3
). Assume that Pr[~y ∈ W u] ≥ 1

m3 for all u ∈ {1, 2, 3}. Clearly,
⋂

u∈{1,2,3} W u = ∅, since the value of the game is undefined for points in the intersection. More-

over, we claim that
⋂

u∈{1,2,3} Bu is empty.

Assume there is a point~z ∈ ⋂

u∈{1,2,3} Bu (see Figure 11.3). For everyu ∈ {1, 2, 3}, since

~z ∈ Bu, there is a point~xu ∈ W u and a set of indicesIu ⊆ {1, . . . , m}, such that|Iu| ≤ t
3

and

~z
I u

= ~xu
I u

. Let I =
⋃

u∈{1,2,3} Iu. Since~xu ∈ W u, we have thatg(~xu
I
) 6= u, and henceg(~z

I
) 6= u.

This implies thatg(~z
I
) is undefined, and therefore

⋂

u∈{1,2,3} Bu = ∅.
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~x1
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~x3

g(~zs) = g(~x1
s) = g(~x2

s) = g(~x3
s)

~zs = ⊥⊥⊥ ⊥ ⊥
~x1

s1
= ⊥⊥

~x2
s2

= ⊥ ⊥
~x3

s3
= ⊥ ⊥

Figure 11.3:The probability spaceX = X1 × X2 × · · · × Xm. The distance between the point~z to each

of the points~x1, ~x2, ~x3 is at mostt3 .
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We now apply Lemma 11.9 for everyu = 1, 2, 3, with A = W u. Notice that the results of the

local flips of each player are independent random variables.We have that Pr[~y ∈ W u] ≥ c where

c = 1
m3 , and thereforeλ0 =

√

2m log (2m3). Hence, forℓ = t
3

= 2
√

2m log (2m3) = 2λ0, we

have

Pr[~y ∈ Bu] ≥ 1 − 2e−
(t−λ0)2

2m = 1 − 2e−
2m log (2m3)

2m = 1 − 2e− log (2m3) = 1 − 1

m3
.

Since
⋂

u∈{1,2,3} Bu = ∅ we have that

Pr[~y ∈ B1 ∩ B2] + Pr[~y ∈ B1 ∩ B3] + Pr[~y ∈ B2 ∩ B3] ≤ 1

2
·

∑

u∈{1,2,3}
Pr[~y ∈ Bu],

which implies that

Pr[~y ∈ ∪u∈{1,2,3}B
u] =

∑

u∈{1,2,3}
Pr[~y ∈ Bu] −

∑

u 6=u′∈{1,2,3}
Pr[~y ∈ Bu ∩ Bu′

] + Pr[~y ∈
⋂

u∈{1,2,3}
Bu]

≥ 1

2
·

∑

u∈{1,2,3}
Pr[~y ∈ Bu]

≥ 3

2
· (1 − 1

m3
) > 1.

This contradiction implies that for someu ∈ {1, 2, 3}, we have Pr[~y ∈ W u] < 1
m3 .

11.2.4 Null-Valent Configurations

In the final stage of the lower bound construction, we use one-round coin-flipping games to

show that, with high probability, a null-valent configuration C can be extended with onef -

layer to a null-valent configuration. In order to achieve theabove, we may need to hide up to

6
√

2n log (2n3) processes, other than the processes inP , in the layer. Therefore, we assume

that f ≥ 12
√

2n log (2n3), and will always make sure that|P | ≤ f
2
. This will allow us to hide

f
2
≥ 6

√

2n log (2n3) additional processes (not inP ), in executions inSP .

Lemma 11.11 If a configurationC reachable by anf -execution is(k, SP )-null-valent, then with

probability at least1 − 1
(n−|P |)3 , there is anf -adversaryσ1 such thatC ◦ σ1 is (k + 1, SP )-null-

valent.

Proof: LetC be a(k, SP )-null-valent configuration. We consider every vector~y1 ∈ XC and every

layerL in SP , and classify the resulting configurations(C, ~y1, L) into three disjoint categories:
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1. The configuration(C, ~y1, L) is (0, k + 1, SP )-potent.

2. The configuration(C, ~y1, L) is (1, k + 1, SP )-valent.

3. The configuration(C, ~y1, L) is (k + 1, SP )-null-valent.

Notice that the first category contains both(0, k + 1, SP )-valent and(k + 1, SP )-bivalent con-

figurations.

This can be viewed as a3-valued one-round coin-flipping game ofm players, as follows. Them

players are the processes not inSP , i.e.,m = n−|P |. The probability spacesX1, . . . , Xm represent

the random choices of the processes, which are given by~y1. Every vector of choices induces

a resulting configuration(C, ~y1, L
F ), whereLF is the full layer with respect toSP , in which the

processes take a step in the order of their identifiers. Hiding an elementXi by the adversary is done

by choosing a partial layerL in SP that does not contain any step by the corresponding processes,

but only a step of each process that is not hidden. Finally, the value of the game is the category of

the configuration(C, ~y1, L).

Sincem = n− |P |, we have thatn− f ≤ m ≤ n. By the coin flipping game in Lemma 11.10,

we can hide6
√

2m log(2m3) processes and force the resulting configuration into one of the above

categories with probability at least1 − 1
m3 .

This implies that for one of the above categories, with probability at least1 − 1
m3 , the vector

~y1 ∈ XC has a corresponding partial layerL~y1 , such that the configuration(C, ~y1, L~y1) has the

valence of that category. We now define the adversaryσ1 as the function that for every vector

~y1 ∈ XC chooses the corresponding partial layerL~y1 , i.e., σ1(~y1) = L~y1 . Our claim is that the

category that can be forced byσ1 is the third one, i.e., the resulting configuration is null-valent.

Assume, towards a contradiction, that the category that canbe forced is the first one. This

implies that the probability over all vectors~y1 ∈ XC that(C, ~y1, L~y1) is (0, k + 1, SP )-potent is at

least1 − 1
m3 . Therefore, with probability at least1 − 1

m3 , the vector~y1 ∈ XC is such that there

exists a0-deciding adversaryα′ from (C, ~y1, L~y1) for which:

Pr[decision from(C, ~y1, L~y1) underα′ is 0] > 1 − ǫk+1

Therefore with probability at least1− 1
m3 , there exists an adversaryα = σ1, α

′ fromC such that:
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Pr[decision fromC underα is 0] =

=
∑

~y1∈XC

Pr[~y1] · Pr[decision from(C, ~y1, L~y1) underα′ is 0]

>

(

1 − 1

m3

)

· (1 − ǫk+1)

≥
(

1 − 1

(n − f)3

)

·
(

1 − 1

n
√

n
+

k + 1

(n − f)3

)

= 1 − 1

n
√

n
+

k

(n − f)3 +
1

(n − f)3 n
√

n
− k + 1

(n − f)6

> 1 − 1

n
√

n
+

k

(n − f)3 = 1 − ǫk,

where the last inequality holds for sufficiently largen, since(n − f)6 ≥ (n − f)3 n
√

n andk =

O(n). This contradicts the assumption thatC is (k, SP )-null-valent.

A similar argument holds for the second category. Hence, with probability at least1 − 1
m3 , the

third category can be forced, namely, we can reach a configuration that is(k + 1, SP )-null-valent.

11.2.5 Putting the Pieces Together

We can now put the pieces together and prove the lower bound onthe total step complexity of any

randomized consensus algorithm.

Theorem 11.12The total step complexity of anyf -tolerant randomized consensus algorithm in

an asynchronous system, wheren − f ∈ Ω(n) andf ≥ 12
√

2n log (2n3), is Ω(f(n − f)).

Proof: We show that the probability of forcing the algorithm to continue f
2

layers is at least

1− 1√
n
. Therefore the expected number of layers is at least(1− 1√

n
) · f

2
. Each of these layers is an

f -layer containing at leastn − f steps, implying that the expected total number of steps is atleast

Ω((1 − 1√
n
) · f

2
· (n − f)), which is inΩ(f(n − f)) sincen − f ∈ Ω(n).

We argue that for everyk, 0 ≤ k ≤ f
2
, with probability at least1−k 1

n
√

n
, there is a configuration

C reachable by anf -execution with at leastk layers, which is eitherv-switching or non-univalent

with respect toSP where|P | ≤ k + 1. Once the claim is proved, the theorem follows by taking

136



k = f
2
, since the probability of having anf -execution with more thanf

2
layers is at least1 − f

2
·

1
n
√

n
> 1 − 1√

n
.

We prove the claim by induction onk.

Basis:k = 0. By Lemma 11.6, there exists an initial configurationC that is not univalent with

respect toS∅ or S{p}, for some processp.

Induction step:AssumeC is a configuration reachable by anf -execution with at leastk layers,

that is eitherv-switching or non-univalent with respect toSP where|P | ≤ k + 1. We prove that

with probability at least1 − 1
n
√

n
, C can be extended with at least one layer to a configurationC ′

that is eitherv-switching or non-univalent with respect toSP ′ where|P ′| ≤ k + 2. This implies

thatC ′ exists with probability(1 − k 1
n
√

n
)(1 − 1

n
√

n
) ≥ 1 − (k + 1) 1

n
√

n
.

If C is bivalent, then by Lemma 11.7, there exists an adversaryσ and a processp such that

C ◦ σ is eitherv-switching or not(k + 1, SP )-univalent or not(k + 1, SP∪{p})-univalent.

If C is v-switching, then by Lemma 11.8, there exists a finite adversary αℓ and a processp such

that with probability at least1− 1
n
√

n
, C ◦ αℓ is eitherv̄-switching, or not univalent with respect to

SP , or not univalent with respect toSP∪{p}.

If C is null-valent, then by Lemma 11.11, there exists an adversary σ1 such that the configura-

tion C ◦σ1 is not(k +1, SP )-univalent with probability at least1− 1
m3 . Sincem ≥ n− f ∈ Ω(n),

we have that1 − 1
m3 ≥ 1 − 1

(n−f)3
> 1 − 1

n
√

n
.

Finally, takingf ∈ Ω(n) andn − f ∈ Ω(n), we get a lower bound ofΩ(n2) on the total step

complexity.
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Chapter 12

Discussion

This thesis studies several problems in distributed computing, motivated by the classic problem

of randomized consensus. Probabilistic methods are used toconstruct and analyze randomized

algorithms for consensus, shared coins, counters and additional concurrent data structures, and set

agreement, as well as for deriving lower bounds for randomized consensus.

We have shown, in Chapter 4 and in Chapter 11, thatΘ(n2) is a tight bound on the total

step complexity of solving randomized consensus, under a strong adversary, in an asynchronous

shared-memory system using multi-writer registers.

Our algorithm exploits the multi-writing capabilities of the register. The best known random-

ized consensus algorithm using single-writer registers [28] hasO(n2 log n) total step complexity,

and it is intriguing to close the gap from our lower bound. Note that for the single-writer cheap-

snapshot model,Θ(n2) is a tight bound, since our lower bound applies to it, and a slight modifica-

tion of our algorithm yields the same total step complexity.This is done by replacing the flagdone

with n separate flags (one for each process) whose OR is equivalent to the originaldonebit, and

performing a cheap-snapshot on then flags after every coin flip. This guarantees that the analysis

of both the total step complexity and the agreement parameter remain the same.

We remark that Aspnes [5] shows anΩ( n2

log2 n
) lower bound on the expected total number of

coin flips. Our layering approach as presented here, does notdistinguish a deterministic step from

a step involving a coin flip, leaving open the question of the amount of randomization needed.

Turning our attention to another adversarial model, in Chapter 10, we presented lower bounds

for the termination probability achievable by randomized consensus algorithms with bounded run-
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Model k = log n k = log2 n

lower bound asynchronous MP, SWCS, MWCS 1
nΩ(1)

1
nΩ(log n)

synchronous MP [36] 1
nΩ(log log n)

upper bound SWMR [21] 1
nO(1)

MWMR [20] 1
nO(1)

Table 12.1:Bounds onqk in different models, when agreement is required to always hold. MP is the

message-passing model, while SW/MW stands for single/multi-writer registers, SR/MR for single/multi-

reader registers, and CS for cheap snapshots.

ning time, under a very weak adversary. Our results are particulary relevant in light of the re-

cent surge of interest in providingByzantine fault-tolerancein practical, asynchronous distributed

systems (e.g., [29, 55]). The adversarial behavior in theseapplications is better captured by non-

adaptive adversaries as used in our lower bounds, rather than the adaptive adversary, which can

observe the results of local coin-flips.

For all models, when agreement is required to always hold, wehave shown that the probability

qk that the algorithm fails to complete ink(n− f) steps is at least1
ck , for a model-dependent value

c which is a constant if⌈n
f
⌉ is a constant. Table 12.1 shows the bounds for specific valuesof k.

The previous lower bound for the synchronous message-passing model [36] isqk ≥ 1
(ck)k ,

for some constantc. From the perspective of the expected total step complexity, given a non-

termination probabilityδ, the lower bound of [36] impliesΩ
(

(n − f) log 1/δ
log log 1/δ

)

steps, which is

improved by our bound toΩ ((n − f) log 1/δ) steps.

In the shared-memory model with single-writer multi-reader registers, Aumann and Ben-

der [21] show a consensus algorithm with probability1 − 1
nO(1) for terminating inO(n log2 n)

steps. For multi-writer multi-reader registers, Aumann [20] presents an iterative consensus al-

gorithm, with constant probability to terminate at each iteration, independently of the previous

iterations. This implies that the probability of terminating afterk iterations is1 − 1
ck , for some

constantc.

When agreement is required to hold only with high probability, Kapron et al. [52] give an

algorithm for the asynchronous message passing model that always terminates withinpolylog(n)

asynchronous rounds and has a probability1
polylog(n)

for disagreeing, and an algorithm that always

terminates within2Θ(log7 n) asynchronous rounds and has a probability1
poly(n)

for disagreeing.
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An interesting open question is to close the gap between the values of the probabilityǫk for

disagreement achieved in the algorithms of [52] and the lower bounds obtained in this work on

that probability. It is also interesting to tighten the bounds in the synchronous model and for large

values ofk.

Our lower bounds can be used to estimate the error distribution and bound the variance of the

running time of randomized consensus algorithms. They do not yield significant lower bounds

for the expected step complexity—there is still a large gap between the (trivial) lower bounds and

upper bounds for the shared-memory model, with a weak adversary.

In addition to randomized consensus, an important topic that we address in Chapter 6 is the

design of concurrent data structures. We give a method for using multi-writer multi-reader reg-

isters to constructm-bounded max registers with⌈lg m⌉ cost per operation, and unbounded max

registers withO(min(log v, n)) cost to read or write the valuev. An analog data structure of a

min registercan be implemented in a similar way. In [9] we prove a lower bound that shows that

the cost of our implementation is optimal. For randomized implementations, we show a lower

bound ofΩ(log n/ log(w log n)) for read operations, wherew is the cost of write operations. This

leaves open the problem of tightening the randomized lower bound form ≫ n, or finding an

implementation whose cost depends only onn.

We use max registers to construct wait-free concurrent data-structures out of any monotone

circuit, while satisfying a natural consistency conditionwe callmonotone consistency. The cost of

a write isO(Sd min(⌈log m⌉, O(n))), wherem is the size of the alphabet for the circuit,S is the

number of gates whose value changes as the result of the write, andd is the number of inputs to

each gate; the cost of a read ismin(⌈log m⌉, O(n)).

As an application, we obtain a simple, linearizable, wait-free counter implementation with a

cost ofO(min(log n log v, n)) to perform an increment andO(min(log v, n)) to perform a read,

wherev is the current value of the counter. For polynomially-many increments, these become

O(log2 n) andO(log n), respectively, an exponential improvement on the best previously known

upper bounds ofO(n) for an exact counting andO(n4/5+ǫ) for approximate counting [11]. Note

that bounding the counters allows us to overcome the linear lower bound of Jayanti, Tan, and

Toueg [51], as well as the similar lower bounds by Fich, Hendler, and Shavit [41] that hold even

with CAS primitives. Whether further improvements are possible is still open.
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Our polylogarithmic counter is used in Chapter 7 in order to obtain a randomized consensus

algorithm with an optimal individual step complexity ofO(n).

Finally, Chapter 8 presents wait-free randomized algorithms for the set-agreement problem in

asynchronous shared-memory systems. There are many open questions that arise and are interest-

ing subjects for further research, as we elaborate next.

We extended the definition of shared-coin algorithms to multi-sided shared coins. It is an open

question whether our(k + 1)-sided shared-coin algorithm can be improved while keepingthe

agreement parameter constant. In addition, the definition can be modified so that the agreement

parameter holds for subsets of less thank values. It is interesting to find good implementations for

multi-sided shared coins that satisfy this modified definition.

For randomized set-agreement algorithms, it is open whether better algorithms exist in this

model. In addition, it would be intriguing to prove lower bounds on the complexities of such

algorithms, as no such bounds are currently known.

We note that fork ≤ √
n the total and individual step complexities of our(k, k + 1, n)-

agreement algorithm are the same as for the optimal algorithm for randomized binary consensus,

only divided byk. First, it is an open question whether the same complexitiescan be obtained for

larger values ofk. In addition, a similar relation between consensus and set agreement occurs also

for complexities in deterministic synchronous algorithmsand lower bounds underf failures, since

the optimal number of rounds for solving consensus isf + 1 [19], while the optimal number of

rounds for solving set agreement isf/k + 1 [33]. It is interesting whether this is a coincidence or

an indication of an inherent connection between the two problems.

We believe that similar algorithms to the ones presented in this work can be constructed for

weaker adversarial models, see [7] for recent work. It is an open question whether there can be

improved algorithms for weaker adversaries, and it is also important to find analogous algorithms

for solving set agreement in message-passing systems. Needless to say, obtaining lower bounds

for these models is an important direction for further research.

Recent unpublished developments suggest that there is a randomized multi-valued consensus

algorithm with the same total and individual step complexities as binary consensus, i.e.,O(n2)

andO(n), respectively. This would improve upon the extralog k factor of the complexities of the

corresponding algorithms presented here, and would be tight since by definition binary consensus
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is a special case of multi-valued consensus.

As we have seen, many questions arising from the research of randomized consensus still

remain open. These constitute intriguing subjects for further work. Considering other decision

problems, such asrenaming, and additional models of adversaries, are important topics as well,

which lie at the heart of the theory of distributed computing.
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