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Abstract

An inherent characteristic of distributed systems is tlo& laf centralized control, which requires
the components to coordinate their actions. This need isaated as theonsensugroblem, in
which each process has a binary input and should produceaaybmuitput, such that all outputs
agree. A difficulty in obtaining consensus arises from thesgmlity of process failures in practical
systems. When combined with the lack of timing assumptio@synchronous systems, it renders
consensus impossible to solve, as proven by Fischer, Lyaroth,Paterson in their fundamental
impossibility result, which shows that no deterministiga@ithm can achieve consensus in an

asynchronous system, even if only a single process may falil.

Being a cornerstone in distributed computing, much reselaas been invested in overcoming
this impossibility result. One successful approach is tmiporate randomization into the compu-
tation, allowing the processes to terminate with probgbiliinstead of in every execution, while

never violating agreement.

Randomized consensus is the main subject of this thesighwihwestigates algorithms and
lower bounds for this problem. In addition, it addressedfenms that arise from the study of

randomized consensus, including set agreement, and effa@acurrent data structures.

Our main contribution is in settling the total step complg»af randomized consensus, im-
proving both known lower and upper bounds to a tigtit:?). The upper bound is obtained by
presenting a new shared coin algorithm and analyzing iessgent parameter and total step com-
plexity by viewing it as a stochastic process. The lower labrglies on considering a restricted
round-based set of executions called layers, and usingonaizéd valency arguments to prevent
the algorithm for terminating too quickly. It is shown howremain with high probability in bi-
valent configurations, or in null-valent configurations.eThtter case is modeled as a one-round

coin-flipping game, which is analyzed using an isoperinsetréquality.
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The above result closes the question of the total step coditytd randomized consensus under
a strong adversary, which can observe the values of all dhamables and the local states of all
processes (including results of local coin-flips) beforekimg the next scheduling decision. An
additional result we present is a bound on the total numbstegis as a function of the probability
of termination for randomized consensus under a weak aayershich must decide upon the
entire schedule in advance.

Another complexity measure we investigate is the individiiep complexity of any single
process. In traditional shared coins a single process mag/tred to perform all the work by itself,
which motivated the design of shared coins that reduce theidual step complexity. This had the
price of increasing the total step complexity. In this tkese show how to combine shared-coin
algorithms to enjoy the best of their complexity measumagroving some of the known results.

For the specific model of shared multi-writer multi-readsgisters, the question of individual
step complexity of randomized consensus has been latégdsbit constructing a sub-linear ap-
proximate counter. This raises the interest in additionbtignear data structures, and specifically
in data structures providing exact values. We present act @alylogarithmic counter, using a
data structure which we callraax registeywhich we implement in a polylogarithmic number of
steps per operation. We then construct a framework thatthegqsolylogarithmic exact counter to
obtain a shared-coin algorithm with an optimal individuaiscomplexity ofO(n).

Finally, another way to circumvent the impossibility prooff consensus is to allow more
choices. This is modeled as the problemset agreementwhere the inputs are drawn from a
set of size larger than two, and more than one output is alowie present randomized algo-
rithms for different parameters of the set agreement propleéhich are resilient to any number of

failures.
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Chapter 1

Introduction

Coordinating the actions of processes is crucial for vijuall distributed applications, due to
the lack of a centralized control. The most basic abstradbo such coordination is the problem
of reachingconsensusn a single binary input given to each process. Consensusirglamental
task in asynchronous systems, and can be employed to implamgtrary concurrent objects [47];
consensus is also a key component of the state-machinesmbypiar replicating services [56, 70].

An obstacle in obtaining coordination in distributed syssds the possibility of crash failures,
where a crashed process stops taking steps. Applicatiensquired to be resilient to crashes,
guaranteeing that non-faulty processes behave corrddtlg.requirement should hold regardless
of the number of failures, i.e., the algorithms shouldizet-free

Formally, the consensus problem requires every non-faodtgess to eventually output a single
binary output (théerminationcondition), such that all outputs are equal (#ggeementondition).

To avoid trivial solutions, this common output must be thpuhof some process (thelidity
condition).

The quality of algorithms for distributed systems subjeatriash failures, and sometimes their
existence, is inherently influenced by the timing assunmgtiorovided by the system. Two com-
mon types of distributed systems agnchronousandasynchronousystems. In a synchronous
system, the computation proceedsannds each round consisting of a singleepby each non-
faulty process, whose type depends on the communicatioeinkdan asynchronous system, no
timing assumptions are provided; there are no bounds orintieeltetween two steps of a process,

or between steps of different processes. Asynchrony makegossible to tell apart a crashed
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process from a very slow one.

Perhaps the most celebrated result in distributed comgukimown as the FLP impossibility
result, first proved by Fischer, Lynch, and Paterson, shtxasrio deterministic algorithm can
achieve consensus in an asynchronous system, even if omlgla process may fail [43,47,57].

Due to the importance of the consensus problem, much rés&as invested in trying to
circumvent this impossibility result. One successful aagh is to relax the termination condition,
and allow randomized algorithms in which a non-faulty pssceerminates only with probability
1. This does not rule out executions in which a process doetemninate, but guarantees that the
probability of such executions is 0. We emphasize that thetyseequirements, of agreement and
validity, remain the same, hence are required to hokelvieryexecution.

Randomized consensus is the main subject of this thesighwhvestigates algorithms and
lower bounds. In addition, it addresses problems that dresa the study of randomized con-
sensus, including set agreement, and efficient concuriaat structures. The remainder of the

introduction is dedicated to describing these contrimsio

1.1 The Total Step Complexity of Randomized Consensus Un-

der a Strong Adversary

Our main contribution is in proving tha&(n?) is a tight bound for theotal step complexitpf
asynchronous randomized consensus. The total step catgptathetotal workof a randomized
distributed algorithm is the expected total number of stagen by all the process. Our result is
two-fold!, improving upon both the previously known upper boundXf.? log n) due to Bracha
and Rachman [28] and the previously known lower bound@# / log” n) due to Aspnes [5]. The
communication model addressed is a shared memory systeene\whocesses communicate by
reading and writing tanulti-writer multi-readerregisters. The adversary controlling the schedule
is astrongadversary, which observes all values of shared registeralalocal states of processes,
including results of local coin-flips, before scheduling tiext process to take a step.

Our algorithm relies on ahared-coiralgorithm [12], as do virtually all randomized consensus

algorithms. In a shared-coin algorithm, each process tsitpwalue—1 or +1, and for every

1Both results appeared in [15].



v € {—1,+1}, there is a probability of at leastthat all processes output the same valueé

is theagreement parameteasf the algorithm. Notice that there are no inputs to this prhoe.
Aspnes and Herlihy [12] have shown that a shared-coin dlgoriwith agreement parameter
and expected total work’ yields a randomized consensus algorithm with expected waiek

O(n*+1T/9).

We present a shared-coin algorithm witlt@nstantagreement parameter, which leverages a
single binary multi-writer register (in addition tosingle-writer multi-reader registers). It allows to
optimize the trade-off between the total step complexity tae agreement parameter. By viewing
any schedule of the algorithm as a stochastic process, gigiragp Kolmogorov's inequality, we
prove that for each possible decision value, all processgmibthat same value for the shared coin
with constant probability. The shared coin has an expectadistep complexity oD (n?). We use
this in the Aspnes-Herlihy framework to obtain a randomizedsensus algorithm with the same

total step complexity o) (n?).

The matching lower bound is obtained by considetagered executionsWe focus on con-
figurations at the end of each layer and classify them acegridi theirvalence[43, 60], namely,
the decisions that can be reached in layered extensionslaBynto notions for deterministic al-
gorithms, a configuration ignivalentif there is only one possible decision value from all of the
extensions of the execution from that configuration. If bdéicision values are possible then the
configuration isivalent When a decision is reached, the configuration musirbealent so the
proof aims to avoid univalent configurations. As opposeddt@ininistic algorithms, where the
valence of a configuration binds the extension to reach aioaftecision value, in a randomized
algorithm the valence only implies that some execution détidev with high probability [5].
This leaves the possibility afull-valentconfigurations, from which no decision value is reached
with high probability. When the configuration is null-vatewe derive an isoperimetric inequality

in order to control a one-round coin-flipping game for reagranother null-valent configuration.

Our general proof structure follows a proof by [23] of @(IW) lower bound on the
expected number of rounds in a randomized consensus &lgofdr the synchronous message
passingmodel. In particular, like them, we treat null-valent configtions by considering one-
round coin-flipping games and applying an isoperimetricjuadity. Unlike their proof, our proof

handles the more complicated shared-memory model andiextie fact that in an asynchronous
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system, processes can be hidden in a one-round coin flipgimg gvithout having to fail for the
rest of the executiof.

The layered approach was introduced by [60], who employtxstudy deterministic consen-
sus. They showed that the layered approach can unify thessilmbty proof for asynchronous
consensus [43, 47, 57] with the lower bound on the number whds needed for solving syn-
chronous consensus [37,42]. Their work considered the agessassing model as well as the
shared-memory model witkingle-writerregisters. We take the layered approach one step further
and extend it to randomized algorithms, deriving the lowaurid on their total step complexity
within the same framework as the results for determinidgorithms. Besides incorporating ran-
domization into the layered model, our proof also deals wWithchallenge of allowing processes

to accessnulti-writer registers.

1.2 A Lower Bound for Randomized Consensus Under a Weak

Adversary

The previous lower bound, accompanied by our algorithmsedahe question of the total step
complexity of randomized consensus under a strong adyetdawever, there are additional types
of adversaries when randomized algorithms are consid®vecrovide a second lower bound for
randomized consensus algorithms, under the controlveéak adversaryhat chooses the entire
schedule in advance, without observing any progress ofxdeution.

This is not a lower bound on the total step complexity. Indte@e make use of the obser-
vation that in typical randomized algorithms for consenshis probability ofnot terminating in
agreement decreases as the execution progresses, be@nahgr as processes perform more
steps. Our work shows that this behavior is inherent, byipglower bounds on the probability
of termination when the step complexity is bounded.

We prove that for every integér, the probability that arf-resilient randomized consensus al-
gorithm ofn processes does not terminate after — f) steps is at Ieasj;, wherec is a constant if

2Hiding processes in a layer can be described as a round-basdel withmobilefailures, where a process that
fails in a certain round may still take steps in further rosifi@8]. The equivalence between this model and the
asynchronous model is discussed by [64].



[?1 is a constarit The result holds for asynchronous message-passing systerasynchronous

shared-memory systems (using reads and writes), albditdifferent constants. While the same
general proof structure applies in both cases, it is accieimgd differently in the message-passing
and the shared-memory models; the latter case is furtheplomated due to the adversary’s weak-

ness.

For the message-passing model, our proof extends and iepmva result of Chor, Merritt
and Shmoys [36] fosynchronousnessage-passing systems. They show that the probabaity th
a randomized consensus algorithm does not terminate fafteunds (and:(n — f) steps) is at
Ieastﬁ. (A similar result is attributed to Karlin and Yao [53].) Tieoof rests on considering a
specific chain ofndistinguishableexecutions and showing a correlation between the ternoimati
probability and the length of this chain (the number of exeris in it), which in turn depends on
the number of rounds. The chain is taken from the proof of tmds lower bound for (deter-
ministic) consensus [37,42] (cf. [18, Chapter 5]); since thain is determined in advance, i.e.,

regardless of the algorithm'’s transitions, the lower boisraerived with a weak adversary.

Our first contribution in this context, for the message-pagmodel, improves on this lower
bound by exploiting the fact that asynchrony allows to cargt“shorter” indistinguishability

chains.

The lower bound can be extended to Monte-Carlo algorithmtsahvays terminate, at the cost
of compromising the agreement property. If an asynchromeessage-passing algorithm always
terminates withirk(n — f) steps, then the probability for disagreement is at Ié@slvherec is a
constant if[?} is a constant. This lower bound can be compared to the reoasensus algorithms
of Kapron et al. [52] for the message-passing model. Onerigthgo always terminates within
polylog(n) asynchronous rounds, and has a probab;ﬂ{yﬁ)gw for disagreeing, while the other
terminates withire®°s" ) asynchronous rounds, and has a probabyg% for disagreeing.

A common theme in both of our lower bounds is the adaptatiotm@fayering technique to
randomized algorithms, and the manipulation of layers geoto argue about indistinguishable
executions. This integrates the layering approach, whatpshin obtaining simple bounds when

the model is asynchronous, with the randomization used éultporithms.

In principle, the lower bound scheme can be extended to #a@dhmemory model by focusing

3This result appeared in [14].



on such layered executions. However, our severely hangéchpdversarial model poses a couple
of technical challenges. First, while in the message-pgssiodel each step can be assumed to
send messages to all processes, in a shared-memory eventespchooses which register to
access and whether to read from it or write to it. A very weakeashry, as we use for our lower
bounds, must find a way to make its scheduling decisions iaramb/without even knowing what
type of step the process will take. Second, the proof scheopgnes schedules to be determined
independently of the coin-flips. The latter difficulty canrme alleviated even by assuming an
adaptive adversary that may schedule the processes atgoodhe execution so far, since future

coin flips may lead to different types of steps.

We manage to extend the lower bound scheme to the sharedimenaadlel, by first sim-
plifying the model, assuming that processes either writsitgle-writer registers or perform a
cheap snapshaiperation, reading all the registers at once. By furthenmasg that an algorithm
regularly alternates between writes and cheap snapshetsake processes’ steps predictable,
allowing a weak adversary to construct indistinguishbghains. The lower bound is extended
to hold for multi-writer registers by reduction; while ondiry simulations of multi-writer registers
using single-writer registers have(n) overhead (which would significantly deteriorate the lower

bound), cheap snhapshots admit a simulation with constarhead.

1.3 Combining Shared Coins

In addition to investigating the total number of steps ofd@mized consensus algorithms, we
address theiindividual step complexityT he individual step complexity, or thedividual workof

a randomized distributed algorithm is the expected numbsteps taken by any single process.
Having a small individual step complexity is not an immeeiebnsequence of having a small total
step complexity, because a process running alone may hgesftrm all the work by itself.

As is the case for the total step complexity, the frameworRgppnes and Herlihy [12] shows
that a shared-coin algorithm with agreement parameterd expected total work yields a ran-
domized consensus algorithm with expected total wotk + 1/§). Previously, the best known
individual work was achieved by the algorithm of Aspnes arahis [13], who presented a shared

coin algorithm in which each process performsn log® n) expected number of steps, which is
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significantly lower than the total step complexity boundsowdver, by simply multiplying the
individual work byn, their algorithm increases the total work @{n?log”n). This led Aspnes

and Waarts to ask whether this tradeoff is inherent.

We show that there is no such tradeoff, and in fact, each aexitpimeasure can be optimized
separately. This result is achieved by showing that sheoatalgorithms can bmterleavedin a

way that obtains the best of their complexity figures, withmarming the agreement paraméter.

Given the power of the adversary to observe both algorithmisaaljust their scheduling, it is
not obvious that this is the case, and indeed, following,[#Hid work of Lynch, Segala, and Vaan-
drager [59] shows that undesired effects may follow fromititeraction of an adaptive adversary
and composed probabilistic algorithms. Nonetheless, wesbaw that in the particular case of
shared-coin algorithms, two algorithms with agreemenaipaters, anddz can be composed
with sufficient independence such that the combined algoriterminates with the minimum of
each of the algorithms’ complexities (e.g.,bothindividual and total work), while obtaining an
agreement parameter &f - 3.

An immediate application of our result shows that the shax@d algorithm of Bracha and
Rachman can be interleaved with the algorithm of Aspnes aaa#4/ to get an algorithm with both
O(nlog®n) individual work andO(n?logn) total work. This implies that wait-free randomized
consensus can be solved witkin log” n) expected individual work an@ (n? log n) expected total
work, usingsingle-writermulti-reader registers. These are currently the best cexitps known

for this model.

Our result has other applications for combining sharedscmirorder to enjoy the best of more
than one complexity measure. For example, Saks, Shavitaid66] presented three shared-
coin algorithms, each having a good complexity for a diffeéicenario. The complexity measure
they consider is ofime units one time unit is defined to be a minimal interval in the exepuof
the algorithm during which each non-faulty processor etecat least one step. The first is a wait-
free algorithm which take@(n"—ff) time, wheref is the actual number of faulty processes. In the
second algorithm, the time 3(logn) in executions with at most = /n faulty processes, and in
the third algorithm the time i© (1) in failure-free executions. All three shared coin algarigthave

constant agreement parameters, and Saks, Shavit, and [dibll that they can be interleaved to

4This result appeared in [10].
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yield one algorithm with a constant agreement parametéettjays all of the above complexities.
Our argument is the first to prove this claim.

Our result holds also for the shared-memory model witliti-writer multi-reader registers. In
this model, building upon ou®(n?) shared coin and the weighted voting scheme of [13], it has
been shown [8] that the individual work can be further reditosO (n log n); again, this came at a
cost of increasing the total work t(n? log n), which can be avoided by combining t&n log n)
individual work shared coin with oud(n?) total work shared coin. However, this was superseded
by Aspnes and Censor [11], who gave a shared-coin algorititm () individual work and
(immediately)O(n?) total work, which is optimal due to ou?(n?) lower bound on total work.
This shared coin is established based on an approxisnéitéinear counterallowing to reduce the

individual work toO(n).

1.4 A Polylogarithmic Counter for an Optimal Individual Ste p
Complexity

While an approximate sub-linear counter suffices for clpghe question of the individual step
complexity of randomized consensus algorithms, this lesd ask whether there exist better
counters, and specifically axactsub-linear counter. Exploring this question resulted iratin-
mative answer, as well as constructions of additional pgjgtithmic concurrent data structures.

One successful approach to building concurrent data stesis to employ thatomic snap-
shotabstraction [2]. An atomic snapshot object is composed ofpmnents, each of which typi-
cally is updated by a different processes; the componentseatomically scanned. By applying a
specific function to the scanned components, we can prosgedfic data structure. For example,
to obtain amax register supporting a write operation andReadMax operation that returns the
largest value previously written, the function returns thenponent with the maximum value; to
obtain acounter supporting an increment operation an@eadCount er operation, the function
adds up the contribution from each process.

Constructions of exact counters take a lineam{imumber of steps. This is due to the cost of
implementing atomic snapshots [49]. Indeed, Jayanti, &ad, Toueg [51] show that operations

must take)(n) space an€l(n) steps in the worst case, for many common data structurésding
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max registers and counters. This seems to indicate thatnvetedo better than snapshots for exact

counting.

However, careful inspection of Jayanti, Tan, and Touegielobound proof reveals that it
holds only when there are numerous operations on the datwte. Thus, it does not rule out the
possibility of having sub-linear algorithms when the numbkoperations is bounded, or, more
generally, the existence of algorithms whose complexifyetiels on the number of operations.
Such data structures are useful for many applicationsgeltbcause they have a limited life time,

or because several instances of the data structure candbe use

We present polylogarithmic implementations of key datacttires with a bounded number of
valuesm®. The cornerstone of our constructions, and our first exanigpkn implementation of a
max register that beats tli&n) lower bound of [51] wherog m is o(n). If the number of values
is bounded bym, its cost per operation i©(logm); for an unbounded set of values, the cost is

O(min(logv, n)), whereu is the value of the register.

Instead of simply summing the individual process contitng, as in a snapshot-based im-
plementation of a counter, we can use a tree of max regisbec®mpute this sum: take an
O(logn) depth tree of two-input adders, where the output of eachraidde max register. To
increment, walk up the tree recomputing all values on tha.pd@te cost of a read operation is
O(min(logw,n)), wherev is the current value of counter, and the cost of an incrempetation
is O(min(log nlogv,n)). When the number of increments is polynomial, this &ékg” n) cost,
which is an exponential improvement from the trivial uppeuibd of O(n) using snapshots. The

resulting counter is wait-free and linearizable.

More generally, we show how a max register can be used toftramsany monotone circuit
into a wait-free concurrent data structure that providesewaperations setting the inputs to the
circuit and a read operation that returns the value of theuition the largest input values previ-
ously supplied. Monotone circuits expose the parallelisherent in the dependency of the data
structure’s values on the arguments to the operations. &byna monotone circuitomputes a
function over some finite alphabet of size which is assumed to be totally ordered. The circuit
is represented by a directed acyclic graph where each nodesponds to a gate that computes a
function of the outputs of its predecessors. Nodes withagrde zero are input nodes; nodes with

SThese results appeared in [9].
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out-degree zero are output nodes. Each gawith % inputs, computes some monotone function

f, of its inputs. Monotonicity means thatdf > y; for all 7, thenf,(z1, ..., 2x) > fo(v1, ..., yk)-

The cost of writing a new value to an input to the circuit is bded byO(Sd min([lgm],n),
wherem is the size of the alphabet for the circuitis the number of inputs to each gate, &b
the number of gates whose value changes as the result of itiee Wine cost of reading the output
value ismin([lgm],O(n)). While the resulting data structure is not linearizable eameyal, it
satisfies a weaker but natural consistency condition,datienotone consistencyhich we show
is still useful for many applications.

1.5 Randomized Consensus with Optimal Individual Work

We show how to use a polylogarithmic exact counter for olmgimandomized consensus with an
optimal individual step complexity ab(n), by constructing a shared coin with that individual step

complexity, and using the Aspnes-Herlihy framework diseakearlief.

Essentially all known shared coins are based on randomgjotiith some variation in how

votes are collected and how termination is detected.

Our shared coin is based on theighted votingpproach pioneered in tii&n log” n) individual-
work algorithm of Aspnes and Waarts [13], where a procesttiha already cast many votes
becomes impatient and starts casting votes with higherhtieiye combined this with the termi-
nation bit of the shared coin @#(n?) total work, to allow a detection of termination to be spread

fast among the processes.

Still, detecting for the first time that the threshold of nuanlof votes has been reached is a
counting problem: using a standard counter witfn)-operation reads means that the threshold
can be checked only occasionally without blowing up the.d@gtapplying our sub-linear counter,
a process can carry out as manyH$og n) counter reads within th@(n) time bound. This gives
anO(n) individual step complexity for the shared coin algorithmdahusO(n) individual step

complexity for randomized consensus.

This is an adaptation of the result that appeared in [11].
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1.6 Randomized Set Agreement

The last contribution of this thesis is for the problemseaft agreement In the set-agreement
problem the processes start with input valueg(n. . ., k}, instead of binary inputs, and should
produce output values such that there are at thdsterent outputs, for somé< k. As in the case
of consensus, the termination condition requires everyfaahy process to eventually decide, and
to avoid trivial solutions, the validity condition requsgeach output value to be the input value of
some process.

The problem of set agreement was introduced by Chaudhyrag32 generalization of the con-
sensus problem, in order to deterministically overcomenték-known FLP impossibility of solv-
ing consensus deterministically in an asynchronous systbith allows even one crash-failure.
Chaudhuri showed that if the bourfdon the number of faulty processes is smaller thatinen
set agreement can be solved by a deterministic algorithrterLia was shown by Borowsky and
Gafni [27], Herlihy and Shavit [48], and Saks and Zaharod®x], using topological arguments,
that set agreement cannot be solved deterministically msgnchronous system jf > ¢, and in
particular it does not have a wait-free solution.

As in the case of consensus, randomization also allows t@ores the impossibility result for
set agreement. We present randomized wait-free algoritbnsolving set agreement in an asyn-
chronous shared-memory systérfirst, we generalize the definition of a shared-coin algaonit
and definanulti-sided shared-coialgorithms. In such an algorithm, each process outputs bne o
k + 1 values (instead of one of two values as in a regular shargg;such that each subset bf
values has probability at leasfor containing the outputs of all the processes. In othedaoeach
value has probability at leastof not being the output of any process. We then extend the Aspnes-
Herlihy framework for using a shared coin for obtaining adamized consensus algorithm [12],
and show how to use any multi-sided shared coin in order taiolat randomized set-agreement
algorithm, for agreeing oh values out of + 1.

Next, we present an implementation of/a+ 1)-sided shared-coin algorithm which has a
constant agreement paramet@in?/k) total step complexity, and(n/k) individual step com-
plexity. We then derive a set-agreement algorithm from(the- 1)-sided shared coin using the

above framework.

’As appeared in [30].
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In addition, we present set-agreement algorithms thatesgded for agreeing atwalues out
of k41, for ¢ < k. In particular, they can be used for the cése 1, where the processes agree on
the same value, i.e., fonulti-valued consensu8y definition, solving multi-valued consensus is
at least as hard as solvibinary consensu@vhere the inputs are in the sgt, 1}, i.e.,k = 1), and
potentially harder. One algorithm uses multi-sided shawads, while the other two embed binary

consensus algorithms in various ways.

1.7 Overview of the Thesis

Additional background is provided in Chapter 2, followedaformal description of the model in
Chapter 3.

The technical presentation has a different structure thamntroduction. It is partitioned into
two parts; one studies algorithms and the second is deditalewer bounds, in order to empha-
size the common techniques.

First, Part | presents the algorithms discussed in thednttbon. It begins with Chapter 4,
presenting our shared-coin algorithm used to derive ramihconsensus witt(n?) total step
complexity. Next, Chapter 5 proves our results regardirggititerleaving of shared-coin algo-
rithms. Chapter 6 presents our polylogarithmic concurdata structures, and Chapter 7 shows
how to use a polylogarithmic counter to obtain a shared cdaiin an optimal individual step com-
plexity of O(n). Finally, we conclude the algorithms part in Chapter 8, veithorithms for set
agreement.

The second part of the thesis, Part Il, contains the lowentsior randomized consensus. We
begin by laying down the framework of manipulating layergdaitions in Chapter 9, followed by
our lower bound under a weak adversary in Chapter 10, andainelower bound under a strong
adversary in Chapter 11.

We complete the thesis with a discussion in Chapter 12.
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Chapter 2

Related Work

In this chapter we survey the background related to our wak. begin with a short historical
overview of randomized consensus algorithms for sharedangrAn excellent survey of the state
of the art prior to 2003 appears in [6].

Following the first randomized consensus algorithm of Ber[Zd], many randomized con-
sensus algorithms have been suggested, in different comatiom models and under various
assumptions about the adversary. In particular, algostiere designed to solve randomized
consensus in asynchronous shared-memory systems, agatmehg adversary that can observe
the results of local coin flips before scheduling the proees®brahamson [1] presented a ran-
domized algorithm for solving consensus in asynchronosgesys using shared memory, whose
total work is exponential im, the number of processes. The first polynomial algorithnstuy-
ing randomized consensus under the control of a strong salyewas presented by Aspnes and
Herlihy [12]. They described an algorithm that has a totatknaf O(n?*). The amount of memory
required by this algorithm was later bounded by Attiya, @pknd Shavit [16]. Aspnes [4] pre-
sented an algorithm for randomized consensus With*) total work, which also uses bounded
space. These algorithms were followed by an algorithm obS&kavit and Woll [66] withO(n?)
total work, and an algorithm of Bracha and Rachman [28] with? log n) total work, where the
latter was previously the best known total step complexXitjower bound of()( n? ) on the ex-

log? n

pected total number of coin flips was proved by Aspnes in [&§ implies the same lower bound

on the total step complexity.

2

The previous)(

) lower bound [5] for randomized consensus under a strongradme

n
log?n
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relies on a lower bound for coin flipping games. In this prdbé& adversary schedules processes
step-by-step, and the results of the games are analyzaatinfoyperbolic functions. In contrast,
our approach considers only the configurations at the enayar$, allowing powerful results
about product probability spaces to be applied, and stiearglthe analysis of the behavior of

executions.

There is an extensive literature on randomized agreemgotitims for message passing sys-
tems under a weak adversary. Recent papers in this areaeralgorithms for agreement in the
presence of Byzantine processedut informationmodels, where the adversary is computation-

ally unbounded. See [25, 44,54] for a more detailed deson@ind references.

To the best of our knowledge, there are no other lower boundsiwwdomized consensus in
shared-memory systems under a weak adversary. There amlsggorithms assumingwalue-
oblivious adversary, which may determine the schedule adaptivelgdban the functional de-
scription of past and pending operations, but cannot obsany value of any register nor re-
sults of local coin-flips. This model is clearly strongerrirtae adversary we employ, and hence
our lower bounds apply to it as well. The algorithms differthge type of shared registers they
use [20-22, 31]. For single-writer multi-reader regist&xamann and Bender [21] give a con-
sensus algorithm that has probability of at mdstof not terminating withinO(n log® n) steps.
For multi-writer multi-reader registers, Aumann [20] sh®w consensus algorithm in which the
probability of not terminating ik iterations (and)(k - n) steps) is at most3/4)*.

Chandra [31] gives an algorithm with(log” n) individual step complexity, assuming an in-
termediate adversary that cannot see the outcome of a qoiuritil it is read by some process.

Aumann and Kapah-Levy [22] give an algorithm within log n exp(2+/polylogn)) total step com-

plexity, using single-writer single-reader registersj assuming a value-oblivious adversary.

An algorithm withO(n log log n) total step complexity against a weak adversary was given by
Cheung [34], which considers a model with a stronger assomhat a write operation occurs
atomically after a local coin-flip. It improves upon earliwork by Chor, Israeli, and Li [35],
who provide an algorithm witlD(n?) total step complexity using a slightly different atomicity

assumption.

We now turn our attention to randomized set agreement. rsvandomized agreement algo-

rithms for asynchronous shared-memory systems underragstidversary are for the specific case
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of binary consensus, as discussed earlier, with the optmdalidual and total step complexities
beingO(n) andO(n?), respectively [11, 15].

Unlike the shared-memory model, several set-agreementtitigns for asynchronousessage-
passingsystems have been proposed. Mostefaoui et al. [62] useybtoaisensus to construct a
multi-valued consensus algorithm for message-passingrags This work assumes reliable broad-
cast. In the same model, Zhang and Chen [74] present impragedithms, which reduce the
number of binary consensus instances that are requirederne above assumption, Ezhilchel-
van et al. [39] also present a randomized multi-valued cwsise algorithm, while Mostefaoui
and Raynal [61] present a randomized set-agreement dlgofdr agreeing o values out ofr.
The above algorithms require a bound on the number of falfire n/2, a restriction that can
be avoided in the shared-memory model. Moreover, there isxaonentially small agreement
parameter for the shared coins that are used, which causexpiected number of phases until
agreement is reached to be large.

There is additional literature on set agreemergyinchronousystems. An important result is
by Chaudhuri et al. [33] who show th#{'k + 1 is the number of rounds needed for solvinget
agreement in shared memory. Raynal and Travers [65] prap@sealgorithms in addition to a

good survey on synchronous set-agreement algorithms.
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Chapter 3

The Basic Model and Definitions

This thesis considers a standard model of an asynchronawsdsmemory system, wherepro-
cessesy, - - -, Pn, COMmunicate by reading and writing to shared multi-wmntetti-reader (atomic)
registers (cf. [19, 58]). In some cases, which will be expliaoted, it will be more convenient to
consider the set of processes{@s, . .., p,_1}-

Eachstepconsists of some local computation, including an arbitrauynber of local coin
flips (possibly biased) and one shared menmrgni which is a read or a write to some register.
Processes may fail by crashing, in which case they do notalakéurther steps.

The system ismsynchronousmeaning that the steps of processes are scheduled aagoodin
an adversary. This implies that there are no timing assumgtiand specifically no bounds on the
time between two steps of a process, or between steps ofattiffprocesses.

An algorithm isf-tolerantif it satisfies the requirements of a problem in a system waemsost
f processes can fail by crashing. In some cases we will requiralgorithms to bevait-freg i.e.,
to be correct even if = n — 1 processes may fail during an execution.

Since our algorithms are randomized, different assumgtamthe power of the adversary
may yield different results. Throughout most of this thesie assume that the interleaving of
processes’ events is governed bsteongadversary that observes the results of the local coin flips
before scheduling the next event; in particular, it may olesa coin-flip and, based on its outcome,
choose whether or not that process may proceed with its hexéd-memory operation.

The only exception to this is in the lower bound presentedhagier 10, where we assume a

weaker adversary. It is explicitly defined before being used
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The complexity measures we consider are the following. fbia@ step complexityr total
work of an algorithm is the expected total number of steps takeallbthe processes during a
worst-case execution of the algorithm. Similarly, théividual step complexitgr individual work
of an algorithm is the expected number of steps taken by arglesprocess during a worst-case
execution of the algorithm.

Following are the formal definitions of the main problemsradded.

Definition 3.1 In a consensus algorithm, each proceskas an input value;, and should decide
on an output valugy;. An algorithm for solving randomized consensus satisfiesfaowing
requirements.

Agreementfor every two non-faulty processgsandp;, if y; andy; are assigned thep, = y;.
Validity: For every non-faulty procegs, if y; is assigned thep; = x; for some processg;.

Termination:With probability 1, every non-faulty procegseventually assigns a value .

Note that the safety requirements of agreement and vahe#yl to always hold, while termination

only needs to hold with probability 1. The problem of set agnent is defined similarly, as follows.

Definition 3.2 In an algorithm for solving ¢, k + 1, n)-agreemeneach procesg; has an input
valuez; in {0, ..., k} and should decide on an output valyesuch that the following conditions
hold:

Set AgreementThere are at most different outputs.
Validity: For every non-faulty process, if y; is assigned thep, = z; for some processg,.
Termination:With probability 1, every non-faulty procegseventually assigns a value .

We sometimes use the tesat agreemenwithout parameters for abbreviation. The particular case
in which/ = 1,k > 1 is the problem omulti-valued consensuwhile in cas¢/ = k£ = 1 we have
binary consensus

For completeness, we redefine the notion sthared-coiralgorithm, as discussed in Chapter 1.
In a shared-coin algorithm the processes do not have inpdte@ch process should output a value
—1 or +1. Theagreement parametaf a shared-coin algorithm is the maximal vatusuch that
for everyv € {—1,+1}, there is a probability of at leastthat all processes output the same value

V.
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Algorithm 3.1 A randomized consensus algorithm from a shared coin, cage fo

Local variablesr = 1, decide = false,myValue = input,
myPropose = [ ], myCheck =[]
Shared arraysPropose] ][0..1], Check| |[agreedisagreé

1. whiledecide == false

2:  Propose[r][myValue] = true

3:  myPropose = collect Propose|r])

4 if there is only one value imyPropose
5: Check[r]|[agreé = (true, my Value)
6: else

7 Check|[r][disagreé= true

8:  myCheck = collect Check|[r])

9: if myCheck|disagre¢== false

10: decide = true

11: else ifmyCheck[agreé == (true, v)
12: my Value = v

13: else ifmyCheck|agreé == false
14:  myValue = sharedCoin[r]

15: r=r+1

16: end while

17: returnmy Value

Algorithm 3.1 gives the framework of Aspnes and Herlihy [X8t deriving a randomized
binary consensus algorithm from a shared coin calealedCoin, with an agreement parameter
0. It follows the presentation given by Saks, Shavit, and \W&8]. However, the complexity is

improved by using multi-writer registers, based on the tmiesion of Cheung [34].

The basic idea is that agreement is easy to detect, while #ne challenge is in obtaining it.
The randomized consensus algorithm proceeds by (asyrmispphases, in which the processes
try to obtain agreement (sometimes using the shared coth)reem detect whether agreement has
been reached. Each proceswrites its own preference to a shared arfaypose, checks if the

preferences agree on one value, and notes this in anothedshaayCheck. If p indeed sees
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agreement, it also notes its preferencé&’ffreck.

Proces® then checks the agreement ar@yeck. If p does not observe a note of disagreement,
it decides on the value of its preference. Otherwise, iféhera note of disagreement, but also a
note of agreemenp, adopts the value associated with the agreement notificaiqummeference for
the next phase. Finally, if there is only a notification ofadjseement, the process participates in a
shared-coin algorithm and prefers the output of the shased c

In every phase, it is guaranteed that only one value can hdeteapon, and if some process
decides then all others either decide as well or adopt thisida value for the next phase. Also,
only one value can be adopted by processes for the next phiaisemplies that for the processes
to have different preferences for the next phase, it mushaedt least one process executes the
shared-coin algorithm. But with probability at leasall the processes that run the shared-coin
algorithm output the same value. This is true even if othecesses have adopted a value without
participating in the shared-coin algorithm, since for eatthe two values we have a probability
0 for agreeing on that value. Therefore, after the first phasehich the preferences are given
by the adversary, the number of phases until agreementde@das a geometric random variable,
and so its expectation is/J.

For a complete proof, see Chapter 8, Section 8.1, where aajiemeel framework is presented,

allowing to obtain a randomized set-agreement algoritlmmfamulti-sided shared coin
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Chapter 4

A Randomized Consensus Algorithm

As discussed in Chapter 1, Aspnes and Herlihy [12] have shibnnha shared-coin algorithm
with agreement parametéy expected individual worl, and expected total work, yields a ran-
domized consensus algorithm with expected individual wotk + 1/§) and expected total work
O(n* + T/6). Our randomized consensus algorithm is obtained by cartstgia shared coin, as
described and proved in the following section. For an expleduction from a randomized con-
sensus algorithm to a shared coin algorithm, we refer thokerda Section 8.1, where a generalized

and slightly improved framework is presented.

4.1 A Shared Coin withO(n?) Total Work

This section presents a randomized consensus algorithmOgit?) total step complexity, by in-
troducing a shared coin algorithm witrcanstantagreement parameter afgn?) total step com-
plexity. Using a shared coin algorithm with(n?) total step complexity and a constant agreement
parameter in the scheme of [12], implies a randomized causealgorithm withO(n?) total step
complexity.

As in previous shared coin algorithms [28, 66], in our altor the processes flip coins until
the amount of coins that were flipped reaches a certain tbiesAn array ofn single-writer multi-
reader registers records the number of coins each procedfipgped, and their sum. A process
reads the whole array in order to track the total number aithat were flipped.

Each process decides on the value of the majority of the apmifireads. Our goal is for the

27



processes to read similar sets of coins, in order to agreeersame majority value. For this to
happen, we bound the total number of coins that are flippedyyprocess) after some process
observes that the threshold was exceeded. A very simplemgyarantee this property is to have
processes frequently read the array in order to detect lyuicét the threshold was reached. This,
however, increases the total step complexity. Therefar@) previous shared coin algorithms, we
have to resolve the tradeoff between achieving a small sté@l complexity and a large (constant)
agreement parameter.

The novel idea of our algorithm in order to overcome this gonfis to utilize a multi-writer
register calledlonethat serves as a binary termination flag; it is initializedeise. A process that
detects that enough coins were flipped, skiseto true. This allows a process to read the array
only once in every: of its local coin flips, but check the registdonebefore each local coin flip.

The pseudocode appears in Algorithm 4.1. In addition to tharlg registedone it uses an ar-
ray A of n single-writer multi-reader registers, each with the falilog components (all initialized
to 0):

count how many flips the process performed so far.

sum the sum of coin flips values so far.

Each process keeps a local capgf the arrayA. The collect operation in lines 6 and 8 is an
abbreviation fom read operations of the array.

For the proof, fix an executioa of the algorithm. We will show that all processes that ter-
minate agree on the value 1 for the shared coin with constabgpility; by symmetry, the same
probability holds for agreeing on 1, which implies that the algorithm has a constant agreement
parameter.

The total count of a specific collect is the sumadf].count, ... a[n].count, as read in this
collect. Note that the total count in Line 8 is ignored, budah still be used for the purpose of the
proof.

Although the algorithm only maintains the counts and sumsoai flips, we can (externally)
associate them with the set of coin flips they reflect; we debgtF- the collection of core coin
flips that are written in the shared memory by the first time thee is written todone The size of
F can easily be bounded, since each process flips atmwasns before checking.

Lemma 4.1 F, contains at least? coins and at mostn? coins.
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Algorithm 4.1 Shared coin algorithm: code for process

local integernum, initially O

array a[l..n]

1: while notdonedo

2 num + +

3: flip=random{1,+1) [/l a fair local coin

4:  Ali].(count, sum) = (count + +, sum + flip) // atomically

5 if num == 0 mod n then Il check if time to terminate

6 a = collect A /I n read operations

7 if a[1].count + ... + a[n].count > n? thendone= true I/ raise termination flag
end while

8: a=collect A /I n read operations

9 returnsign(Z?:1 alj].sum) I/ return+1 or —1, depending on the majority value of the coin flips

Proof: Clearly, true is written talonein line 7 only if the process reads at leastflips, therefore
|| > n?. Consider the point in the execution aftércoins were written. Each process can flip
at mostn more coins until reaching line 7, and then it writes trueléme Therefore when true is
written todonethere are at mostn? coins written, andF¢| < 2n?. n

For a set of coing” we let Sum(F’) be the sum of the coins if. We denote by} the set of
coin flips read by the collect of procegsin Line 8. This is the set according to which the process
p; decides on its output, i.ep; returnsSum/(F;). Since each process may flip at most one more

coin after true is written todlone we can show:
Lemma 4.2 For everyi, Fo C F;, andF; \ F contains at most — 1 coins.

Proof. Note that the collect of any procegsin Line 8 starts after true is written thlone Hence,
F; containsFe.

After true is written tadone each process (except the process that had written tm can
flip at most one more coin before reading tdaneis true in Line 1. Therefore, the set of coins
that are written when the process reads Line 8 is the set ngd¢bat were written when true was

written todone(which is F), plus at most — 1 additional coins. [ |
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n? coins true is written p; collects
are written to done in Line 8
1 1

\/\/

Fe

Figure 4.1:Phases of the shared coin algorithm.

We now show that there is at least a constant probability $hat(F~) > n. In this case,
by Lemma 4.2, all processes that terminate agree on the vakieceF; contains at most — 1
additional coins.

We partition the execution into three phases. The first ppase whem? coins are written.
After every coin is written there may be up #o— 1 additional coins that are already flipped but
not yet written. The adversary has a choice whether to albmh @f these coins to be written. We
assume an even stronger adversary that can choosé wréten coins out of:? +n — 1 coins that
were flipped. The second phase ends when true is writtdarie In the third phase, each process
reads the whole arrayt and returns a value for the shared coin. (See Figure 4.1.)

Since F is the set of coins written whedoneis set to true, then it is exactly the set of
coins written in the first and second phases. Egt,; be the firstn? coins that are written, and
Fieconda = Fo \ Frirst- This implies thatSum/(Fe) = Sum(Fyipst) + Sum(Fyecona). Therefore,
we can bound (from below) the probability thétm (F-) > n by bounding the probabilities that
Sum(First) > 3n andSum(Fyecond) > —2n.

Consider the sum of the firsf + n — 1 coin flips. After these coins are flipped, the adversary
has to write at least® of them, which will be the coins itt';,.;. If the sum of the firsk? + n — 1
coin flips is at leastn thenSum(Fy;.s;) > 3n. We bound the probability that this happens using
the Central Limit Theorem.

Lemma 4.3 The probability thatSum (F.s:) > 3n is at Ieastﬁefg.

Proof: There areN = n* + n — 1 coins flipped whem? coins are written tay;,;. By the

Central Limit Theorem, the probability for the sum of theséns to be at least\/N, converges

1 v , o .
tol — &(x), whered(x) = \/7/ e~ 2v"dy is the normal distribution function. By [40, Chap-
T J—c0

ter VII], we havel — ®(z) > (+ — %)VLQ_F@*%”. Substitutingr = 4 we have that with probability
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at Ieastﬁe*8 the sum of theséV coins is at leastiv/N, which is more thanin, and hence

Sum(First) > 3n. ]

We now need to boun8um(Fsecond). Unlike Fy;,o, Whose size is determined, the adversary
may have control over the number of coinsAk....q, and not only over which coins are in it.
However, by Lemma 4.1 we hay&y| < 2n?, therefore Fyccong| < n?, which implies thatF,....q
must be some prefix of?> additional coin flips. We consider the partial sums of thesadditional
coin flips, and show that with high probability, all theset@drsums are greater than2n, and
therefore in particulabum(Fsecond) > —2n.

Formally, for everyi, 1 < i < n?, let X; be thei-th additional coin flip, and denots; =

5:1 X;. Since|Fyecona] < n?, there existt, 1 < k < n?, such thatS, = Sum(Fiecona). If
S; > —2n for everyj, 1 < j < n?, then specificallySum(Fsecona) = Sk > —2n.

The bound on the partial sums is derived using Kolmogoraegjuality.

Kolmogorov’s Inequality [40, Chapter IX] Let X4,...X,, be independent random variables
such thatVar[X;] < oo for everyi, 1 < i < m, and letS; = {:1 X; foreveryj, 1 < j <m.

Then for everyA > 0, the probability that

|S; — E[S;]| < AV Var[S,] , forallj,1<j<m,

is at leastl — \~2.
Lemma 4.4 The probability thatS; > —2n forall j,1 < j < n? is at Ieast%.

Proof: The results of thex? coin flips are independent random variabl€s, ..., X,., with
E[X;] = 0andVar[X;] = 1, for everyi, 1 < i < n?.

Sinces; is the sum ofj independent random variables, its expectatidiis;] = >27_, E[X;] =
0, and its variance i¥ ar[S;] = 37_, Var[X;] = j.

Kolmogorov's inequality implies thats;| < 2n (and hences; > —2n), forall j, 1 < j < n?,

with probability at leasg. n

This bounds the probability of agreeing on the same valuéhishared coin as follows.

Lemma 4.5 Algorithm 4.1 is a shared coin algorithm with agreement paedery = -8,

3 e
3227
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Proof: By Lemma 4.3, the probability thatum(Fy;,s) > 3n is at Ieastﬁe*, and by
Lemma 4.4, the probability thabum(F,.cona) > —2n is at least?. Since Sum(F¢) =

Sum(First) + Sum(Fsecond), this implies that the probability tha8um(Fo) > n is at least
-8

3
32v2n ¢
By Lemma 4.2, for every, F; \ Fc contains at most. — 1 coins, which implies that if

Sum(F¢) > nthenSum(F;) > 1, and therefore ip; terminates, then it will decidé. Hence,
with probability at |eas%e’8, Sum(F¢) > n and all processes which terminate agree on the
valuel.

By symmetry, all processes that terminate agree on the valugith at least the same proba-
bility. u

Clearly, Algorithm 4.1 flipsO(n?) coins. Moreover, all work performed by processes in read-
ing the arrayA can be attributed to coin flips. This can be used to show thgoithm 4.1 has

O(n?) total step complexity.
Lemma 4.6 Algorithm 4.1 hag)(n?) total step complexity.

Proof: We begin by counting operations that are not part of a coll&ttere areO(1) such
operations per local coin flip, and by Lemmas 4.1 and 4.2 ther@t mosen? + n — 1 local coin
flips, implying O(n?) operations that are not part of a collect.

Each collect performed by; in Line 6, can be associated with thdocal coins that can be
flipped byp; before it. By Lemma 4.1, there are at mdst coins inFy, i.e. at mosen? coin flips
during the first and second phases of the algorithm. Thexefturing these phases there can be at
most% = 2n collects performed by processes in Line 6. In the third phegery process may
perform another collect in Line 6, and another collect ind_By yielding at mos2n additional
collects. Thus, there are at mast collects performed during the algorithm, yielding a total o

O(n?) steps. -

Using Algorithm 4.1 in the scheme of [12] (see also AlgoritBm in Section 8.1) yields a
randomized consensus algorithm. Informally, the schenes ssgle-writer registers in which
the processes update their preferences (starting with itmauits), and allows the processes to

collect the values of these registers in order to detecteageat. If fast processes agree then they
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decide their preference and a slow process also adoptsétyaise a process changes its preference
according to the result of the shared coin. Given a sharedatgorithm with agreement parameter
5 and step complexity’, the scheme yields a randomized consensus algorithm @igh'7')

expected step complexity. This implies the next theorem:

Theorem 4.7 There is a randomized consensus algorithm with?) total step complexity.
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Chapter 5

Combining Shared Coins

In this chapter we show how to combine shared-coin algostimto a shared coin that integrates
their complexity measures. We begin by carefully definirg¢hoices of our strong adversary.

A configurationconsists of the local states of all processes, and the vafusbthe registers.
Since we consider randomized algorithms with a strong adwerwe partition the configurations
into two categorie€’,;, andC,4,. In configurations” € C,, there is a process waiting to flip a
local coin, and in configurations € C;, all processes are pending to access the shared memory.

For each configuratio@’ € C,;, wherep; is about to flip a local coin there is a fixed probability
space for the result of the coin, which we denoteXdy. An elementy € X with probability
Prly] represents a possible result of the local coin flipppfrom the configuratiorC'. If there
is more than one process that is waiting to flip a coirCinthen we fix some arbitrary order of
flipping the local coins, for example according to the praddentifiers. In this case; will be the
process with the smallest identifier that is waiting to flippgndn C'. The next process will flip its
coin only from the resulting configuration.

We can now define thstrong adversaryormally, as follows. For every configuratial €
Cay the adversary lets a procegs with the smallest identifier, flip its local coin. For every
configurationC' € C,q4,, the adversary picks an arbitrary process to take a step which accesses
the shared memory. Having the adversary wait until all psees flip their current coins does not
restrict the adversary’s power, since any adversary thaema decision before scheduling some
pending coin-flip, can be viewed as one that schedules théipegeooin-flip but ignores its outcome

until after making that decision.
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Algorithm 5.1 Interleaving shared coin algorithmsand B: code for process;.

1: whilet rue do

2. take a step in algorithm

3 if terminated inA by returningv then returnv // local computation
4. take a step in algorithr®
5

if terminated inB by returningv then returrw // local computation

5.1 Interleaving shared-coin algorithms

Let A and B be two shared-coin algorithms. Interleavidgand B is done by performing a loop
in which the process executes one step of each algorithmAlgeeithm 5.1). When one of the
algorithms terminates, returning some valyehe interleaved algorithm terminates as well, and
returns the same value

We denote by 4 anddp the agreement parameters of algoritdnand algorithmB, respec-
tively.

We next show that the agreement parameter of the interlesgedthm is the product of the
agreement parameters of algoriththsand B. The idea behind the proof is that since different
processes may choose a value for the shared coin based endditimne two algorithms, for all
processes to agree on some valwee need all processes to agreevan both algorithms. In order
to deduce an agreement parameter which is the product oivihgiven agreement parameters,
we need to show that the executions of the two algorithmsratepgendent, in the sense that the
adversary cannot gain any additional power out of runnirgitwerleaved algorithms.

In general, it is not obvious that the agreement parametéreointerleaved algorithm is the
product of the two given agreement parameters. In each divb@lgorithms it is only promised
that there is a constant probability that the adversary atgmrevent a certain outcome, but in the
interleaved algorithm the adversary does not have to deciddvance which outcome it tries to
prevent from a certain algorithm, since it may depend on Hewother algorithm proceeds. For
example, it suffices for the adversary to have the processasa algorithm agree ahand have
the processes in the other algorithm agreé.on

The first theorem assumes that one of the algorithms alwaysrtates within some fixed

bound on the number of steps, and not only with probabilityVe. later extend this result to hold
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for any pair of shared coin algorithms.

Theorem 5.1 If algorithm A always terminates within some fixed bound on the number p$ ste

then the interleaving of algorithm4 and B has agreement parametér> d,4 - 6g.

Proof: Since algorithmA always terminates within some fixed bound on the number qisste
the interleaved algorithm also terminates within some fikednd on the number of steps (at
most twice as many). We define the probability of reachingagrent on the value for every
configurationC' in one of the algorithms, by backwards induction, as follows

With every configuratior', we associate a valuethat is the maximal number of steps taken
by all the processes from configuratioh over all possible adversaries and all results of the local
coin flips, until they terminate in the interleaved algomitiby terminating either it or in B).
Since algorithmA always terminates within some fixed bound on the number @lsteis well
defined.

We denote by”| 4 the projection of the configuratiafl on algorithmA. That is,C| 4 consists
of the local states referring to algorithmof all processes, and the values of the shared registers
of algorithm A. Similarly we denote by’| 5 the projection of” on algorithmB.

We denote bys the set of adversaries possible from a configuratiokVe consider a partition
of S¢ into S4 andSE, which are the set of adversaries from configurativtwhose next step is in
algorithm A and B, respectively.

We define the probability RfC] for agreeing in the interleaved algorithm by induction<n
In a configurationC' for which s = 0, all processes terminate in the interleaved algorithm, by
terminating either inA or in B. We define Py|C] to be 1 if all the processes decideand 0

otherwise. LetC be any other configuration. &' € C,4,, then:

Pr,[C] = min Pr,[C7],

o€Sc
where(C"” is the resulting configuration after scheduling one procassording to the adversasy
to access the shared membrif C' € C,,, then:

PrIC) = 7 Piy] - Pr,[CY),

c
yeX;

INotice that the minimum of the probabilities over all adwegiss inSc is well defined, sinceS: is always finite
because there is a fixed bound on the number of steps in &lgosditand a finite number of processes.
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wherep; is the process waiting to flip a local coin in the configuratiomnd C"? is the resulting
configuration after the coin is flipped. Notice that for théiah configurationC;, we have that
d = min Pr,[Cy].

InUorder to prove the theorem, we use'R¥] (and similarly PF[C]) for a configurationC
in the interleaved algorithm, which is the probability tis¢arting fromC', all the processes that
terminate by terminating in algorithm (algorithm B) agree on the value.

We define these probabilities formally by inductionoiWe only state the definition of PiC];
the definition of P¥[C] is analogous. Notice that $)C] depends only on the projectia®| 4 of
configurationC' on algorithmA, and on the possible adversariesSifh. For a configuratiorC in
which s = 0, all the processes have terminated in the interleaveditiigor We define P}C] to
be 1 if all the processes that terminated by terminatinggorihm A agree on the value, and 0
otherwise (in the latter case there is at least one procastetiminated by terminating in algorithm
A, but did not decide on the valug.

Let C be any other configuration, i.e., with> 0. If C' € Cyq4,, then:

Pr[C] = Pr/[Cla, SE] = min Pri[C7] 4, SE.],
oeSE

where(C" is the resulting configuration after scheduling one procassording to the adversasy
to access the shared memoryClfe C,, then:
PrI[C] = Prl[Cla, 58] = Y Pyl Pr[C¥|a, SE),
yeXE

wherep; is the process waiting to flip a local coin in the configuratiomnd C"? is the resulting
configuration after the coin is flipped.

We now claim that for every configuratiofi, Pr,[C] > Pr}[C] - Pr?[C]; the proof is by
induction ons.

Base caself s = 0, then all processes have terminated in the interleaveditdgo Processes

agree o if and only if every process decideswhether it terminates id or in B, therefore
Pr,[C] = Pr,[C] - Pr[C].

Induction step: Assume the claim holds for any configuratioh with at mosts — 1 steps
remaining to termination under any adversary. Cdbe a configuration with at moststeps until

termination under any adversary. We consider two casesdiogao the type of”.
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If C € Cuap, then:

Pr,[C] = miqn Pr,[C7]
ocoC
= min { min Pr,[C?], min Prv[C"]} ,
oeSE oceSE

By the induction hypothesis on the configurati@f, with one step less to termination, we get:

Pr,[C] = min { min (Pr;'[C?] - Pr¥[C7]), min (Pr}[C7] - Prf[C’”])}

oeSA oeSE

= min {min (Pr[C7a, SE0] - PR[C7| 5, SE]), min (PRC?|a, Sg] - PR[C) 5, SCBU])}

JESé €55

where the second equality follows by the definition of'[e°] and PF[C?]. If the step taken
from C by o is in algorithmA thenC?|5 = C|. Moreover,S5, C SE, because a process may

terminate in algorithmd and be unavailable for scheduling. Therefore we have
Pr’[C7|, S¢-] = PrICl5, SC)-

Similarly, if the step taken frond' by ¢ is in algorithmB then PP [C7| 4, S&.] > Pr[C|4, SA].
Thus,

Pr,[C] > min { min (Pr;j‘[C"\A, Ség] . Prf[C’\B, Sg]), min (Pr;‘[C\A, Sé] . Prf[C"\B, Sga])}
UESg

UESé

— i {Pe2IC1, 521 (min PRC711, 51 ) PEICL, 521 iy PEIC715, 521
= win {PZ[C]-PE[C],PEC] - PEIC])
- PriC]PEIC]

which completes the proof of the claim that Y] > Pr[C]-Pr?[C] for a configuratiorC' € Cg,.
If C' € Cy,y, with proces®; waiting to flip a local coin, then:

Pr,[C] = > Priy]-Pr[CY]

yexs
= Z Priy] - Pr[CY] - P [CY]
yeXE
= Y Pyl PrlCY]a, S8 - PEICY| 5, SE.

c
yeX;
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by the induction hypothesis on the configuratiot, with one step less to termination. If the
coin of p; is in algorithm A, thenC¥|z = C|z. Moreover,SE, C SE, because a process may
terminate in algorithmd and be unavailable for scheduling. Therefore we haye®t 5, S5,] >
Pr?[C| g, SE]. Similarly, if the coin ofp; is in algorithmB then P{[CY|4, S&,] > Pri[C|4, S&].
Assume, without loss of generality, that the coin is in aifigpon A, thus,

Pr,[C] > > Piy]-Prl[C?4, 58] Pr/[C|5, SE]

yeX?
= Pr’[C|, 5] (Z Pry] - Pr;j‘[CyA,Sg‘y])
yeX?
= Pr[C]-Prj[C],

which completes the proof of the claim that [¥] > Pr![C]-Pr?[C] for a configuratiorC' € C,.

The theorem follows by applying the claim to the initial copiiationC', to get that Py[C;] >
Pr[C;] - Pr?[C;]. Notice again that in the interleaved algorithm, the adwgrés slightly more
restricted in scheduling processes to take steps in aigorit than it is in algorithmA itself, since
a process might terminate in algorithithand be unavailable for scheduling. This only reduces the
power of the adversary, implying that/P€;] > 6,. The same applies for algorithf and hence
Pr?[C;] > 0. Therefore we have that P€;] > Pr[C;] - Pr?[C;] > 64 -0, for everyv € {0,1},

which completes the proof sinée= min Pr, [C]. n

When neither algorithmd nor algorithmB have a bound on the number of steps until termi-
nation, the same result is obtained by considetingcatedalgorithms. In a truncated algorithm
Ay, we stop the original algorithm after at most steps, for some finite numbgr and if not all
processes have terminated then we regard this executiameathat does not agree on any value.
This only restricts the algorithm, so the agreement paranadta truncated algorithm is at most
the agreement parameter of the original algorithm, d.g.,< d4.

For any shared coin algorithm, we definé [Pl;] to be the probability that all the processes
terminate and decidewithin at mosth steps from the initial configuratiofi;. This is exactly the
probability Pg[C;] of the truncated algorithmil,. The next lemma proves that the probabilities
Pr'[C;] tend to the probability RfC;], ash goes to infinity.

Lemma 5.2 Pr,[C}] = limy,_.,, Pr"[C}].
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Proof: For everyh, letY) be the event that all the processes terminate and decwiéhin at
mosth steps from the initial configuratiofi;. By this definition, we have Pr,] = Pr"[C;], and
PrUZ, Ya] = Pr[Cr].

It is easy to see that the sequence of evéhids, ... is a monotone increasing sequence of
events, i.e.Y; C Y3 C -- -, therefore the limitim,, .., PrY},] exists, and by [45, Lemma 5, p. 7]
we have PlU |V}, = limy, ., Pr{Y,]. This implies that P{C;] = lim,,_.o, Pr*[C}]. n

We use the above limit to show that we can truncate an algorithget as close as desired to

the agreement parameter by a bounded algorithm.

Lemma 5.3 In a shared coin algorithm with agreement parametefor everye > 0 there is an
integerh, such that Pj<[C;] > § — e.

Proof: Assume, towards a contradiction, that for evenye have P{[C;] < § — e. Since Py[C]
is the probability that all the processes terminate anddgec{without a bound on the number of

steps), this implies that

Pr,[Cy] = lim PlC] <0 —e <4,

which completes the proof. [ |

We can now truncate the shared coin algoritAnafter a finite number of steps as a function
of ¢, and use Theorem 5.1 to get an interleaved algorithm witheagent parameter;, - op >
(04 —€) - 0p.

By truncating algorithmd we only restrict the interleaved algorithm (as we only liestalgo-
rithm A), and therefore we have that by interleaving algoritdrend B we obtain an agreement
parameteb that is at leasti, — ¢) - 65 for everye > 0, which implies that > §,4 - 65, and gives
the following theorem.

Theorem 5.4 The interleaving of algorithmd and B has agreement parametér> 4 - dp.
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5.2 Applications

5.2.1 Shared Coin Using Single-Writer Registers

We obtain a shared-coin algorithm using only single-wriggisters that has both(n? log n) total
work andO(nlog? n) individual work, by interleaving the algorithm from [28] aithe algorithm
from [13].

For two shared-coin algorithm$and B, we denote by'4 (n) and/ 4 (n) the total and individual
work, respectively, of algorithrd, and similarly denot&’s (n) and/z(n) for algorithmB. We now
argue that the total and individual step complexities ofititerleaved algorithm are the minima of

the respective complexities of algorithrdsand B.

Lemma 5.5 The interleaving of algorithmd and B has an expected total work of
2min{Ta(n), Te(n)} + n,

and an expected individual work of
2min{l4(n),Ig(n)} + 1.

Proof: We begin by proving the claim regarding the total work. Afmost274(n) + n total
steps are executed by the adversary, at |&¢aét) of them are in algorithmA, and hence all
the processes have terminated in Algoritimmand have therefore terminated in the interleaved
algorithm. The same applies to AlgorithBh Therefore the interleaved algorithm has a total work
of 2min{T4(n), Ts(n)} + n.

We now prove the bound on the individual work. Consider argcessp;. After at most
214(n) + 1 total steps op,; are executed by the adversary, at Idagi) of them are in algorithm
A, and hence the procepshas terminated in Algorithm, and has therefore terminated in the
interleaved algorithm. The same applies to AlgoritBmThis is true for all the processes, therefore

the interleaved algorithm has an individual work2ahin{T'4(n), Ts(n)} + 1. ]

Applying Lemma 5.5 and Theorem 5.1 to an interleaving of tigergthms of [28] and [13],
yields:

Theorem 5.6 There is a shared-coin algorithm with a constant agreemarameter, withO (n? log n)

total work andO(n log® n) individual work, using single-writer multi-reader regiss.
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5.2.2 Shared Coin for Different Levels of Resilience

In this section we discuss the interleaving done by Saksji§kad Woll [66]. They presented the
following three shared-coin algorithms, all having a cansagreement parameter. The complexity
measure they consider is bime units one time unit is defined to be a minimal interval in the
execution of the algorithm during which each non-faultyqa®sor executes at least one step.

The first algorithm takeé)(n%) time, wheref is the number of faulty processes. It is wait-
free, i.e., it can toleratg = n — 1 faulty processes. This is done by having each process egfigat
flip a local coin and write it into an array, then collect theagrto see if at least? coins were
already flipped. Once a process observes that enough coradlipped, it terminates and decides
on the majority of all the coins it collected. The individwabdrk of the first algorithm is irO(n?),
since in the worst case, the process does all the work by. itsel

The second algorithm také¥log n) time in executions with at mogt= /n faulty processes,
but may not terminate otherwise. This is done by having easbgss flip one local coin and write
it into an array, then repeatedly scan the array until it okesethat at least — \/n coins were
already flipped. It then terminates and decides on the ntgjofrall the coins it collected.

In the third algorithm there is one predetermined proceasftips one local coin and writes
the result into a shared memory location. The other prosesgeatedly read that location until
they see it has been written into, and then decide that valhis takesO(1) time in failure-free
executions, but may not terminate otherwise.

Theorem 5.1 shows that the interleaving of these threeithgogives a shared coin algorithm
with a constant agreement parameter. Technically, we applyheorem twice, first to interleave
the first algorithm (which is bounded) and the second allgortthen we interleave the resulting
algorithm (which is bounded) with the third algorithm.

The interleaving of all three algorithms enjoys all of thead complexities, by an argument

similar to Lemma 5.5, which yields the following theorem.

Theorem 5.7 There is a shared-coin algorithm with a constant agreemanameter, which takes
O(n%) time in any executior()(log n) time in executions with at mogt= /n failures, andO(1)

time in failure-free executions, using single-writer mudader registers.

This can of course be further improved by replacing the fiigbrgthm with the algorithm of
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Section 5.2.1 or with the algorithm of Aspnes and Censor,[EThulti-writer registers can be
employed.
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Chapter 6

Polylogarithmic Concurrent Data

Structures from Monotone Circuits

All of the known shared coins mentioned in Chapter 2 are esdlgrbased on a majority voting
mechanism, which varies in the way the votes are collecteldtiaa way termination is detected.
The number of votes needed is mainly influenced by the alfityhe strong adversary to delay
n — 1 votes in between the collection of votes performed by diféiprocesses, since our goal is
to provide a large (usually constant) probability of premssseeing the same value of the majority.
For example, in the shared coin we present in Chaptet dotes are needed.

Detecting that the number of votes reached the desiredhiblicess a counting problem. The
number of steps required for counting the votes inducesdedflin the design of shared-coin
algorithms: on one hand the processes should not perforrodineting procedure very often in
order to reduce the step complexity, and on the other harfdrp@ng frequent counting allows
the majorities seen by different processes to be similaultieg in a good agreement parameter.

The simple counters used in previous shared coins we¥of steps per counter-read oper-
ation, which implies that in order to obtain an individuasttomplexity ofO(n) for the shared
coin (and hence for randomized consensus) only a constanberuof counter-read operations
can be invoked by each process. This, however, harms thette have a constant agreement
parameter.

Therefore, we are interested in wait-free implementatat®unters and additional data struc-

tures, in which any operation on the data structure terraghatithin a sub-linear number of its

45



steps regardless of the schedule chosen by the adversarghecostof the implementation is
sub-linear.

We note that in this chapter we consider the set of proceed®sit = {po, ..., pn_1}-

6.1 Max registers

Our basic data structure ismaax registey which is an object that supports &V i t eMax(r, t)
operation with an argumenthat records the valuein r, and aReadMax (r) operation returning
the maximum value written to the object A max register may be either bounded or unbounded.
For a bounded max register, we assume that the values isstarén the range..(m—1), wherem

is thesizeof the register. We assume that any non-negative integebbe€atored in an unbounded
max register. In general, we will be interested in unbounhex registers, but will consider
bounded max registers in some of our constructions and |baends.

One way to implement max registers is by using snapshot&n&@vinear-time snapshot algo-
rithm (e.g., [49]), aW i t eMax operation for process; updates location[:], while aReadMax
operation takes a snapshot of all locations and returns theémum value. Assuming no bounds
on the size of snapshot array elements, this gives an implatien of an unbounded max register
with linear cost (in the number of processgdor bothW i t eMax andReadMax. We show be-
low how to build more efficient max registers: a recursivestarction that gives costs logarithmic
in the size of the register for boilv i t eMax andReadMax.

Note that another approach is to us@rrays, as proposed by Jayanti [50]. Afrarray is a
data structure that supports computation of a funcfimver the components of an array. Instead
of having a process take a snapshot of the array and thenylagglly f to the result, Jayanti
implements ary-array by having the write operations update a predetemiimeation according
to the new value of, which requires a read operation to only read that locafldrs construction
is then extended to a tree algorithm. For implementing -amray ofm registers, wherg can be
any common aggregate function, including the maximum valuée sum of values, this reduces
the number of steps required @log m) for a write operation, while a read operation tak&d )
steps. These implementations use LL/SC objects, while steceour base objects to multi-writer

multi-reader registers.
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Figure 6.1:Implementing a max register.

In the remainder of this section we show how to construct a register recursively from a
tree of increasingly large max registers. The resulting datucture can also be viewed as a tree
whose leaves represent the possible values that can bd.skbwevever, the recursive description
facilitates the proof.

The smallest object is a trivillaxReg, object, which is a max registerthat supports only
the value0. The implementation oMaxReg, requires zero space and zero step complexity:
Wit eMax(r,0)is ano-op, andReadMax (r) always returns.

To get larger max registers, we combine smaller ones remlysjsee Figure 6.1). The base

objects will consist of at most one snapshot-based maxteggis described earlier (used to limit
the depth of the tree in the unbounded construction) andja laxmber of triviaMax Reg, objects.
A recursiveMaxReg object has three components: tMax Reg objects called-.left andr.right,
wherer.leftis a bounded max register of size and one 1-bit multi-writer register calledswitch.
The resulting object is a max register whose size is the sutheo$izes of-.left andr.right, or
unbounded if.right is unbounded .

Writing a valuet to r is by theW i t eMax(r, t) procedure, in which the process writes the
valuet to r.left if t < m andr.switch is off, or otherwise writes the value— m to r.right and
sets ther.switch bit. Reading the maximal value is by tRReadMax () procedure, in which the
process returns the value it reads froneft if r.switch is off, and otherwise returns the value it

reads fromr.right plusm.
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Algorithm 6.1 Wi t eMax (r,t)

Shared variablesswitch: a 1-bit multi-writer register, initially O
left, aMaxReg object of sizem, initially 0,
right, aMaxReg object of arbitrary size, initially 0

1. ift<m

2:  if rswittch ==0

3: Wit eMax(r.left,t)

4: else

5 Wi teMax(r.right,t —m)

6: r.switch=1

Algorithm 6.2 ReadMax (r)

Shared Variablesswitch: a 1-bit multi-writer register, initially O
left, aMaxReg object of sizem, initially 0,
right, aMaxReg object of arbitrary size, initially O
1: if r.switch ==
2:  returnReadMax(r.left)
3: else
4:  returnReadMax(r.right) +m

An important property of this implementation is that it prages linearizability, as shown in

the following lemma.

Lemma 6.1 If r.left andr.right are linearizable max registers, then saris

Proof: We assume that each of tMaxReg objectsr.left andr.right is linearizable. Thus, we

can associate each operation on them with one linearizatam and treat these operations as

atomic. In addition, we can associate each read or write @aelisterr.switch with a single

linearization point since it is atomic.

We now consider a schedule BéadMax (r) andW i t eMax(r,t) operations. These consist

of reads and writes taswitch and ofReadMax andW i t eMax operations om.left andr.right.

We divide the operations aninto three categories:
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e Clet: ReadMax(r) operations that read 0 fromswitch, andW i t eMax(r,t) operations

with ¢ < m that read 0 fromr.switch.

e Ciignt: ReadMax (r) operations that read 1 fromswitch, andW i t eMax(r,t) operations

with ¢t > m (i.e., that write 1 ta-.switch).

o Csitecn: Wi t eMax(r, t) operations witht < m that read 1 fromr.switch.

Inspection of the code shows that each operatiom @alls into exactly one of these categories.
Notice that an operation is @ if and only if it invokes an operation onleft, an operation is in
Ciight if and only if it invokes an operation onright, and an operation is i@syixch if and only if it

invokes no operation onleft or r.right. We order the operations by the following four rules:

1. We order all operations dfje; before those olign. This preserves the execution order of
non-overlapping operations between these two categasiies an operation that starts after

an operation irCyign; finishes cannot be i@ef.

2. An operatiorop in Csyiten IS Ordered at the latest time possible before any operafiotnat

starts aftewp finishes.

3. Within C\ert we order the operations according to the time at which thegse.left, i.e., by
the order of their respective linearization points.

4. Within Ciigne We order the operations according to the time at which thegsee.right, i.e.,

by the order of their linearization points.

It is easy to verify that these rules are well-defined.

We first prove that these rules preserve the execution ofderoverlapping operations. For
two operations in the same category this is clearly impligdutes 2—4. Since rule 1 shows that
two operations fron€ex andCiign: are also properly ordered, it is left to consider the caseaha
operation is iNCsyich and the other is either @er; Or in Ciigne. In this case, rule 2 implies that their
order preserves the execution order.

We now prove that this order satisfies the specification of anmegister, i.e., if EReadMax(r)
operationop returnst thent is the largest value written by operations owf type Wi t eMax
that are ordered befow®. This requires showing that there i3Mi t eMax(r,t) operationop,,
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ordered beforep, and that there is n@/ i t eMax (r,t") operatiorop,,, with ¢ > ¢ ordered before
op.

This is obtained again by using the linearizability of thenpmnents. lbp returns a value <
m (i.e., itisinCie) then this is the value that is returned from its invocatiphof Read Max (r.left).
By the linearizability ofr.left, there is aWV i t eMax(r.left, t) operationop,, ordered beforep’ in
the linearization of-left. By rule 3, this implies that th&V i t eMax (r,¢) operationop,, which
invoked op!, is ordered beforep. A similar argument for-.right applies ifop returns a value
t > m.

To prove that no operation of typdf i t eMax with a larger value is ordered befoop, we
assume, towards a contradiction, that there\® at eMax(r,t') operationop,, with ¢’ > ¢ that
is ordered beforep. If op returns a value < m (i.e., itis in Cier) thenop,, cannot be iCiignt,
otherwise it would be ordered aftep, by rule 1. Moreovergp,,, cannot be iCyyi«ch, Since rule
2 implies thatop starts afterop,, finishes and hence must also read 1 froswitch which is
a contradiction tawp € Clerr. Therefore,op, € Cie, but this contradicts the linearizability of
r.left. If op returns a value > m (i.e., it is in Cyignt) thenop,,, cannot be inClex because’ > t.
Moreoverop,, cannot be irCsyiich, Sincet’ > ¢t > m. Thereforepp,, is in Ciignt, Which contradicts
the linearizability ofr.right. ]

Using Lemma 6.1, we can build a max register whose structomeegponds to an arbitrary
binary search tree, where each internal node of the tre@issented by a recursive max register
and each leaf is &axReg,, or, for the rightmost leaf, #axReg, or snapshot-basddaxReg
depending on whether we want a bounded or an unbounded materedhere are several natural

choices, as we will discuss next.

6.1.1 Using a balanced binary search tree

To construct a bounded max register of si2ewe use a balanced binary search tree.NbstReg;,
be a recursive max register built from tviaxReg,_; objects, withMaxReg, being the trivial
max register defined previously. Th¥axReg, has size* for all k. Itis linearizable by induction
on k, using Lemma 6.1 for the induction step.

We can also easily compute an exact upper bound on the cBsafivax andW i t eMax on
aMaxReg, object. Fork = 0, bothReadMax andW i t eMax perform no operations. For larger
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k, eachReadMax operation performs one register read and then recursesrfiorpea single
ReadMax operation on dvaxReg,_, object, while eachW i t eMax performs either a register

read or a register write plus at most one recursive cal¥tot eMax. Thus:

Theorem 6.2 A MaxReg, object implements a linearizable max register for whichrgve
ReadMax operation requires exactly register reads, and evei¥ i t eMax operation requires

at mostk register operations.

In terms of the size of the max register, operations on a mgistex that supports: values,
where2t~! < m < 2% values, each take at moggt m] steps. Note that this cost does not depend
on the number of processes indeed, it is not hard to see that this implementation wanskesn

with infinitely many processes.

6.1.2 Using an unbalanced binary search tree

In order to implement max registers that support unboundddeg, we use unbalanced binary
search trees.

Bentley and Yao [26] provide several constructions of uabe¢d binary search trees with the
property that the-th leaf is at depthD (log ). The simplest of these, calldg, constructs the tree
by encoding each positive integer using a modified versi@aaddssic variable-length code known
as the Elias delta code [38]. In this code, each positivegant& = 28 + /with0 < ¢ < 2Fis
represented by the bit sequerd¢éV) = 1¥-103(¢), where3(¢) is the(k — 1)-bit binary expansion
of ¢. The first few such encodings avel00, 101, 11000, 11001, 11010, 11011, 1110000, . . .. If we
interpret a leading bit as a direction to the left subtree and a leadit as a direction to the right
subtree, this gives a binary tree that consists of an infjniteng rightmost path (corresponding
to the increasingly long prefixeld), where thei-th node in this path has a left subtree that is a
balanced binary search tree withleaves. (A similar construction is used in [17].)

Let us consider what happens if we build a max register usieg3 search tree (see Fig-
ure 6.2). AReadMax operation that reads the valwewill follow the path corresponding to
d(v + 1), and in fact will read precisely this sequence of bits from dtvitch registers in each
recursive max register along the path. This gives a costi valuev that is equal tdo (v + 1)| =
2 [1g(v + 1)] + 1. Similarly, the cost of¥f i t eMax (v) will be at most2 [1g(v + 1)] + 1.
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snapshot-based max register

Figure 6.2:An unbalanced max register.

Both of these costs are unbounded for unbounded values dfor ReadMax operations,
there is an additional complication: repeated concurv®ntt eMax operations might set each
switch just before theReadMax reaches it, preventing tiReadMax from terminating. Another
complication is in proving linearizability, as the indumti does not bottom without trickery like

truncating the structure just below the last node actualdlby any completed operation.

For these reasons, we prefer to backstop the tree with aessmglpshot-based max register
that replaces the entire subtree at positidnwheren is the number of processes. Using this
construction, we have:

Theorem 6.3 There is a linearizable implementationiix Reg for which everyReadMax oper-
ation that returns value requiresmin(2 [lg(v + 1)]+1, O(n)) register reads, and eveky i t eMax

operation requires at mostin(2 [lg(v + 1)] + 1, O(n)) register operations.

If constant factors are important, tean be reduced tb+ o(1) by using a more sophisticated
unbalanced search tree; the interested reader shouldicf@&dor examples.

INote that the infinite-tree construction does giveastruction-frealgorithm, where an operation is only required
to terminate when running alone.
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6.2 Monotone circuits

In this section, we show how a max register can be used torcmbstore sophisticated data struc-
tures from arbitrary monotone circuits. Recall that a monetcircuit computes a function over
some finite alphabet of size, which is assumed to be totally ordered. The circuit is repnéed
by a directed acyclic graph where each node correspondsatedttat computes a function of the
outputs of its predecessors. Nodes with in-degree zermpteg hodes; nodes with out-degree zero
are output nodes. Each gatewith £ inputs, computes some monotone functjQrof its inputs.
Monotonicity means that if; > y; for all 4, thenf,(z1, ..., 2x) > fo(va, ..., yk)-

For each monotone circuit, we can construct a correspondimgptone data structure. This
data structure supports operatidifs t el nput andReadQut put , where eaclW i t el nput
operation updates the value of one of the inputs to the ¢tiesud eactfReadQut put operation
returns the value of one of the outputs. Like the circuit ashale, the effects oW i t el nput
operations are monotone: attempts to set an input to a vedsethhan or equal to its current value
have no effect. This restriction still allows for an inteieg class of data structures, the most
useful of which may be the bounded counter described in &e6ti3.1.

The resulting data structure always providesnotone consistencyhich is generally weaker
than linearizability:

Definition 6.1 A monotone data structure )monotone consisteiitthe following properties hold

in any execution:

1. For each output, there is a total orderirgon all ReadQut put operations for it, such that
if some operatiorR; finishes before some other operatifin starts, thenR; < R,, and if
R; < Rs, then the value returned by, is less than or equal to the value returned By.

2. The valuev returned by anyReadQut put operation satisfieg (x1,...,zx) < v, where
eachuz; is the largest value written to inputby aW i t el nput operation that completes

before theReadQut put operation starts.

3. The valuev returned by anyReadQut put operation satisfies < f(yy,...,yx), where
eachy; is the largest value written to inpuby aW i t el nput operation that starts before
theReadCQut put operation completes.
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Algorithm 6.3 Wi t el nput (g,v)

1L:WiteMax(g,v)

2: Letgq,...gs be atopological sort of all gates reachable frgm
3: fori=1t0 S

4: Updat eGat e(yg;)

Algorithm 6.4 Updat eGat e(g)

1. Letxq,..., x4 be the inputs tg.
2: fori=1tod

3 y; = ReadMax(z;)

4: Wi teMax(g, fo(y1,---,vd))

The intuition here is that the values at each output appeae tmon-decreasing over time (the
first condition), all completedV i t el nput operations are always observed RgadQut put
(the second condition), and no spurious larger values aseroed byReadCQut put (the third
condition). But when operations are concurrent, it may [z someReadQut put operations
return intermediate values that are not consistent witHiaag ordering of¥ i t eMax operations,
violating linearizability (an example is given in Sectior3f

We convert a monotone circuit to a monotone data structurasygning a max register to
each input and each gate output in the circuit. We assumehiésé max registers are initialized
to a default minimum value, so that the initial state of theaddructure will be consistent with the
circuit. AW i t el nput operation on this data structure updates an input (U&ing eMax) and
propagates the resulting changes through the circuit agided in Procedur& i t el nput . A
ReadQut put operation reads the value of some output node, by perforaRgadMax oper-
ation on the corresponding output. The cost ®lemdQut put operation is the same as that of
aReadMax operation:O(min(logm,n)). The cost oW i t el nput operation depends on the
structure of the circuit: in the worst case, it(¥.Sd min(logm,n)), whereS is the number of

gates reachable from the input asthds the maximum number of inputs to each gate.

Theorem 6.4 For any fixed monotone circuit, theW i t el nput andReadCQut put operations

based on that circuit are monotone consistent.
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Algorithm 6.5 ReadQut put (g)
1: returnReadMax (g)

Proof: Consider some execution of a collectiorM#fi t el nput andReadQut put operations.
We think of this execution as consisting of a sequence of @tdwhi t eMax andReadMax op-
erations and use time to refer to the total number of suchadipes completed at any point in the
execution.

The first clause in Definition 6.1 follows immediately fromethinearizability of max regis-
ters, since we can just ord®eadCQut put operations by the order of their interniakadMax
operations.

For the remaining two clauses, we will jump ahead to the thipgher-bound, clause first. The
proof is slightly simpler than the proof for the lower boumad it allows us to develop tools that
we will use for the proof of the second clause.

For each inputy;, let V! be the maximum value written to the register representingt or
before timet. For any gatey, let C,(z1,. .., z,) be the function giving the output gfwhen the
original circuitC' is applied tazy, . . ., z,, (see Figure 6.3). For simplicity, we allo@ in this case
to include internal gates, output gates, and the registresenting inputs (which we can think of
as zero-input gates). We thus can defineecursively byC,(z, ..., z,) = ; wheng = z; is an
input gate and

Cy(x1, ..y xn) = fo(Cy (w1, .. 1), .. Cyy (Tky -+, X))

wheng is an internal or output gate with inpujs . .. g;,. Let ¢’ be the actual output af in our
execution at time, i.e., the contents of the max register representing theuvwatf g. We claim
that for allg andt, ¢* < C,(V{,..., V).

The proof is by induction o and the structure of’. In the initial state, all max registers
are at their default minimum value and the induction hypsith@olds. Suppose now that some
max registely changes its value at time If this max register represents an input, the new value
corresponds to some input supplied directiy¥a t el nput , and we have® = C,(VY, ..., V}).

If the max register represents an internal or output gadeyatue is written during some call to

Updat eGat e, and is equal tqg(gfi , gfj, o ,gf:) where eacly;, is some register read by this calll
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o) ®
Figure 6.3: A gate in a circuit computes a function of its inpufs(g;,, - - ., g;,)- The inputs to

the circuit arery, . . ., x,.

to Updat eGat e andt; < ¢ is the time at which it is read. Because max register valuenly
increase over time, we have, for eayctyfj <gf =g " <0 (VV',..., Vi7" by the induction

hypothesis, and the fact that only gatehanges at timeé. This last quantity is in turn at most

C,, (VI, ..., V) as only gatgy changes at time By monotonicity off, we then get

j

gt

folgits 9i2s - 9%
S fg(Og1<V1t7 Tt V;), c '7Cgk(‘/1t7 et Vrf))
Cg(‘/lt7 R Vrf)

as claimed, which completes the proof of clause 3.

We now consider clause 2, which gives a lower bound on outplueg. For each time
t and inputz;, let v} be the maximum value written to the max register represgntjnby a
Wit el nput operation that finishes at or before timeWe wish to show that for any output
gateg, g' > C,(vi,...,v%). As with the upper bound, we proceed by inductiort @md the struc-
ture of C. But the induction hypothesis is slightly more complicatecthat in order to make the
proof go through we must take into account which gate we ar&ing with when choosing which
input values to consider.

For each gate, let v!(g) be the maximum value written to input registerby any instance
of Wit el nput that completetpdat eGat e(g) at or before time. Our induction hypothesis
is that at each timeand for each gate, ¢* > C,(vi(g),...v!(g)). Although in general we have

vl > vl(g), havingg® > Cy(vi(g),...v5(g)) impliesg® > C,(vi,... v}), as any process that

r n
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writes to some input; that affects the value af as part of som&V i t el nput operation must
completeUpdat eGat e(g) before finishing the operation.

Suppose now that some max regisgecthanges its value at time If ¢ is an input, the in-
duction hypothesis holds trivially. Otherwise, considee set of allW i t el nput operations
that write tog at or before time.. Among these operations, one of them is the last to com-
plete Updat eGat e(¢’) for some inputg’ to g. Let this event occur at timé < ¢, and call
the process that completes this operapoWe now consider the effect of tidgpdat eGat e(g)
procedure carried out as part of tMéi t el nput operation. Because no other operation com-
pletes anUpdat eGat e procedure for any inpuj;, to g between’ andt¢, we have that for each
such input and each v;(g;,) = ! (9i,). Since theReadMax operation of eacly;; in p’s call to

Updat eGat e(g) occurs after time', it obtains a value that is at least

gfj > Cgij (Ui (gij>7 s 7U:L (gij)) > Cgij (Ui<gij>7 s 7/01t1<gij>>7

by the induction hypothesis, monotonicity 6@1.7_, and the previous observation on the relation

betweenv! (¢;,) andv!(g;,). But then

9" > fo(Cy (v1(9ir), - - - v (93)), - - -
Cy,, (V1(gir); - -+ vn(93)))
> fo(Cy, (01(9), -, 05(9)), -+, Cy, (v1(9), - - -, v,,(9)))
= Cy(v1(9), -, v,(9)).

6.3 Applications

In this section we consider applications of the circuitdzhsnethod for building data structures
described in Section 6.2. Most of these applications wilivegants on counters, as these are
the main example of monotone data structures currentlydonrhe literature. Because we are
working over a finite alphabet, all of our counters will be hded.

The basic structure we will use is a circuit consisting ofreeloy tree of adders, where each gate

in the circuit computes the sum of its inputs and each inpthéccircuit is assigned to a distinct
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process to avoid lost updates. We may consider either bousrdenbounded counters, depending
on whether we are using bounded or unbounded max registers Bounded counter, we allow
only values in the rangethroughm — 1 for somem; an adder gate whose output would otherwise
exceedn — 1 limits its output tom — 1. Because the circuit is a tree\i t el nput operation
has a particularly simple structure since it need only updates along a single path to the root; it
follows that aw i t el nput operation cost® (min(log n logm,n)) time while aReadCut put
operation cost® (min(log m, n)) time. This is an exponential improvement on the best prahou
known upper bound of)(n) for exact counting, and on the bouat{n*/°+<((1/4) logn)°/9),
wheree is a small constant parameter, for approximate countinghvisi-accurate [11].

If each process is allowed to increase its input by arbitvaiyes, we get a generalized counter
circuit that supports arbitrary non-negative increasegstanputs (the assumption is that each
process’s input corresponds to the sum of all of its incrasea far). Unfortunately, it is not hard
to see that the resulting generalized counter is not linabhke, even though it satisfies monotone
consistency; the reason is that it may return intermediabeeg that are not consistent with any

ordering of the increments.

Here is a small example of a non-linearizable executionclviive present to illustrate the
differences between linearizability and monotone coasrsg. Consider an execution with three
writers, and look at what happens at the top gate in the tirbuagine that process executes a
Wi t el nput operation with argumertt, p; executes &Y i t el nput operation with argument
1, andp, executes &V i t el nput operation with argumert. Letp; andp, arrive at the top gate
through different intermediate gatesandg,; we also assume that each process rgadsefore
g1 When executindJpdat eGat e(g). Now consider an execution in whigh arrives aty first,
reading0 from g, just beforep, writes2 to g,. Proces$, then readg, andg; and computes the
sum?2 but does not write it yet. Procegsnow writesl to g; andp, reads it, causing, to compute
the suml which it writes to the output gate. Processnow finishes by writing2 to the output
gate. If both these values are observed by readers, we harelmparizable schedule, as there is

no sequential ordering of the incremefd, and2 that will yield both output values.

However, for restricted applications, we can obtain a flilgarizable object, as shown in the

next subsections.
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6.3.1 Linearizable counters with unit increments

Suppose we consider a standard atomic counter object guggponly read and increment opera-
tions, where the increment operation increases the valtieeofounter by exactly one. This is a
special case of the generalized counter discussed abdvesdaithe resulting object is linearizable.
To prove linearizability, we consider the counteas built of a max register at the root output
gateg, which adds up two sub-countexs; andC;, each supporting half of the processes. Our

linearizability proof is then by induction, where the baaseis a counter for a single process.

Lemma 6.5 If C; and (5 are linearizable unit-increment counters, then s@'is

Proof: Each increment operation ¢f is associated with a value equal@ + C; at the time it
increments’; or Cy, considering that”; andC, are atomic counters according to the induction
hypothesis.

An increment operation with an associated values linearized at the first time in which a
value? > k is written to the output max register A read operation is linearized at the time it
reads the output max registefwhich we consider to be atomic).

To see that the linearization point for increménbccurs within the interval of the operation,
observe that no increment can write a value k to g before incremenk finishes incrementing
the relevant sub-countér; or C,, because before them, + C, < k. Moreover, the incremerit
cannot finish beforé > £ is first written tog, because: writes a valug¢/ > k before it finishes.
Since the read operations are also linearized within thxeic@tion interval, this order is consistent
with the order of non-overlapping operations.

This clearly gives a valid sequential execution, since w& have exactly one increment oper-
ation associated with every integer up to any value read frfomnd there are exactlyincrement

operations ordered before a read operation that returns [ |

Theorem 6.6 There is an implementation of a linearizabtevalued unit-increment counter of
n processes where a read operation tak&snin(log m, n)) low-level register operations and an

increment operation takeg(min(log n log m, n)) low-level register operations.

Proof: Linearizability follows from the preceding argument. Hoe tomplexity, observe that the

read operation has the same cosRaadMax, while an increment operation requires reading and
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updatingO(1) max registers per gate at a cost@fmin(log m, 2*)) for thei-th gate. The full cost
of a write is obtained by summing this quantity:agoes from0 from [lg n]. ]

Note that for a polynomial number of increments, an incremakesO (log” n) steps. It is also
possible to use unbounded max registers, in which case thewain the cost of a read or incre-

ment is replaced by the current value of the counter.

6.3.2 Threshold objects

Another variant of a shared counter that is linearizabletls@shold object This counter allows
increment operations, and supports a read operation tliahsea binary value indicating whether
a predetermined threshold has been crossed. We implembreéshold object with thresholdl

by having increment operations act as in the generalizedteguand having a read operation
return 1 if the value it reads from the output gate is at I&gsind 0 otherwise. We show that this
implementation is linearizable even with non-uniform grments, where the requirement is that a
read operation returns 1 if and only if the sum of the increno@erations linearized before it is at

leastT.

Lemma 6.7 The implementation of a threshold objé&ctwith threshold7” by a monotone data
structure with the procedure&' i t el nput andReadCQut put is linearizable.

Proof: We use monotone consistency to prove linearizability ferttireshold objeat’. Let C}
andC} be the sub-counters that are added to the final outputygate

We order read operations according to the ordering impheshbnotone consistency, which is
consistent with the order of non-overlapping read openatiand implies that once a read operation
returns 1 then any following read operation returns 1. Weiowdite operations according to their
execution order, which is clearly consistent with the ofaron-overlapping write operations. We
then interleave these orders according to the executicer ofdeads and writes, which implies that
this order is consistent with the order of non-overlappeadrand write operations.

The interleaving is done while making sure that the sum afements that are ordered before
any read that returns 0 is less th&inand that the sum of increments that are ordered before the
first read that returns 1 is at ledSt Monotone consistency guarantees that we can do this. For

a read operation that returns 0, the value read is less tharil’, therefore the second clause of
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monotone consistency implies that the sum of all writesfinath before the read starts is less than
T'. For a read operation that returns 1, the value reagigat leastl’, therefore the third clause
implies that there enough increment operations that sédiare this read finishes that have a sum

at least’". n

Our proof of Lemma 6.7 does not use the specification of aliotdbject, but rather the fact
that it is an implementation of a monotone circuit with a lpynautput. We therefore have:

Lemma 6.8 The implementation of any monotone circuit with a binarypotiby a monotone data
structure with the procedure&' i t el nput andReadCQut put is linearizable.

Note that for any binary-output circuit, we can represeatdhtput using a 1-bit flag initialized
toOandsetto 1 byaryit el nput operation that producdsas output (essentially, we use the
flag as a 2-valued bounded max register). A reader may thenlg@oe operation which accesses

that flag and returns its value.
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Chapter 7

Randomized Consensus with Optimal
Individual Work

In this section we describe an application of our sub-lirmamter algorithm: an algorithm for
solving randomized consensus with optim¥k) work per process. This improves the best pre-
viously known bound to match tHe(rn) lower bound that follows from the result of Chapter 11.
While the latter result showed a tight bounda®(fr?) on thetotal number of operations carried out
by all processes, the algorithm presented in this chaptagitees that this work is in fact evenly
distributed among all the processes.

As in Chapter 4, we use the standard reduction [12] of randedhtonsensus to the problem of
implementing a shared coin. The code for each process@aati the shared coin implementation
is given as Algorithm 7.1, in which each process outputseiti or -1.

We now give a high-level description of the shared coin atgor, which will be followed by
a formal proof. Each process generates votes whose sunoislegtcin an array of single-writer
registers, and whose variance is recorde®llisy n counters. A process terminates and outputs the
majority of votes when the total variance of the votes reacheertain threshold, which is small
enough to guarantee the claimed step complexity, and, aame time, large enough to have a
good probability for the votes to have a distinct majority.

In order to reduce the individual step complexity, the vgieserated by a process have increas-
ing weights. This allows fast processes running alone tbleeyvier votes and reach the variance

threshold after generating fewer votes.
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Algorithm 7.1 Shared coin algorithm witty(n) individual work.

shared data: arragounters|0..(2log n)] of counters

arrayvotes[1..n] of single-writer registers

multi-writer bit done

© O N o R~ 0w DR

=
e

11:
12:
13:
14:
15:
16:

1=0

vg =0

varianceWritten = 0

while v; < 1 and notdone do
1=1+41
w; = min (max(v;_1,1/n),1/y/n)
v = vi—1 + w?
vote = Local Coi n() - w;
votes[pid| = votes|pid] + vote
if v, > ovarianceWritten /.2 the

Count er | ncr ement ( counters|varianceWritten))

varianceWritten = varianceWritten + 1
if 219%™ (28 . ReadCount er (counters[k])) > 3n? then
break
done = true

returnsgn(_,, votes|p])

The weightw; of the i-th vote is a function of the total varianeg_; of all previous votes, as

computed in Line 6; we discuss the choice of this formula imerdetail in Section 7.1. The voting

operation consists of lines 6 through 9; each time the psogetes, it computes the weight of

the next vote, updates the total variangegenerates a random vote with valtiey; with equal

probability, and adds this vote to the pawoites|pid], wherepid is the current process id.

Termination can occur in one of three ways:

1. The process by itself produces enough variance to cresthtbshold (first clause of while
loop testin Line 4).

2. All processes collectively produce enough variance Herthreshold test to succeed (Line
13).
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3. The process observes that some other process has wiotter(second clause of while loop
test in Line 4). This last case can only occur if some othecgse previously observed

sufficient total variance to finish.

We use2 log n counters, since our counters can be incremented at mosbyrezch process.
Having sub-linear counters allows incrementing and regadivem not very frequently, namely,
only when increasing amounts of variance are generatedéyrnbcess, which gives the linear
complexity.

The counters give the total variance, which when large endiag constant probability for the
votes having a distinct majority, even in spite of small elifnces between the votes that different
processes read, which may be caused by the asynchrony ofstess

The proof of correctness for the shared coin algorithm prdseén several steps. In Section 7.1
we prove some properties of the weight function. These Jiitivaus to bound the expected
individual work of each process, and later will also be usedrtalyze the agreement parameter.
In Section 7.2 we bound the individual work (Lemma 7.3), ama/p bounds on the probabilities
of terminating with a total variance of votes which is too lowtoo high. Finally, in Section 7.3
we analyze the sums of votes in different phases of Algorithin which allows us to prove in

Theorem 7.10 that it implements a shared coin with a consign@ement parameter.

7.1 Properties of the weight function

The weight of thei-th vote is given by the formula; = min (max(v;_1,1/n),1/y/n), where
Vi1 = Z;;ll wf. is the total variance contributed by all previous votes.

The cap ofl//n keeps any single vote from being too large, which will helpshsw in
Section 7.3 that the core votes are normally distributedhénlimit. The use ofnax(v;_1,1/n)
bounds the weight of all unwritten votes in any state by thalteariance of all written votes,
plus a small constant corresponding to those processearthatill casting the minimum votes of
weight1/n. This gives a bound on tHeiasthat the adversary can create by selectively stopping a

process after it generates it¢h vote in Line 8 but before it writes it in Line 9.
Lemma 7.1 For any values; > 0, we haved )\ w;; <1+ 77 ;1.
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Proof: This follows from the assignment in Line 6, by summing over all j:
> g wiy <3 ymax(vg oy, 1/n) <300 (vij-1+1/n) =1+ D iy Vij—1 n

Despite wanting to keep; small relative ta;, we still want to generate variance quickly. The
following lemma states that any single process can generédéal variancey; > 1 after only

1 = 4n votes. It follows immediately that the loop in Algorithm 7slexecuted at modt: times.
Lemma 7.2 All of the following conditions hold:

1. v =1/n?

2. v < 2u; [i > 1]

3. Van > 1.

Proof: We observe that the following recurrence holdsdor
v; = V1 + w; = v;_1 + (min(max(v,_, 1/n), 1/\/7;))2 ,

with a base case of) = 0. We can immediately compute = 1/n?, giving (1).

It also follows thaty; > v; = 1/n? for alli > 1. Let: > 1 and consider the possible values
of v;_1. If v,y < 1/n thenw? = 1/n?, thereforev; = v;_; + 1/n* < 2v;_;. Otherwise, if
1/n < vy < 1/y/nthenw? = v? | < 1/n, thereforev; < v;_; + 1/n < 2v;_;. Finally, if
v;_1 > 1/y/nthenw? = 1/n and we have; = v;_; + 1/n < 2v; ;. So (2) holds for ali > 1.

To prove (3), we consider three phases of the increasg depending on whethes;, = 1/n,

w; = vi_1 > 1/n, orw; = 1//n.

In the first phase, we have that for any> 0, v; > v;_; + 1/n?, and thusy; > i/n?. In
particular, fori = n we havey; > 1/n.

For the second phase, suppose that < 1//n. We then have; > v;,_; +v? ;. If this holds,

and there is some > 1 such that; > 1/z, then

r+1  (z+1)(x—1/2)

1
Vi1 > v+l > =+ 1/2% =
x

2 22(x—1/2)
B +x/2-1/2 141/(2x) —1/(22?) L1
a2 —1/2) z—1/2 —r—1/2
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By iterating this calculation, we obtain that,, > x%tﬂ solong a1 < 1/4/n. Starting

with v,, > 1/n, we thus get,, ., > 1/(n —t/2), which givesy; > 1//n for somei < (n+ (2n —
Vvn)) < 3n.
At this point,w; is capped byl /\/n; the increment ta; is thusw? = 1/n, so after a further

(n —y/n) < nvotes, we have, > 1. The total number of votes is boundedy, as claimed. m

7.2 Termination

We begin analyzing the situation of termination, i.e., whemmore votes are generated, by bound-
ing the running time of the algorithm.

Lemma 7.3 Algorithm 7.1 execute®@(n) local coin-flips andD(n) register operations, including

those incurred byReadCount er operations on the counters.

Proof: Lemma 7.2 implies that each process terminates after gesttimostin votes. This gives
anO(n) bound on the number of iterations of the main loop. Eachtiamaequires one call to
Local Coi n and two register operations (the readlohe in Line 4 and the write teotes|pid] in
Line 9, assuming the previous valuewattes|pid] is cached in an internal variable), plus whatever
operations are needed to execute the threshold test in Lingsough 13. These lines are executed
at mostl + 2logn times (sincevarianceWritten rises by 1 for each execution), and their cost is
dominated by thé + 2logn calls toReadCount er at a cost ofD(polylogn) each. The cost of
the at most1 + 2log n)? total calls toReadCount er is thus bounded b@(n). u

Consider the sequence of votes generated by all processesed by the interleaving of ex-
ecution of theLocal Coi n procedure. WriteX; for the random variable representing the value
of thet-th such vote (oo if there are fewer thahtotal votes); we thus have a sequence of votes
X1, Xo, . . ..

We wish to bound any sum computed in Line 13 according to tted t@riance of the votes
that have been generated, where for a given number of voies total variance ig;l X2

For a givent, consider the state of the counters when #k vote is generated. For each
processj, let k; be the maximum index of any countergounters for which j has completed a

Count er | ncr enent operation, and Iﬁz be the maximum index of any counter for whithas
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started &Count er | ncr ement operation. If there is no such index, gétor ¢ to —1. Leti} be

n

the total number of votes generated by progessiong the first votes, i.e.> ', X? = > im1

V;t.
%
J

We first bound: and/} in terms Ofu;e.
Lemma 7.4 For everyt, we have’s < vi§n2 +1/2 and25+! > vi;nQ.

Proof: We begin with an upper bound afi. Observe that the test in Line 10 means that
Count er | ncr ement (counters[k]) can have started only ifzg > 2k /n?; it follows that either

¢t = —10r2% < vun? in either case we have
J
2l < van® +1/2.
J

Getting a lower bound o2’ is slightly harder, since we can’t rely solely on the testind.10
succeeding but must also show tlatianceWritten is large enough thatvaancewriten js jn fact
close tov?. We do so by proving, by induction anthat at the end of each iteration of the main
loop in Algorithm 7.1,v; < 2variancewriten /,,2 - Tg avoid ambiguity (and excessive text), we will
write TV, for the value ofvarianceWritten at the end of the-th iteration.

The base case is = 1, where inspection of the code reveals = 1/n?> andW; = 1; in
this casev; < 2"1/n? = 2/n2. For largeri, suppose that it holds that ; < 2"%i-1/n% Then
v; < 205 < 2Wi-1t1 /2 (the first inequality follows from (2) of Lemma 7.2). It is mible thaty;
is much smaller than this bound, indeed, small enoughithat2'i-1 /n?; in this caséV; = W,;_,
and the invariant continues to hold. If not, Line 12 is exedytand so we hav®/; = W,;_; + 1.
But thenu; < 2Wi-1t1/n2 = 2Wi /n2 so the invariant holds here as well.

In bounding2*’, the worst case (fd} > 0) is whenk} = Wit 1, the value ofarianceWritten
at the end of the previous iteration of the loop. In this caeehwvevi; < 2%,1 <2 2"?35'/712 =
2K+ /2, Fork] = —1, we havei; < 1, s0v; < 1/n? =271*!/n? = 2k+1 /n2. In either case we
get

t
ok +1 > ’Uit,nz.
J

We now consider the interaction betwe@ount er | ncr ement andReadCount er opera-
tions in order to bound any sum computed in Line 13. The nenti@ shows a small upper bound

on the probability that the sum is too large.
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Lemma 7.5 If S'is a sum computed in Line 13, where the fkeadCount er operation is started
aftert total votes are generated, then

t
S >n? Z X} —n.
=1
Proof: For eachk let r[k] be the value returned by thiReadCount er (counters[k]) operation
included in the sum, and letk] be the number of calls tGount er | ncr ement (countersl[k])
that have finished before the summation starts. Tikn> c[k] for everyk, which implies that

2logn 2logn n n

S = Z 2Fr[k] > Z 2elk] =) j =" (2ké+l - 1)

j=1 m=0 j=1
n t
2 2 2
> sz‘;” —n=n ZXi n,
j=1 i=1
where the fourth inequality follows from Lemma 7.4. This qaetes the proof. |

Similarly, the next lemma shows a small upper bound on théability that the sum is too

small.

Lemma 7.6 If S’ is a sum computed in Line 13, where the lBsadCount er operation is com-

pleted before’ total votes are generated, then
t/
S <2m*) X7
1=1
Proof: For eachk let r'[k] be the value returned by thiReadCount er (counters[k]|) operation
included in the sum, and let[k] be the number that start before the summation finishes. Then

r'[k] < d[k] for everyk, which implies that

2logn 2logn n é;/ n ,
=3 k< Y 2w =Y =Y (24? H_ 1)
k=0 k=0 j=1 m=0 j=1
n n t
<y (2 (Uit/nQ + 1/2) . 1) =23 ont =202y X2,
j=1 ! j=1 ! i=1
where the fourth inequality follows from Lemma 7.4. This quetes the proof. [ |
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Using the two previous lemmas, we now prove upper and lowentt® on the total variance
of all the generated votes.

Lemma 7.7 LetT be the total number of votes generated by all processesglanrexecution of
the shared coin algorithm, and I&t = 3.7, X? be the total variance of these votes. Then we
havel <V <7+ 2.

Proof: Termination with” < 1 cannot occur as the result of some process failing the mapm lo
testy; < 1, as if this test fails, that process alone givés> 1. So the only possibility is that the
threshold test in Line 13 succeeds for some process debpilew total variance. But since the
total variance of all votes is less thanfor any particular sum of observed counter val$ésve
have from Lemma 7.6 that’ < 2n? and so termination cannot occur.

For the upper bound o¥i, suppose that aftef votes we havé ! | X? > 3 4 1/n. If there is
no sucht;, thenV < 7+ %; otherwise, let; be the smallest value with this property. Becatise
is least, we hav®_/L | X2 < 3+ 1/n+ X} <3+2/n.

From Lemma 7.5 we have that, for any execution of Line 13 ttaatsafter thesg votes, the
return valueS satisfiesS > n?(3 + 1/n) —n > 3n?.

This implies every process that executes the threshol@fiest; total votes will succeed, and
as a result will cast no more votes. So we must bound the anaduadditional variance each
process can add before it reaches this point. Recal[jf—hiatthe number of votes cast by procegss
among the first, votes, and let; be the total number of votes cast by procgbsfore termination.
Then under the assumption tha next threshold test succeeds, we ha;jxe< 2’%;1 + 1/n, asj
can at most double its variance and cast one additional \eftedseeing,; > 2vanancewriten - gq

now we have

T n n n
V=X =Sy < Y 2o+ 1) = 1423w
=1 7j=1 7=1 ! 7=1 !
t1 4
=142 X?<1+4+23+2/n)=7+-—.
+ ; : +2(3+2/n) =7+
Thus the upper bound dn holds. |
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7.3 Core votes and extra votes

We will assume for convenience that the adversary schethulimterministic, in particular that the
choice of which process generates vateis completely determined by the outcomes of votgs
through.X;_;; this assumption does not constrain the adversary’s behdecause any random-
ized adversary strategy can be expressed as a weighteg@wrdeterministic strategies. Under
this assumption, we have that the wei@ht| of X, is a constant conditioned ok, ... X, i, but
because the adversary cannot predict the outconh®@oél Coi n, the expectation oX; is zero
even conditioning on the previous votes. TRaK, = 0| X, ... X; 4] is the defining property of a
class of stochastic processes knowmrastingales(see [3, 45, 46]); in particular th&, variables
form amartingale difference sequenaile the variables; = 2521 X, form a martingale proper.

Martingales are a useful class of stochastic processesidebar many purposes they act like
sums of independent random variables: there is an analdg @éntral Limit Theorem that holds
for martingales [46, Theorem 3.2], which we use in the prddfeenma 7.8; and as with indepen-
dent variables, the variance §f is equal to the sum of the variancesf through.X; [46, p. 8],

a fact we use in the proof of Lemma 7.9.

Martingales can also be neatly sliced tppping timeswhere a stopping time is a random
variabler which is finite with probabilityl and for which the everjt- < ¢] can be determined by
observing only the values of, throughX; (see [45, Section 12.4]); the proces% = >'_, X!}
obtained by replacing{; with X; = X, for ¢ < 7 and0 otherwise, is also a martingale [45,
Theorem 12.4.5], as is the sequerfte = 3! X, , [45, Theorem 12.4.11]. We will use a
stopping time to distinguish the core and extra votes.

Definer as the least value such that either ¥aj_, X7 > 1 or (b) the algorithm terminates
afterr votes. Observe thatis always finite, because if the algorithm does not othertasainate,
any process eventually generatasnit of variance on its own (as shown in Lemma 7.2). Because
the weights of votes vary, is in general a random variable; but for a fixed adversaryesisathe
conditionT = t can be detected by observing the values(ef .. X;. Thust is a stopping time
relative to theX,. The quantityS, will be called thecore voteof the algorithm. The remaining
votesX, 1, X, o,... form theextra votes

First, we show a constant probability of the core vote betrigast a constant. This will follow

by an application of the martingale Central Limit Theoremxtgularly in the form of Theorem 3.2
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from [46]. This theorem considers a zero-meaartingale array which is a sequence of tuples
{Smts Fmt, 1 <t < k,,,m > 1} parameterized byn, where for each fixed. the sequence of
random variablegS,,;} is a zero-mean martingale with respect to the corresporstggence

of o-algebras{F,..}, with difference sequenck,,; = S,,: — S,,+—1. Specializing the theorem
slightly, if it holds that:

1. maxy | X, 20,

2.3, x2, 51,

3. E [max; X2 ] is bounded inm, and

4. Fout C Frprpforl <t <k, ,m>1,

thenS,,; % N(0,1), whereN (0, 1) has a normal distribution with zero mean and unit variance.

Here 2 denotes convergence in probability afiddenotes convergence in distribution.

Lemma 7.8 For any fixeda andn sufficiently large, there is a constant probability such that,

for any adversary strateg$r[S, > a] > p,.

Proof: We construct our martingale array by considering, for eachlver of processes the set

of all deterministic adversary strategies for schedulingofithm 7.1. The first rows of the array
correspond to all strategies far= 1 (in any fixed order); subsequent rows hold all strategies for
n = 2,n = 3, and so forth. Because each set of strategies is finite (fexaoution withn process,
each choice of the adversary chooses one pfocesses to execute the next coin-flip in response
to some particular pattern 6f(n?) preceding coin-flips, giving at mosf("*) possible strategies),
every adversary strategy eventually appears as somewowhe array. We will writen,,, as the
value ofn corresponding to this row and observe that it grows with@uirial.

For each row in the array, we set, to include all possible votes, but truncate the actual set of
coin-flips at timer. Formally, we defineX,,;, = X, for ¢t < 7, but setX,,; = 0 for largert. This
ensures that,.;,, = S, the total core vote from each execution, while maintaitirgmartingale
property and the fixed-length rows required by the theorera.evsure the nesting condition (4)
by using the same random variable to set the sign of each vaimmet in each row; in effect,
we imagine that we are carrying out an infinite collectioniofidtaneous executions for different

values ofn and different adversary strategies using the same seqoéramedom local coin-flips.
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We now show the remaining requirements of the theorem had(1, we have thahax, | X,.;| <
1//nm, Which converges to absolutely (and thus in probability as well). For (2), by straction
of rand Lemma 7.7, we have that< >, X7, <1+ X?2_ <1+ 1/n,. Thus) , X2, converges
in probability to1. For (3), we again use the fact th&f,, < 1/n,, for all ¢.

It follows that.S,,; converges in distribution t&/(0, 1). In particular, for any fixedv, we have
thatlim,, .., Pr[S,: > «] = Pr[N(0,1) > «], which is a constant. By choosing strictly less
than this constant, we have that for sufficiently larg€and thus for sufficiently large = n,,),
Pr[S; > a] = Pr[Syu: > a] > pa. n

By symmetry, we also haver[S, < —a] > p,.
We now consider the effect of the extra votes. Our goal is toddhe probability that the total
extra vote is too large using Chebyshev’s inequality, olimgi a bound on the variance of the extra

votes from a bound on the sum of the squares of the weight$ whtals as shown in Lemma 7.7.

Lemma 7.9 Definer’ to be the maximum index such that &) # 0 and (b)Z;1 X2 < 7+4/n.
Letp,3 be the probability from Lemma 7.8 théf is at leastl3. Then for sufficiently large and
any adversary strateg¥r[S,. > 9] > (1/8)p13.

Proof: From Lemma 7.8, the probability that the sum of the core v6Sigs at least 3 is at least
p13. We wish to show that, conditioning on this event occurriadging the extra votes up td
does not drive this total below

Observe that’ is a stopping time. For the rest of the proof, all probabdistatements are
conditioned on the values of; ... X,.

DefineY; = X, for 7+i < 7" and0 otherwise. LelU; = Z;’:l Y;. Then{U,} is a martingale
andE[U;] = 0 for all i. Leti,,., be such that; = 0 for i > i,,,,, with probability 1 (i,,., exists by
Lemma 7.3). Then

Tmax Tmax

=D Var[vi]=3 B[]

< E[7+4/n] =7+ 4/n.

ZAl’l’lax
DY
i=1

tmax

DY/

i=1

Var[U,,...] = Var

Tmax

=E

So by Chebyshev’s inequality,

T+4/n

Pr [|Uimax| Z 4] S 42

= 7/16 +1/4n < 7/8,
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> 13— 4 = 9. As the event
| < 4 occurs with conditional probability at leasts, the total probability thab,., > 9 is at

max

whenn > 4. But if |U;
Ui
least(1/8)p1s. u

| < 4, we haveS,, = S, + U;

max

max

7.4 Full result

We are now ready to prove the main theorem of having a conatagaement parameter.

Theorem 7.10 For sufficiently largen, Algorithm 7.1 implements a shared coin with constant

agreement parameter.

Proof: LetT be the total number of votes generated.

The total voteZ; computed by any process in Line 16 is equabtominus at most one vote
for each process because of the termination bit. From Lemiatifese unwritten votes have
total size bounded by + >°7, X?. We show there is at least a constant probability that both
1+ ZiTzl X? < 8+4/nandSy > 9, which implies that for sufficiently large there is a constant
probability for havingZ; > 0 for all 7, and therefore all processes agree on the value

From Lemma 7.7, we havg.._, X? < 7 + 4/n. From Lemma 7.9, the probability that
Sy < 9is at mostl — (1/8)p13. Therefore, for at least some constantve haveSr > S, > 9
andl + "7, X? < 8+ 4/n with probability.

This proves that there is a constant probability of all psses deciding-1; the same results
hold for —1 by symmetry. |
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Chapter 8
Randomized Set Agreement

In this chapter we present several algorithms for solvingageeement with different parame-
ters. In Section 8.1 we present a framework for randomizgorsthms which solvék, k + 1, n)-
agreement using multi-sided shared-coialgorithm. We now formally define such a procedure,
which is a generalization of a shared coin (which in our teisvas2-sided shared coin). & + 1)-
sided shared-coialgorithm withagreement parametéris an algorithm in which every non-faulty
proces® produces an output value {9, . . ., £}, such that for every subset of size¢here is prob-
ability at least§ that all the outputs are within that subset. Alternativéty, every valuev in
{0, ..., k} there is probability at leastthatv is notthe output of any process. We emphasize that
unlike the requirement of set agreement, the probabilit§gisgreement in a shared coin may be
greater than 0. Notice that there are no inputs to this proeed

In Section 8.3, we present set-agreement algorithms tbhatesigned for agreeing drvalues
outofk+1, for ¢ < k. In particular, they can be used for the cése 1, where the processes agree
on the same value, i.e., fanulti-valued consensu8y definition, solving multi-valued consensus
is at least as hard as solvibgnary consensu@vhere the inputs are in the sgi, 1}, i.e.,k = 1),
and potentially harder. One algorithm uses multi-sidedeshaoins, while the other two embed
binary consensus algorithms in various ways.

To the best of our knowledge, these are the first wait-freerdlgns for set agreement in the
shared-memory model under a strong adversary, other thanjxonsensus. Table 8.1 shows the
properties of the different algorithms we present. Fer k& one of our algorithms is better than the

others; however, intrigued by the question of whether muatued consensus is inherently harder
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Algorithm | Parameters Method Individual Step Total Step
Complexity Complexity
Section8.1 | k,k+1 | multi-sided shared coin O(n/k + k) O(n?/k + nk)
Section8.3.1 /(,k+1 space reduction O(n(logk —log?)) | O(n?(logk —log¥))
Section8.3.2 /(,k+1 iterative O((k—L+ 1)k O((k— £+ 1)nk
+n(logk — log?)) +n?(log k — log ¢))
Section8.3.3 1,k+1 bit-by-bit O(nlogk) O(n?log k)

Table 8.1:The set agreement algorithms presented in Chapter 8.

than binary consensus, we find the different methods irtiages hope that one of them could

lead to a lower bound.

Finally, we note that in this chapter we will consider thesfgtrocesses a&y, . . ., pn_1}-

8.1 A(k,k+ 1,n)-Agreement Algorithm using a (k + 1)-Sided
Shared Coin

In this section we present a framework for randomiged: + 1, n)-agreement algorithms. It is
a generalization of the framework of Aspnes and Herlihy [fo2]deriving a randomized binary
consensus algorithm from a shared coin, and specificallgvisi the presentation given by Saks,
Shavit, and Woll [66]. However, its complexity is improved bbssing multi-writer registers, based
on the construction of Cheung [34].

We assume &k + 1)-sided shared-coin algorithm callstiaredCoiny;, with an agreement
parametep, ;. The set-agreement algorithm is given in Algorithm 8.1. dilghout this chapter,
we assume that shared arrays are initialized to a specidd@dym Informally, the set-agreement
algorithm proceeds by (asynchronous) phases, in which padess writes its own preference
to a shared arrayropose, checks if the preferences agree/omalues, and notes this in another
shared array’heck. If p indeed sees agreement, it also notes its preferen€éde¥:.

Proces® then checks the agreement ar@yeck. If p does not observe a note of disagreement,

it decides on the value of its preference. Otherwise, iféhera note of disagreement, but also a
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Algorithm 8.1 A (k, k + 1, n)-agreement algorithm, code fpr

Local variablesr = 1, decide = false,my Value = input,
myPropose = [ ], myCheck =[]

Shared arraysPropose][ ][0..k],Check| | [agreedisagreé

1: while decide == false

2:  Propose[r][myValue] = true

3:  myPropose = collect Propose|r])

4. if the number of values imyPropose is at mostk

5: Check[r]|[agreé = (true, my Value)

6: else

7 Check|[r][disagreé= true

8:  myCheck = collect Check|[r])

9: if myCheck|disagre¢== false

10: decide = true

11: else ifmyCheck[agreé == (true, v)

12: my Value = v

13: else ifmyCheck|agreé == false

14: my Value = sharedCoiny1[r]

15 r=r+1

16: end while

17: returnmy Value

note of agreemenp, adopts the value associated with the agreement notificaiqummeference for
the next phase. Finally, if there is only a notification ofadjseement, the process participates in a
(k + 1)-sided shared-coin algorithm and prefers the output of tilaeesi coin.

Lemma 8.1 Consider a phase > 1 and a non-faulty process that finishes phase. If all the
processes that start phasebeforep finishes it have at mogt preferences i vy, ..., v}, thenp

decidesy € {vy,..., v} in this phase-.

Proof: We claim thatp readsCheck[r|[disagreé == false in line 9 of phase, and therefore

decides in phase. This will also imply that its decision value is in {v,..., v}, otherwise
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p is among the processes that start phaseforep finishes, but does not have a preference in
{v1, ..., v}, which contradicts our assumption. Assume towards a odictian, thatp reads
Check[r]|[disagreé == true in line 9 of phase. This implies that there is a procegshat writes
Check[r]|[disagreé = true in line 7 of phase, and this happens befogefinishes. Thereforey
reads more thaw values inPropose|r| in line 3 of phase, which means that there afe+ 1
processes that write + 1 different values taPropose[r] in line 2 of phaser, and all this happens
beforep finishes. But this contradicts our assumption that all tlee@sses that start phaskefore

a non-faulty procesg finishes it have at mogt preferences. [ |

Lemma 8.1 implies validity, by applying it for phase= 1. The next two lemmas are used to
prove the agreement condition. Below, we use the notdtram ?) for an entry in the arragheck

which hagtrue as its first element, and any value as its second element.

Lemma 8.2 For every phase > 1, all the processes that rea@heck|r|[agred == (true, 7) and

finish phase have at mosk different preferences at the end of phase

Proof: We first claim that all the processes that writetkeck|r|[agreeé wrote at most: different
preferences t@ropose[r|. Assume, towards a contradiction, that among the proc#isaesrite to
Check|r][agree] there ark + 1 processes$p;,, . .., p;,., } that wrotek + 1 different preferences to
Proposel[r]. Letp;, be the last process to write faopose[r]. Whenp; collects Propose[r] in line
3, itreadsk + 1 values, and therefore does not write(ibeck [r|[agreé, which is a contradiction.
The above claim implies that at mdstlifferent preferences may be writtendt.eck|r|[agreé.
Since a process that rea@seck|r|[agreé == (true v) adopts as its preference, at masvalues

can be a preference of such processes at the end of phase [ |

Lemma 8.3 For every phase > 1, if processes decide on valuesf{iny, . . ., v} in phaser, then
every non-faulty process decides on a valu&in . . ., v } in phase’, wherer’ is eitherr or r+1.

Proof: We first claim that if a process decidesn phaser, then every non-faulty process that
finishes phase readsCheck|r|[agreé == (true 7). To prove the claim, lep be a process that
decidesv in phaser. Let ¢ be a non-faulty process that finishes phasand assume towards
a contradiction thaty readsCheck[r|[agre¢ == false. This implies thaf collects Check[r] in
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line 8 beforep writes to Check[r] in line 5, and therefore collects Check[r] after ¢ writes to
Check[r]|[disagre& which implies thap does not decide in phasea contradiction.

Now, letp be a process that decides in phasand letg be a non-faulty process. By the above
claim, g readsCheck|r|[agreé == (true ?) in line 8. By Lemma 8.2, there are at masdifferent
values that can become a preference of a process at the ehdssp Therefore, ify decides at
the end of phase then it decides a value ifw,, ..., v, }. Otherwise, all the non-faulty processes
write at mostk preferences tdPropose[r 4+ 1], and by Lemma 8.1, they decide on one of these

values at the end of phaset 1. [ |

Lemma 8.3 implies agreement. Notice that both validity agiieament aralwayssatisfied,
and not only with probability 1. For termination, we prove following lemma. Below, we denote

the agreement parameter of ttie+ 1)-sided shared coin by = 0.

Lemma 8.4 The expected number of phases until all non-faulty prosadseide is at most-1/6.

Proof: For every subsefvy,..., v} C {0,...,k} there is a probability of at least for all
processes that rusharedCoin,,; to output values ifv,, ..., v, }. Therefore, for any value

in {0,...,k}, there is a probability of at leastthatv is not the output of any process running
sharedCoin,, ;. This is becausg0, ..., k} \ {v} has probability of at least for containing the
outputs of all the processes.

Consider a phase> 2. By Lemma 8.2, all the processes that finish phasel and in line 8
readCheck|r — 1][agreé == (true, 7) propose at most values toPropose[r]. The other processes
propose toPropose[r] a value obtained from their shared coin. Therefore, theeepsobability
of at least) that all processes write at mdsdifferent values taPropose[r], and by Lemma 8.1,
decide by the end of phase

Therefore, after phase = 1, the expected number of phases until all non-faulty praesess
decide, is the expectation of a geometrically distributattiom variable with success probability
at least, which is at most /¢.

For the first phase = 1, the values written tdPropose[1] are the inputs and are therefore
controlled by the adversary. This implies that the expeotaaber of phases until all non-faulty

processes decide is at mast 1/6. ]
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Algorithm 8.2 A (k + 1)-sided shared coin algorithm, code for procgss

. ik
Local variablesyj = | |

1: returnsharedCoin[j] + j

Consider gk + 1)-sided shared coin algorithm with an agreement paranieted, |, a total
step complexity ofl’ = Tj.,, and an individual step complexity df = I,,;. In each phase,
a process take®(k) steps in addition to thé steps it takes in theharedCoin,; algorithm.
Combining this with Lemma 8.4, which bounds the expectedirenof phases until all non-faulty

processes decide, gives:

Theorem 8.5 Algorithm 8.1 solvesk, k+ 1, n)-agreement witl (£+*) individual step complexity

andO(££E) total step complexity.

8.2 A(k+ 1)-Sided Shared Coin

We present, in Algorithm 8.2, @& + 1)-sided shared-coin algorithm which is constructed by using
k instances of a 2-sided shared coin. We statically partttierprocesses intb sets of at mosf;
processes each. That s, for evgry < j < k — 1, we have a seP; = {p%, . ,p@_l} (for
Jj = k—1the set may be smaller). The processes of each;gen a 2-sided shared-coin algorithm
sharedCoin[;] and output the result plus the valye The idea is that in order to have a valpe
that is not the output of any process, it is enough that alt@sees runningharedCoin[j — 1]
agree on the value 0 and therefore output 1, and that all the processes runnstgaredCoin|j]
agree on the value 1 and therefore output 1.

Let§ = 9, be the agreement parameter of the 2-sided shared coin. Wkl ltbe agreement

parameter of thé + 1-sided shared coin in the next lemma.

Lemma 8.6 Algorithm 8.2 is ak + 1)-sided shared coin with an agreement paraméter

Proof: There is a probability of at leastfor all processes who rusharedCoin|j] to return the
valuej, and a probability of at leastfor all processes who rusharedCoin|j] to return the value
j + 1. Therefore, for any value if0, . .., k}, there is a probability of at least that this value is
not the output of any process runnisigaredCoin|[j], for any0 < j < k — 1 (becausg = 0 may
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be the output only o$haredCoin[0], j = & only of sharedCoin[k — 1], andj € {1,...,k — 1}
only of sharedCoin[;j — 1] andsharedCoin[;]). Therefore, Algorithm 8.2 is &+ 1)-sided shared

coin with an agreement parametér [ |

The next lemma gives the complexity of the- 1-sided shared coin, and follows immediately
from the fact that each process runs a 2-sided shared canitalg for ;- processes. Since the
complexities depend on the number of procegstmt may run an algorithm, we now carefully
consider this in the notation. Lé{t) = I5(¢t) andT(t) = T»(t) be the individual and total step
complexities, respectively, of the 2-sided shared coiwrocesses.

Lemma 8.7 Algorithm 8.2 has individual and total step complexitiesXf (7)) andO(k-T'(%)),
respectively.

Plugging Lemmas 8.6 and 8.7 into Theorem 8.5 gives:
Theorem 8.8 Algorithm 8.1 solvesk, k + 1,n)-agreement with individual step complexity of
O((I1(%) + k)/6?) and total step complexity & ((k - T'(%) + nk)/d?).

By using an optimal 2-sided shared coin [11] with a constgne@ment parameter, an individ-
ual step complexity 0O (t), and a total step complexity @#(#?), we get that Algorithm 8.2 is a
(k + 1)-sided shared coin with a constant agreement parameteindin@lual and total step com-
plexities ofO (%) andO(”{), respectively. Therefore, Algorithm 8.1 solvés k + 1, n)-agreement
with individual step complexity oD (3 + k) and total step complexity cfr)(% + nk). Note that
for n > k*, Algorithm 8.1 hagD(%) individual step complexity, an@(”?g) total step complexity,

which are the same as the complexities of binary consensigedibyk.

8.3 ({,k+ 1,n)-Agreement Algorithms

In this section we construct several algorithms for theisglV/, k+ 1, n)-agreement, where< k.

8.3.1 An(/, k+ 1,n)-Agreement Algorithm by Space Reduction

For agreeing on one value out f, . . ., k} we can get a total step complexity ©6fn? log k) by
reducing the possible values by half until we have one valNelater show how this construction

can be used for agreeing én> 1 values.

81



Algorithm 8.3 A (1, k£ + 1, n)-agreement algorithm by space reduction, codefor

Local variablesny Value = input, myPair, mySide
Shared arraysigree|[1..[log (k + 1)]][1..k/27],
Values|[1..[log (k + 1)]][1..k/27][0..1]

1: forj=1...[log(k+1)]

2:  myPair = L%j

3. if myValue — myPair - 27 < 2771

4: mySide = 0

5.  elsemySide =1

6:  Values|j]|[myPair|[mySide] = myValue
7. side = Agree|[j][myPair|(mySide)

8:  myValue = Values[j][myPair][side]

9: end for

10: returnmy Value

In Algorithm 8.3 we assume an arralyree of binary consensus instances, which a process can
execute with a proposed value. Algorithm 8.3 can be modebeibinary tree, where the processes
begin at the leaves, which represent all of the values, amsary iteration; the processes agree
on the value of the next node, going up to the root. This mdaetsat most half of the suggested
values are decided in each iteration. In addition, all datidalues are valid because this is true
for each node.

Lemma 8.9 (Validity) For everyj, the variablemy Value of a proces® at the end of iteratior is

an input of some process.

Proof: The proof is by induction ori. The base casg= 1 is clear sinceny Value is initialized
with the input of the process. For the induction step, asshemkmma holds up tp—1, and notice
thatmy Value is updated only in line 8, to the value written in the/ues array in the locatioside
which is returned from the binary consensus algorithm. &iihe consensus algorithm satisfies
validity, side has to be the input of some process to the consensus algpaitiththis only happens
if that process first writes to that location in thelues array in line 6. By the induction hypothesis,

that value is the input of some process. [ |
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Lemma 8.10 (Agreement) Every two process executing Algorithm 8.3uduke same value.

Proof: We claim that there can be at most one value writtenVtdues|j][pair|[side], and
prove this by induction, where the base case is trivial s@icéhe beginning a process writes
to Values[1][pair][side] only if its input value is2 - pair + side. Assume this holds up to it-
erationj — 1. By the agreement property of the consensus algorithm, raligsses that exe-
cute Agree[j — 1|[pair] output the same value. Therefore, in iteratigronly one value out of
{27 - pair, ..., 27 (pair + 1) — 1} can be written toValues[j|[pair][side]. The lemma follows by

applying the claim to the root, which satisfies agreement. [ |

Termination follows from the termination property of theary consensus instances. For each
J, a process executes one consensus algorithm(plusadditional accesses to shared variables.
By using an optimal binary consensus algorithm where a gocempletes withi®(n) steps, this

implies:

Theorem 8.11 Algorithm 8.3 solves$l, k£ + 1, n)-agreement with an individual step complexity of

O(nlog k) and a total step complexity 6f(n*log k).

Note that we can backstop this construction at any Igatlthe tree to get an agreementfosn
2leek=J values. This means that instead of havjnigerate from 1 to[log (k + 1)], the algorithm
changes so that iterates from 1 to/log (k + 1)] — [log ¢]. The individual step complexity is
O(n(logk —log ¢)), and the total step complexity i3(n?(log k — log ¢)).

8.3.2 An lterative (¢, k + 1, n)-Agreement Algorithm

In Algorithm 8.4, we construct aft, £+ 1, n)-agreement algorithm by iterating Algorithm 8.1 and
reducing the number of possible values by one until all pgses output no more tharvalues.
The idea is that the processes execute consecutive itesaifgs, s + 1, n)-agreement algorithms
for values ofs decreasing front to /. In each iteration the number of possible values is reduced
until it reaches the desired bouhd

This procedure is less trivial than it may appear becauseexfample, after the first iteration
outputs no more thahvalues out ofc + 1, in order to decide ok — 1 out of thek values that are

possible, the processes need to kvawchare thek possible values. However, careful inspection
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shows that they need to know thdsgalues only if they disagree upon choosing the 1 values
out of them. In this case, a process that eealues indeed knows which are these values among
the initial £ + 1.
We now present the pseudocode of Algorithm 8.4 which sdlégs+ 1, n)-agreement by itera-
tively decreasing the number of possible values using Adigaor8.1, as discussed in Section 8.3.2.
Notice that Algorithm 8.1 is correct for agreeing érvalues out oft + 1 values, even if the
k + 1 possible input values are not necessafily. . ., k}, as long as they are a fixed and known
set{v, ..., v }. This is done by having a bijective mapping between the tw® se

The following lemma guarantees the correctness of the idhgor

Lemma 8.12 For each iterations, ¢ < s < k, the number of different values that appear in the
my Value variables of the processes that finish iteratiors at mosts, and each of these values is

the input of some process.

Proof: The proof is by induction over the iterations, where the beese is fors = £k and its
proof is identical to that of Algorithm 8.1. For the induatistep, we assume the lemma holds up
to s + 1 and prove it fors. A process finishes iterationwhen it assignglecide = true in line
13. This can only happen after it reads/Check|disagreé == false in line 10, which implies
that the number of different entries inyPropose that containtrue is at mosts. Moreover, every
value that is written to th@ropose[s] array is themy Value variable of some process at the end of

iterations + 1, and therefore is the input of some process, by the induttypothesis. [ |

Applying Lemma 8.12 ta = ¢ gives the validity and agreement properties. This leadBeo t
following theorem:

Theorem 8.13 Algorithm 8.4 solve$/, k + 1, n)-agreement WithO(Zizk %) individual step

¢ Lotnhy total step complexity, wherg, 1, 1,1, andT},, are the agree-

complexity and) (>, _, o
ment parameter, individual step complexity, and total stemplexity, respectively, of tiie + 1)-
sided shared coins.

Proof. For each value of, a process runs an iteration of the agreement algorithm tart of
s + 1 values. By an analog of Theorem 8.1, this taki$s=t*) individual step complexity, and

O(TS%;"’“) individual step complexity. Notice that we add k) steps for collecting the arrays and
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Algorithm 8.4 An (¢, k + 1, n)-agreement algorithm, code for process

local variables:my Value, myPropose = [0..k],

myCheck = [agreedisagregs,m,r decide

shared arraysPropose|[l..k|[ ][0..k],

1:

N g R~ w N

o

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:

Check[1..k][ |[agreedisagreé

for s = k down to/
r=1
decide = false
while decide == false
Propose|s][r][my Value] = true
myPropose = collect Propose|[s][r])
if the number of entries imyPropose that contains true
is at mosts
Check|[s][r][agreé = (true, my Value)
else
Check|[s][r][disagreé = true
myCheck = collect Check|[s][r])
if myCheck[disagre¢ == false
decide = true
else ifmyCheck[agreé == (true, v)
myValue = v
else ifmyCheck[agreé == false
m = sharedCoing;[r]
my Value = them-th entry inmyPropose that
contains true
r=r+1
end while
end for

returnmy Value

/I At mosts + 1 such values
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notO(s) steps, since it may be that a process does not know whichare#h current possible
values among the initidl + 1 values.

Summing over all iterations gives the resulting complesiti [ |
When using the¢s + 1)-sided shared coins of Section 8.2 we have:

Theorem 8.14 Algorithm 8.4 solve$/, k+1, n)-agreement witl) ((k — ¢+ 1)k +n(log k—log ())
individual step complexity an@((k — ¢ + 1)nk + n?(log k — log ¢)) total step complexity.

Proof: For the individual step complexity we have:

14

Ltk o x=n
> = 0()_~+h)

)
s=k s+1 s=k

= O((k—€+1)k+n2§)

= O((k — L+ 1)k + n(logk — log ),

where the last equality follows from the fact that the harrn@eriesH, = Z§:1 % is in the order
of log k. Similarly, we have that the total step complexityl§(k — ¢ + 1)nk + n?(log k — log {)).

Note that for/ = 1, i.e., for agreeing on exactly one value out of the initiad1 possible inputs,
we get an individual step complexity 6f((k — ¢+ 1)k + n(log k —log £)) = O(k* +nlog k), and
a total step complexity aD((k — ¢ + 1)nk + n*(logk — log ¢)) = O(nk?* + n*log k).

8.3.3 ARBit-by-Bit (1, k£ + 1, n)-Agreement Algorithm

For agreeing on one value outff, . . ., k} we construct Algorithm 8.5, which agrees on each bit
at a time while making sure that the final value is valid. A $&mconstruction appears in [72,
Chapter 9], but does not address the validity condition.hls &lgorithm, obtaining validity is a
crucial pointin the construction, since simply agreeingnaugh bits does not guarantee an output
that is the input of some process.

The idea of our algorithm is that in every iteratipnall the my Value local variables share the

same firstj — 1 bits, and they are all valid values (each is the input of attleae process).
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Algorithm 8.5 A (1, k£ + 1, n)-agreement algorithm by agreeing log & bits, code fomp;

local variables:my Value = input, myPropose = [0..log k],
myCheck = [agreedisagregr = 0,decide = false
shared arraysPropose[1..k][ ][0.. log k],
Check[1..k][ |[agreedisagreé

1: forj=1...[log(k+1)]

2 while (decide == false)

3 r+=1

4 Proposelj|[r][myValue[j]] = myValue

5: myPropose = collect(Propose [j][r])

6 if myPropose[0] # L andmyPropose[l] # L
7 Check[j][r][disagre¢é = myPropose

8 elseCheck|j][r|[agreé = my Value

9 myCheck = collect(Check[j][r])

10: if myCheck|[disagre¢# L

11: coin = sharedCoing (7, )

12: if myCheck|agreé # L

13: myValue = Proposelj][r][myCheck [agreg]
14: elsemy Value = myCheck[disagregcoin]
15: elsedecide = true andr = 0

16: end while

17: end for

18: returnmy Value
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We now present the pseudocode of Algorithm 8.5 which soltes + 1,n)-agreement by
agreeing on every bit of the value, as discussed in Sect®A.8.

Lemma 8.15 For everyj, 1 < j < [log (k 4+ 1)], at the beginning of iteration every process has
my Value that is the input of some process, and all the processeshgV/ue with the same first
j — 1 bits.

Proof. The proofis by induction on. The base case fgr= 1 clearly holds since at the beginning
of the algorithmmy Value is initialized to the input of the process, and- 1 = 0 so there is no
requirement from the first bits ofiy Value.

Induction step: Assume that the lemma holds up to valdel. That is, the variableny Value
of all processes at the beginning of iteratipr 1 has the sameg — 2 first bits, and they are all
inputs of processes.

First, we notice that in iteration— 1 the variablemy Value can only change to a value written
in the Propose array in line 13, or to a value written in th@heck array in line 14. This implies
thatmy Value is always an input of some process.

Next, assume that at the end of the iteration processaslq havemyValue variables with
different firstj — 1 bits. By the induction hypothesis, this implies that thyeir 1-th bit is different.
Let » be the first phase in which such two processes exist and decithat phase. Assume,
without loss of generality, that executes line 4 aftey does. This implies that whemreads the
array Propose in line 5, both entries are non-empty. But thewrites its value into thelisagree
location of the arrayCheck and therefore cannot decide in that phase. ]

Lemma 8.15, in an analog to Section 8.1, implies validity agceement.
We denote by = 4§, the agreement parameter of the 2-sided shared coin7agdT, and

I = I, are its total and individual step complexities, respetyive

Theorem 8.16 Algorithm 8.5 solvesl, k + 1, n)-agreement wittO ([log (k + 1)] - 1) individual
step complexity an@([log (k + 1)]%) total step complexity.

Proof. In eachiteratiory, 1 < j < [log (k + 1)], by an analog to Lemma 8.4, the expected num-
ber of phases until all non-faulty process decide+sl /¢ which isO(%). In each phase, a process
takesO(1) steps in addition to thé steps it takes in theharedCoin, algorithm. Therefore, the
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individual step complexity of Algorithm 8.5 i9([log (k + 1)] - £), and the total step complexity
isO([log (k+1)]%). ]

Using an optimal shred coin with a constant agreement pdesna@ individual step complex-
ity of O(n), and a total step complexity 6f(n?), we get a1, k + 1, n)-agreement algorithm with
an individual step complexity ab(n log k) and a total step complexity 6(n? log k). Notice that
the step complexity could be improved if agreement on thedmntld be run in parallel. However,

this is not trivial because of the need to maintain validity.
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Chapter 9
Layering Randomized Executions

This part of the thesis presents lower bounds for randomibedensus under a weak adversary
(Chapter 10) and under a strong adversary (Chapter 11). ia,be this chapter, by providing
formal definitions and by setting the common grounds to botkel bounds, namely, layered
randomized executions. This includes a formal presemtatidhe two types of adversaries that
captures the difference in their ability to control the exemn.

9.1 Preliminaries

The lower bounds presented in this part also addressnéssage-passingodel, in addition to
the shared-memory model. We therefore define a step of agg@seconsisting of some local
computation, including an arbitrary number of local coipsland one communication operation,
which depends on the communication model.

In a message passing system, processes communicate bygsandireceiving messages: the
communication operation of a process is sending messagesie subset of the processes, and
receiving messages from some subset of them. For the lowsrdspwe assume that a process
sends a message to all the processes in each step. In a sleameiynsystem processes commu-
nicate by reading and writing to shared (atomic) registsrdefined in Section 3; each step of a
process is either a read or a write to some register. The tyftbe registers that are assumed will
be explicitly defined later.

For the purpose of the lower bound, we restrict our attertbanconstrained set of executions,
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which proceed in layers. Alfi-layeris a sequence of at least— f distinct process id’s. When
executing a layer.,, each procesg € L takes a step, in the order specified by the layer.

An f-executioris an execution of the algorithm under a (finite or infinitejsence off-layers.

A configurationC' consists of the local states of all the processes, and thewaf all the
registers. We will consider only configurations that arehadle by finite sequence ¢flayers.

We define faulty processes as follows: a progess non-faultyin layerr if it appears in the
layer. A proces9; crashesn layerr if it does not take a step in any layér> r. A process is
skippedin layerr, if it does not appear in layerbut appears in one of the following layers.

Since we consider randomized algorithms, for each configurd’ there is a fixed probability
for every step a process will perform when next schedulechoBeby X the probability space
of the steps that procegswill preform, if scheduled by the adversary. The probap#ipaceX
depends only on the local stateygfin configuration”', and therefore, delaying does not change
this probability space.

Let X¢ = X¢x X{ x--- x X be the product probability space. A vecipbe X represents

a possible result of the local coin flips from a configuration

9.2 Adversaries

Since we are discussing randomized algorithms, differestiptions on the power of the adver-
sary may yield different results. We now model two types ofeadaries, one callestrongand the
otherweak We first define a strong adversary, followed by the definioba weak adversary as
a restricted case. However, the lower bounds are presantegterse order, since the case of the

strong adversary is more involved.

9.2.1 Strong Adversary

A strongadversary observes the processes’ local coin flips, andselsdbe nexf-layer knowing
what is the next step each process will take. The adversatiea@ functions to choose the next
f-layer to execute for each configurati6hand vectorj € X€, i.e.,

o - {(C,7) | Cis a configuration ang € X“} — {L | Lis anf-layer}.
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When the configuration’ is clear from the context we will use the abbreviatidy) = L.

Denote by(C, 7, L) the configuration that is reached by applying steps of theqases irl;,
for a specific vectoff € X°. ThenC o ¢ is a random variable whose values are the configurations
(C, 7, Ly), wheni is drawn from the probability spacg®.

An f-adversarys = o1, 09, ... Is a (finite or infinite) sequence of functions.

Given a configuratior and a finite prefixo, = 01,09, ..., 0, of the adversary, C o gy IS
a random variable whose values are the configurations thabeaeached by the algorithm. For
every vectory;, € X, by abuse of notation, let Bi] = Py is drawn fromX¢] denote the
probability of7;, in the probability spac&(“. The probability that a configuratiafi’ is reached is

defined inductively:.

PHC oo, isC' = Y PHii] - Pr(C, 1, Ly) o o} is C'],

NneXC
whereo, is the remainder of the prefix aftet, i.e.,o, = o3, ...0,, and the basis of the induction
for o, = oy is:
PiCoo isC’l= Y Piiji]- Xe(ih),
eXC
where X (71) = X (C,01,41) characterizes whether the configuratichis reached ify; is
drawn, i.e.,
1 (C,th, Lg)isC’

Xor () = .
¢ 0 otherwise.

The probability of decidingg when executing the algorithm under from the configura-
tion C is defined as follows: ifC is a configuration in which there is a decision then
Pridecision fromC' undero isv] = 1, if C' is a configuration in which there is a decisionthen

Pr{decision fromC' undero is v] = 0, otherwise,

Pr{decision fromC undero is v] = Z Priz1] - Pridecision from(C, 41, Ly, ) undero’ is v],

NEXC

wherecd’ is the remainder of the adversary afteri.e.,o’ = 09,03, .. ..

For simplicity, we assume that all the probability spacesdiscrete, but a similar treatment holds for arbitrary
probability spaces.
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9.2.2 Weak Adversary

A weakadversary is non-adaptive and decides the entire schedwddviance. The adversary

does not observe neither the results of any local coins apsaitips, nor any operation a process
performs. We model this adversary as applying the functidbased only on the number of layers

that have been scheduled, i.e.,

o:IN — {L| Lisanf-layer}.

In other words, a wea-adversary is a (finite or infinite) sequence of layers L, Lo, .. ..
An adversaryr, together with an initial configuratiohandn coin-flip stringsc’= (¢4, -« - , ¢,),
determine amxecutionx (o, ¢, I'). For a finite adversary, we identify the execution(o, ¢, I') with

the configuration it results in.

9.3 Manipulating Layers

Like many impossibility results, our proof relies on havoanpfigurations that are indistinguishable
to all processes, except some Setintuitively, two configuration€' andC’ are indistinguishable
to a procesy if it cannot tell the difference between them. The idea behaentifying indistin-
guishable configurations is that processes that do nohdigsh between them do the same thing
in any extension where they are the only processes takipg.sEpecifically, they decide the upon
same value in the same extension frohandC’. Thus, comparing what happens in indistinguish-
able executions allows us to reason about the decision valdierent executions, which is one
of the main techniques in deriving lower bounds in distrdasl¢omputing.

The formal definition of indistinguishability is model-demdent.

In the message-passing model, we say that the configuratiamslC” are indistinguishable to
the set of processd3 and denot&’ L ¢, ifeach process i goes through the same local states
throughout both executions up @6andC’, More specifically, in both executions each process in
P sends and receives the same messages, in the same orderth&kerkguire that processesih
are not crashed up 1@ and(".

In the shared-memory model, the definition of indistingalsihty is slightly different than in

the message-passing model. For two configuratidmedC’ to be indistinguishable to a process
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p, we not only requirey to have the same local states throughout both executionst{whplies
that in both executiongperforms the same shared-memory operations, includimrgshe same
values from registers), but also that the values of the shagisters are the same throughout both;
otherwise, for example, havingperform a read operation aftérandC’ might result in different
executions. However, we allow the value of a shared registee different inC' andC” if it is

no longer accessed by any process. This slight modificatibrcaptures the requirement that
if a procesg decidesv in C' and does not distinguish betweéhand C’ then it also decides in
C' on the same value. We say that the configuratiord$ andC’ are indistinguishable to the set
of processes” and denote” L ¢, if the state of all processes that arefmis equal in both
configurations”' and C’, these processes are not crashed’iandC’, and the values of all the
registers are equal. Similarly, we dendte L (' if the state of all processes that arvet in P

is equal in both configuration§' and C’, and the values of all the registers are equal. In both
communication models we write¢ & ¢’ or C' <~ ¢’ whenP = {p}.

In order to obtain indistinguishable configurations, we rpalate schedules by performing
very small changes to the order of processes in a given |Byery small change results in config-
urations that are indistinguishable to some processastiialy, after many small changes we get
achainof indistinguishable configurations, which we formally defiater. These chains allow us
to argue about the decision value in each execution, andedeuir lower bounds.

In the remainder of this section, we show a couple of mantmria that can be done to layersin
the shared memory model and result in indistinguishabl&garations (additional manipulations
of layers appear separately in Chapters 10 and 11). We firstider a shared-memory model
where processes communicate through multi-writer regiseind use a simplifying assumption
that each read step accesses the registers of all procésfesall this themulti-writer cheap-
snapshomodel, since each register is written to by any process, hmelgasters are read by any
process in a single snapshot. This snapshot is chargedemésnce the term “cheap”.

We manipulate sets of processes, and then consider themgistens when manipulations
on single processes are needed. We consider a [agsra sequence of disjoint sets of processes
L =[P, ...P,],whereforevery, 1 < j </, allthe processes iR;, perform the same operation:
either a write operation or a cheap-snapshot operation.

The following claim handles swapping the order of conseeldgets of processes in a layer.
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P,

7

Claim 9.1 Let C' be a configuration, letL = [P
[P P ., B B,

in P, and P,
= P = ’
(C7y17L) ~ (CaylaL)'

| be a layer, and letl) =

172

] be the layer L after swappingP;, and P If processes

195+ 1t

-P;.
do not write to the same registers, theid,y;, L) ~ (C,%,L") or

j+1°

Proof: If all processes inF;;, and P, access different registers or all of them perform a

Jj+1
.....

-P;, _
snapshot operation and processesPin, write, then(C,7,,L) ~’ (C,%, L"), and otherwise
—-P;.
<C7 gb L) r\jjrl (Ca 3717 L/) ||

The above claim assumes that the processes in the two swaefsedio not write to the same
registers. The case where they do write to the same registersre complex, since swapping
such processes might change values of registers, and #feectst of the execution. Instead of
swapping two such sets of processes, we first remove the dirgtosn the layer, attach it to the
end of the modified layer, and finally swap it in reverse orddil it reaches the desired location
in the layer. The next claim address the first component efrttanipulation, which removes such

a set of processes from the layer.

Claim 9.2 Let C' be a configuration, let. = [P P, be a layer where for somg,

1720

1 < j < ¢, all the processes i, and F;

[Py,..., P, P,

119

write to the same registeR, and let L/ =

: ~{Pi,}
P,] be the layerL after removingP;,. Then(C, i, L) ~" (C,7,L).

G+1
e
Proof: Since all the processes iy, and P;,,, write to the same registef, after the processes
in P,
of all the processes except thosefin. This implies that this is also the case after executing the

take steps in both layers the values of all the registersaamesand so are the local states

j+1
—P;.
whole layers, and therefof€, 7, L) ~" (C, vy, L'). u

The remaining component of attaching the set of procesdbs &nd of the modified layer will
be handled separately in Section 11.1, as it involves fudeé&nitions required for the case of a

strong adversary.
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Chapter 10

A Lower Bound for a Weak Adversary

In this chapter, we obtain our lower bounds for randomizatseasus under a weak adversary in
the different communication models. We begin by introdgdine framework we use, which is
common to all models.

As mentioned in Section 9.3, our lower bound under a weakradwe will make use of indis-
tinguishable chains of executions. We proceed to formatiyné indistinguishability chains, as
follows.

Recall that we identify an executienwith the configuration it results in. Given two executions
a; anda, with the samer coin-flip stringsc = (¢4, - - - , ¢,), we denotey; 2 oy if processp; does
not distinguish between; anda,, and does not crash in them. In this casealecides on the same
value ina; and ina,. We denotey; =, «as if there is a chain of executions, - - - , 3,41 such
that

pi P:

We call such a chain andistinguishability chairof lengthm + 1. Clearly, ifa ~,, 3 ~,, v then
o~ 7, forevery pair of integers: andm’. Moreover, notice that this relation is commutative,
i.e., ifa; =, as thenay ~,, ;.

For every pair of consecutive executions in the chain, tisamgrocess that decides on the same
value in both executions. By the agreement condition, theesam in «; and ina, must be the
same. This is the main idea of the lower bound proof, whictaured in Theorem 10.1: we take
two executions that must have different agreement valudscanstruct an indistinguishability

chain between them, which bounds the probability of tertmgain terms of the length of the
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chain. Two such executions exist by the validity conditiamwe formalize next.
We partition the processes into = max{3, [7]} setsP;, ..., Ps, each with at mosf’ pro-
cesses. For example, if > 2f, B = {pu_1)f+1, - .pis} foreveryi, 1 < i < S, and
Ps = {p(s—1)f+1, " »Pn}-
Consider initial configuration§’y, . .., Cs, such that inCy all the inputs are 0, and ig’;,
1 <4 < S, all processes iP;, ..., P; have input 1 and all other processes have input O; in

particular, inC's all processes have input 1.

Definition 10.1 For a scheduler, let crash(o, p,r) be the schedule that is the samesaexcept
that p crashes in layer, i.e., does not take a step in any layer r. For a setP of processes,

crash(o, P,r) is defined similarly.

Let o, be the full synchronous schedule witHayers, in which no process fails. The next
theorem is the main tool for bounding as a function ofn, the length of an indistinguishability
chain. This theorem distills the technique we borrow froré][3At the end of Section 10.1 we

discuss how asynchrony allows to construct shorter chains.

Theorem 10.1 Assume there is an integem such that for all sequences of coing
a(o i, ¢, Co) ~m aloru, ¢, Cs). Then the probability thatl does not terminate aftét(n — f)
steps isy; > .

Proof: Assume, by way of contradiction, thaj(m + 1) < 1. Since a(ofu, ¢ Co) ~m
a(o i, ¢, Cs), there is a chain of 4 1 executions,

(0, & Co) = By = Ba- - " By = a0, & Cs)
(See Figure 10.1.) The probability thatloes not terminate in at least one of thesel executions
is at mostg,(m + 1). By assumptiong,(m + 1) < 1, and hence, the sét of sequences of
coins ¢ such thatA terminates in alln + 1 executions has probability Pre B] > 0. Since
a(o i, ¢, Co) ~m aloru, ¢, Cs), the agreement condition implies that the decision imal- 1
executions is the same. However, the validity conditionliegthat the decision it (o s, ¢, Co)

is 0, and the decision in(o ., ¢, Cs) is 1, which is a contradiction. [ ]

100



B = Oé(Ufuzz, G, Oo)

decisionis 0
DPiy
Ba " terminates with probability at least— g,
B terminates with probability at least— ¢,
Pim

Bmi1 = OZ(Ufuzz, G, CS)

decisionis 1

Figure 10.1llustration for the proof of Theorem 10.1.

A slight extension of the above theorem handiésnte-Carloalgorithms, where processes
may terminate without agreement with some small probahilitThis extension is presented in
Section 10.3.

The statement of Theorem 10.1 indicates that our goal isdw $he existence of an integer
m such thatv(o . ¢, Co) = aloru, ¢, Cs); clearly, the smallem, the higher the lower bound.

The next lemma comes in handy when we construct these chains.

Lemma 10.2 Assume there is an integen such that for every schedule, initial config-
uration I, sequence of coing and setP;, a(o,¢, 1) =, «(crash(o,P;,1),¢,1). Then

a(opu, €, Co) Rs@m+1) oo, ¢, Cs), for every sequence of coifls

Proof: Consider the scheduleg = o, ando; = crash(oy, P;, 1) for everyi, 1 <i < §, and
the corresponding executions; = «(o;, ¢, C;) for everyiandj, 1 < i < Sand0 < j < §S.
Note that the executiom, ; starts from the initial configuratiof; with a schedule which is almost
full, except that processes ip) never take steps.

By assumptiong ; ~,, o, ; foreveryi, 1 <i < S, andevery;, 0 < j < S. (See Figure 10.2.)
Since processes iR are crashed im; for everyi, 1 < ¢ < S, we have thaty; ;_, R o ;, for every

procesy € P\ P,. This implies thaty; ;1 ~; «;;, for everyi, 1 <i < S. Thus,
(o, €, Co) = oo Rm Q1,0 R1 Q11 Ry 01 Ry, Qg1 R Qg 8,8 Ry Qo5 = (0, G, Cs) .

Therefore o (o fu, ¢, Co) ~s@m+1) (0 fu, G, Cs). u
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O full

Co = (0,0,...,0)

Co = (0,0,...,0) crash(o s, Po, 1) ~m
~1

Cy = (1,0,...,0) crash(o s, Po, 1)

Cl = (17 07 7O> O Lull o

= (1,1,...,1)—2u o

Figure 10.2:llustration for the proof of Lemma 10.2.

10.1 Tradeoff for the Message-Passing Model

In this section we derive the lower bound for the messagsipgsnodel. Notice that in the
message-passing model, since a step consists of both geaihreceiving messages, a layer
L is not only a sequence of processes, but also specifies forpracesy € L the set of pro-
cesses it receives a message from (recall that we assuniedsinads messages to all processes).
The reception of messages in a certain layer is done aftenegdbages of that layer are sent, and
therefore the order of processes in a layer is insignificant.
Formally, anf-layer is a sequenge,, . . ., p;,, of distinct process id’s, followed by a sequence
M;,, ..., M;, of subsets of process id’s, whel€ is the set of process id’s from whigh, receives
a message in this layer. In the executions we construct, aagess either delivered in the same
layer, or it is delayed and delivered after the last layed, iareffectively omitted in the execution.
Recall that the processes are partitioned ifite- max{3, [#]} setsP,..., Ps, each with at
most f processes. We manipulate schedules in order to delay nesssesyfollows.

Definition 10.2 Leto be a finite schedule. Leétlay(o, P;, P;, r) be the schedule that is the same
aso, except that the messages sent by process€simlayer r are received by processes k)
only after the last layer. More formally, i¥/, is the subset of processes that a progessceives a
message from in layerin o, then for every procegsc F; the subset of processes that it receives
a message from in layerin delay(o, P;, P;,r) is M, \ P,.

Clearly, at the end of layer, any process not i¥; does not distinguish between the execution
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so far of a schedule and an execution so far @tlay(o, P;, P;,r). Therefore we have:

Lemma 10.3 Let ¢ be a schedule witltk layers. For any sequences of coifsand initial
configuration/, at the end of layer only processes irP; distinguish betweew(o, ¢, I) and
Oé(d@l@y(@', Pi7 Pj7 T)u 57 [>

Recall thatS = max{3,[}]} is the number of set®;. We define the following recursive
function for everyr andk, 1 <r < k:

S if r==%

My = .
28 -1 +1D)mepp+S ifl1<r<k

A simple induction shows that,.; < (25)F"*1.
The following lemma proves that, , is the integer required in Lemma 10.2 for the message-
passing model, by inductively constructing indistingailstity chains between executions in which

a set of processes may crash from a certain layer

Lemma 10.4 Let o be a schedule witl layers such that for some 1 < r < k, no process is

skipped in layers,r +1,..., k. Thena(o,c, I) =y, , a(crash(o, P;,r),c, I) for every sequence

of coinsc, every initial configuration, and everyi € {1,...,S}.

Proof: Leto = o0(y. Throughout the proof we denote = «(o;, ¢, I) for any schedule;. The
proof is by backwards induction on

Base caser = k. We construct the following schedules. logtbe the same ag, except that
the messages sent by processes; im the k-th layer are received by processesif, 1) moq 5 ONly
after thek-th layer, i.e.o; = delay(o, Pi, Pi11) mod 5, k). By Lemma 10.3, we have, ~ a;, for
every procesp € P\ Pii1)moa s- We continue inductively to define schedules as above in the
following way, for everyh, 0 < h < S — 1: 0,11 IS the same as);, except that the messages sent
by processes i’; in the k-th layer are received by processesii, ;4 1) moa s ONly after thek-th
layer, i.e.,on11 = delay(on, Pi, Piyni1) moa s, k). By Lemma 10.3, we have;, & ay,4, for every
proces® € P\ Piih11) mod -

Since inog N0 messages sent by processes;im layer k are ever received. Except for local

states of the processesy this is the same as if the processe®jrare crashed in layér.
ags = a(crash(o, P, k), ¢, 1),
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layerr layerr layerr layerr
o o o o

(o<}
oo0o

P, —F P, P, —F P, P, —F P, P, — P,
Pz‘-‘,—l\Pi-i-l Pi-l—l\ Piq Piq Piq
o o o o o o o o
o o o o o o o o
o o o o o o o o

&%)} Rmiik aq ~1 (&%) Rmiik a3

Figure 10.3:How messages from®; to P, 1 are removed in the induction step of Lemma 10.4.

which implies that
alo, ¢ 1) =ag ~ ag =y -+ - & ag = alcrash(o, Py, k), ¢, I) .

Thereforen (o, ¢, I) =5 a(crash(o, P;, k), ¢, I).

Induction stepinformally, this is similar to the base case, except that iasltP; in layerr 41
before “erasing” messages fraRto P; in layerr, and afterwards revive; in layerr + 1.

Formally, we assume that the lemma holds for layer1, 1 < r < k, and prove that it holds
for layerr. Leto, = crash(oo, Piy1) moa 5,7 + 1); by the induction hypothesis, ~,,, , , 1.

Let 0, be the same as; except that the messages received by processé$; im mod s
from processes inP;, in layer r are received only after thé&-th layer, i.e., oo =
delay(ov, Py, Plit1)mod 5, 7). By Lemma 10.3, at the end of layeonly processes it 1) mod s
distinguish between the executions, but since they aréedsis layen + 1 we haven; X a, for
every procesp € P\ Pi11) mod s, IMplying thata; ~; as.

Let o3 be the same as,, except that the processesif 1) moa s do not crash in layer + 1.
This implies that

oy = crash(os, Pit1) mod 5,7 + 1).

By the induction hypothesis, we hawg ~,,, ., , as. (See Figure 10.3.)
We continue inductively to define schedules as above in thewimg way for everyh, 0 <
h < S — 1. We definess,.1 = crash(os,, Pithi1)mod 5,7 + 1), and therefore by the induction

hypothesisys;, ~ asni1- Letogy,, o be the same as;;, ,  except that the messages received by

Mr41,k
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processes i, 1+1) mod s fTOM processes if; in layerr are received only after theth layer, i.e.,
O3ht2 = delay(ospi1, Py, Plithi1)mod 5. 7). By Lemma 10.3, at the end of layeonly processes
iN Pin+1) moa s distinguish between the executions, but since they ardedas layerr 4 1 we
haveas, ;1 R (342, fOr every procesg € P\ Piinai1) mod 5, IMplying thatas, 1 =1 agpo.

Finally, we definers;, 3 to be the same as;;, o, except that processes K1, +1) moa s d0 not
crash. This implies thats;, ;o = crash(osnys, Pitni1) mod 5.7 + 1). By the induction hypothesis
we haveosy, o Rm,g1e X3h+3

The construction implies that i 512 N0 Messages are sent by the processésimlayer
r, and they are crashed from laye#s- 1. Except for local states of the processeg’jnthis is the
same as if the processesihare crashed from layet Therefore

a(03(571)+27 87 I) = O[(CT’CLSh(Uo, -P'i7 T)v 57 I)a

and hence

~

QO R,y X1 102 Ry O3 Fmyyy g " Fmyg A3(S-1)+1 1 A3(S-1)+2 -
Sincem,.,, = (2(S — 1) + 1)m,4+1 4 + S, this implies thaty, ~,, , a(crash(og, P;,r),c,I). =

Note that in all executions constructed in the proof, at noos set of processd3 does not
appear in a layer; since’;| < f, this implies that at least — f processes take a step in every
layer, and hence every execution in the construction cositatileast:(n — f) steps.

Lemmas 10.2 and 10.4 imply that for any sequence of cOIn& (o sui, ¢, Co) ~s@m, ,+1)
(o tui, ¢, Cs). Sincemy ;. < (29)*, substitutingS (2m, ;. +1) in the parameter: of Theorem 10.1
yields thaty, > m
the main result of this section:

Recall thatS = max{3, [%]}. Taking[%] to be a constant, we obtain

Theorem 10.5 Let A be a randomized consensus algorithm in the asynchronousagepassing
model. There are a weak adversary and an initial configurgtguch that the probability that

does not terminate aftér(n — f) steps is at leasf;, wherec is a constant if | is a constant.

In the original construction for the synchronous model (, ], see also [18, Chapter 5]), a
process that does not appear in a roundust be crashed in that round, and therefore must be

counted within thef failures allowed. Hence, in order to change all the inputsnfiO to 1, we
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must crash and revive fewer processes at a time at each réon@xample, in order to continue
k < f rounds only one process may be crashed at each round. Thisdddtor oft to the base
of the power in the denominator of the boundg@nwhich results in a lower bound (g% for the

synchronous message-passing model [36].

10.2 Tradeoff for the Shared-Memory Model

We now derive a similar lower bound for two shared-memory et®dvhere processes commu-
nicate through shared read/write registers. The first mooies$ists of single-writer registers and
a cheap-snapshot operation that costs one step, desaoitvedlly in Subsection 10.2.1. In Sub-
section 10.2.2 we consider multi-writer registers. Thedowounds clearly hold for the more

restricted model, where processes read only a single eegisetach memory access.

10.2.1 Single-Writer Cheap-Snapshot

We first consider a shared-memory model where processes goitaie through single-writer
registers. The lower bound is proved under a simplifyingiag#ion that each read step accesses
the registers of all processes. We call this $iregle-writer cheap-snapshohodel, since each
register is written to by one specific process, and all regssare read by any process in a single
snapshot.

As in a standard shared-memory model, a step of a processtsootaccessing the shared
memory, and performing local computations. We further assthat in the algorithm, the steps of
every process alternate between a write and a cheap-snagtsinong with a write. Any algorithm
can be transformed to satisfy this requirement by havingoagss rewrite the same value to its
register if it is forced to take a write operation, or readdlthe registers and ignore some of
(or all) their values if it is forced to take a cheap-snapsipration. This only doubles the step
complexity.

Recall that the processes are partitioned ifite: max{3, [7]} setsP;, ..., Ps, each with at

most f processes. We consider a restricted set of layered sclsedule

Definition 10.3 A scheduler is regularif for every layerL and everyi, 1 < i < S, either all

processep € P, take a step in. consecutively (one after the other, without steps of psegaot
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in P; in between), or none of the procesges P, take a step in.. We denote by the permutation
of the setsP; that take steps ir, i.e., if processep € P, take a step inL, thenw—1(i) is their

index in the layer. We denote by the number of setB, that take steps in the layer.

Note that, in contrast to the message-passing model, inragimaemory model the order of
the processes in a layéris significant, since different orderings result in diffierexecutions.

Regular schedules are useful in our proofs since in evemr|ajl the processes in some set
P; perform the same operation, as argued in the next lemmae Pimcesses in the same #et
either all write to different registers (recall that registare single-writer) or read all registers, this

means that in a regular execution, the order of processés isetP;, does not matter.

Lemma 10.6 Let o be a regular schedule with layers. Then in every layek in o, for everyi,
1 <1 < S, either all proces® € P, do not take a step i, or all processep € P; perform a

write operation inL, or all processep € P, perform a cheap-snapshot operation/in

Proof: The proofis by induction on the layer number

Base caseLetr = 1, i.e., L is the first layer obr. Sinceo is regular, either all procegsc P;
take a step i, or none of the processesc P, take a step in.. If all take a step then by our
assumption on the algorithm, it is a write operation. Othsewnone take a step, which proves the
base case.

Induction step:Assume the lemma holds for layérl < ¢ < r. We prove the lemma for layer
r + 1. By the induction hypothesis, in every layen < ¢ < r, either all processgs< P, perform
a cheap-snapshot operation, or all perform a write operadionone perform an operation. If none
preform any operation in any layér< r, then at the beginning of layer- 1 the pending operation
of all processep € P, is a write operation by our assumption on the algorithm. @tise, let/ be
the maximal layer in which all processes P; took a step. If they are cheap-snapshot operations,
then at the beginning of layer-1 the pending operation of all procesges P is a write operation
by our assumption on the algorithm. If they are write operatj then at the beginning of layer
r+1 the pending operation of all procesges F, is a cheap-snapshot operation by our assumption
on the algorithm. In any case, at the beginning of layer 1, either all processes € P, have a
pending cheap-snapshot operation, or all have a pendiig @peration. Since is regular, either

none of the processesc P, take a step in layer + 1, or all take a step in layer + 1, in which
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case it would either be a cheap-snapshot operation for @atlgssses, or a write operation for all

processes. n

In the proof, we apply certain manipulations to regular sies, allowing us to delay and

crash sets of processes, as follows.

Definition 10.4 Leto be a schedule such that every¥e P; is non-faulty in layer-, and such that

P; is not the last set of processes in the layer. &etip(o, P;, r) be the schedule that is the same
aso, except that the steps of processe®jrmre swapped with steps of the next set of processes in
that layer. Formally, ifr is the permutation of layer in o and ' is the permutation of layer in

swap(c, P;,r), and ifj = 771(7), then we have'(j) = n(j + 1) and#'(j + 1) = 7(j).
Inductively, we define
swap’ (o, P, r) = swap(swap’ (o, P, r), P, 7),
that is, P; is swapped times and moved sets later in the layer.

Definition 10.5 Let o be a schedule andbe a layer such that no process is skipped in any layer
¢ > r. Letdelay(o, P;,r) be the schedule that is the samervagxcept that the steps &f starting
from layerr are delayed by one layer. Thus, there is no step ®fP; in layerr, the step op € P,
in layerr + 1 is the step that was in layet, and so on. The permutations of the layérs r + 1

do not change.

Note that this definition assumes a schedulsm which no process is skipped in any layer
¢ > r. Specifically, this implies thaP, appears in every layeér> r + 1, which allows to keep the
permutations in layeré > r + 1 unchanged irelay(o, P;, r).

Delaying a sef; from layerr can be seen as delayiiyfrom layerr 4+ 1, swappingp; in layer
r until it reaches the end of the layer, accountingfas the first set in layer + 1 instead of the
last set in layer, and then swapping, in layerr + 1 until it reaches its original place in the layer.

Although accounting fo?; as the first set in layer + 1 instead of the last set in layerdoes
not change the order of steps taken, it is technically amiffeschedule (recall that the schedules
are defined as sequences of layers, which in this case ageetifiin layers andr + 1). Therefore

we define:
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Definition 10.6 Let o be a schedule where the last set of processes in laygrP;, and this set
does not appear in layer+ 1. Letrollover(o, P;, r) be the schedule that is the sameragxcept

that P, is the first set in layer + 1 instead of the last set in layer

Effectively, such two schedulesandrollover(o, P;, r) have the same order of steps, which im-
plies that the executions of these schedules is the same:

a(o, ¢, I) = a(rollover(c, P;,r), ¢, I).
Definitions 10.4, 10.5, and 10.6 imply:

Corollary 10.7 Leto be a regular schedule with layers, and for every, 1 < r < k, letn, be
the permutation of layer in o. Then,

delay(o, P;,r) = swap’r;ll(i)_l (rollover(swaplm_”;l(i) (delay(o, P;,r+1), P;,r), Py, r), Py, r+1).

Figure 10.4 depicts the schedules used when delaying &, Satlayer » of a scheduler,
according to this corollary.

Recall thatcrash(o, P;,r) is the schedule that is the samecgsexcept that processes i)
crash in layer-. Crashing a seP; in layerr can be seen as delaying it from layerand then

crashing it from layer + 1. Definitions 10.1 and 10.5 imply that:
Corollary 10.8 For every regular schedule,
crash(o, P;,r) = crash(delay(o, P;,r), P;,r + 1).

An important property of regular schedules is that swappdeaying, or crashing a set of

processes$’; yields a regular schedule as well, because the sets are uteeigh together.

Lemma 10.9 Let o be a regular schedule with layers. Then for every, 1 < i < S, and every
r, 1 <r <k, the scheduleswap(o, P;, r), delay(o, P;,r), rollover(o, P;,r), andcrash(o, P;, )

are regular.

Proof: Every layer? # r in swap(o, P;,r) is the same as i and therefore satisfies the re-

guirement of a regular schedule. In layerall processes that took stepsdralso take steps in
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layerr layerr 4+ 1
delay(o, P,,r+1) -+ ... e

swap(delay(o, P;,r + 1), Py,r) -+ .. ... | Pl ... ...

rollover(swap(delay(o, Pi,r+ 1), P;,r), Py,r) -+ .. ... |Pil... ...
layerr ¥

layerr + 1

swap(rollover(swap(delay(o, P;,r + 1), Py, r), Piyr), Piyr+1) -+ . .., ... ...

N————
layerr 4+ 1

=delay(o, P;,r) -+ ... ...

—_———
layerr layerr + 1

Figure 10.4:An example showing howwap operators are applied to delay a set of proceg3passume
P, is the penultimate set in layerand the third set in layer + 1. Note that the third transition does not
modify the execution, and only accounts the step#;db layerr + 1 instead of layer; the last transition
just notes that we have obtainéelay(o, P;,r).

swap(o, P;,r), and each set remains consecutive. Therefarep(o, P;,r) is regular. It is also
easy to see thavllover(o, P;,r) is regular.

The proof fordelay(o, P;, ) andcrash(o, P;, ) is by backwards induction on the layer number

Base caseforr = k, delaying a sef’; in the last layer, is the same as crashifng Denote
o' = delay(o, P;, k) = crash(o, P;, k). Every layer/ < k in o’ is the same as in, and the last
layerk is the same i’ except that the processesithdo not take a step. Hence,is also regular.

Induction step:We assume the lemma holds for every layer + 1 < ¢ < k, and prove it
for layerr. By Corollary 10.7, the induction hypothesis and since swagp results in a regular
scheduledelay(o, P;, r) is regular. By Corollary 10.8, the induction hypothesis aimte delaying
results in a regular schedule,ash(o, P;, ) is regular. u

We next construct an indistinguishability chain of schedubetween any regular schedule

and a schedule in which some set of processes is delayedstreckaThe construction relies on
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Corollary 10.7 and Corollary 10.8 to delay or crash a set otgsses through a sequence of swaps.
The elementary step in this construction, where a set isgahywith the following one, is provided

by the next lemma.

Lemma 10.10 Leto be a regular schedule with layers. For any sequences of coiysand initial
configuration/, if P; is not the last set of processes in layen < r < k, then there is a seb;
such that at the end of layeronly processes i; (at most) distinguish between(o, ¢, I) and

Oé(SU}(Ip(O’, Pia 7"), 57 [)

Proof: Considerswap(o, P;,r) and letr be the permutation corresponding to layerSince P,
is not the last set in the layer, we hawve! (i) # |r|. Leti' = n(7'(i) + 1), i.e., P, is swapped
with P;. By Lemma 10.6, either all the processesimperform a cheap-snapshot operation or all
processes i®; perform a write operation. The same appliesfor

Let C be the configuration resulting from both executions aftgeila — 1 andy; the vector of
the resulting coin flips of the processes at the configuratiofrurther, letZ be layerr in o, and
L' be layerr in swap(o, P;,r). By Claim 9.1, there is a se?; such that the configurations at the
end of layern of both executions are indistinguishable to processesnBt {where; is either: or

i'). |

Notice that the seP; (the value of the index) depends only on the types of operations per-
formed, i.e, only onr, and not on the sequences of coihsr the initial configuration/. This is
crucial for ensuring that the adversary is non-adaptive.

For everyr andk, 1 < r < k, we define:

1 if r==%
Srk = .
2-Cppt1 fl<r<k
S ifr==%
dr,k - .
drsip+ S S+ S sy f1<r<k
S ifr==%
Crk = .
dr,k_'_CrJrl,k |f1§7’<k

where S = max{3, [}]} is the number of set#;. These recursive functions will be used for

bounding the lengths of the indistinguishability chaineur construction.
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The next proposition shows a bound on these functions; asfps a simple backwards induc-
tion.

Proposition 10.11 ¢, < (25 + 4)k—+1,

The main technical result of this section is the followingnhaa, which will be used to show an
indistinguishability chain between the executions thatitefrom schedules andcrash(o, P;, 1),
in order to apply Lemma 10.2. Additional claims, regarding:p anddelay, are proved in order
to carry through with the proof.

Lemma 10.12 Let o be a regular schedule with layers such that no process is skipped at any
layer? > r, for somer, 1 < r < k. For any sequences of coiaisand initial configuration/, and
for everyi, 1 < ¢ < S, the following all hold:

S

a(0,81) =, alswap(o,P,r),& 1)

I) =, ;
a(0,51) ~a, aldelay(o, Pr), 1),
a(o,c,I) =, afcrash(o, P,r),c ).

Proof: Leto, = 0. Throughout the proof, we denote = «(o;, ¢, I) for every schedule;, and
af = a(ol, ¢, I) for every schedule’.

The proof is by backwards induction en

Base caser = k. Considerswap(o, P;, k), whereP; is not the last set in the layer (otherwise
swapping is undefined). By Lemma 10.10, there is af3etwhich does not depend anor I,
such thatv(c, ¢, I) X a(swap(o, P;, ), 1), for every process ¢ P;. Thereforep(o, ¢, I) =, ,
a(swap(o, P, k), 1).

Delaying P, in the last layer is equivalent to failing it, thereforglay(o, P, k) =
crash(o, P;, k). Denote this schedule by'. We crashP; by swapping it until it reaches the
end of the layer and then removing it. In more detailddte the permutation of the last layer of
o, and define:

0" = swap™= "D (q, P, k).

The proof of the base case fewap(o, P, k) implies that there is a chain of length ;, -

(Jm| — w7 1(i)) < (S —1) - spr = S — 1 between the executions, i.ey ~s_1 a(c”,c ).
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Clearly, a(¢”,2 1) X a(o’,¢ 1), for every procesp ¢ P, and thereforen (o, é, 1) Ry
a(delay(o, P;,r), ¢, I) anda(o, ¢, I) ~., , a(crash(o, P;,r), ¢, I).

Induction step:Assume the lemma holds for layer- 1 < k. We prove that it holds for layer

We first deal with swapping; assume th@tis not the last set in the layer and consider
swap(o, P;,r). By Lemma 10.10, there is a s&, which does not depend ahor I, such that
at the end of layer only process inP; distinguish between(o, ¢, I) anda(swap(o, P;,r), ¢, I).
We defines,; to be the same as except that processes iy are crashed in layer + 1, i.e.,

o1 = crash(o, P;,r + 1). By the induction hypothesisy, ~.,, , ai. Leto, be the same as
oy except thatP; and P; are swapped in layer, i.e., oo = swap(oq, P;,r). Since only pro-
cesses inP; observe the swapping, but are all crashed in the next layehave thaty R ag
for every procesp ¢ P;. Finally, let o3 be the same as,, except that processes if;
are not crashed in layer+ 1, i.e., 0o = crash(os, P;,r + 1). By the induction hypothesis,
ay =, as. Notice thatos = swap(o, P;,7), and2¢, ;1 + 1 = s.,, Which implies that
a(0,2,1) =, a(swap(o, P,7),2.1),

Next, we consider the case of delaying a process,detay(o, P;,r)). (Recall Figure 10.4.)
By Corollary 10.7,

delay(o, P;,r) = szuczjfrfjl(i)’1 (rollover(swap“”’”;l(i) (delay(o, Pi,r+1), Pyy1), Py, r), Py r+1).

Recall that applying-ollover does not change the execution. Hence, by the proof for swgppi

the induction hypothesis, and since
dr—l—l,k + Sr,k : (|7Tr| - 7Tr_1(2)) + 37‘+1,k; . (77-7‘_.;}1(2) - 1) S dr—l—l,k + S *Srk + S *Sr4lk = dr,k

it follows thata(o, ¢, I) =4, , o(delay(o, P;,r), ¢ I).
Finally, we consider the case of crashing a processc¢tesh(o, P;,r). By Corollary 10.8,
crash(o, P;,r) = crash(delay(o, P;,r), P;,r + 1).
By the proof for delaying, the induction hypothesis, andsit). ;, + ¢,;1x = ¢, it follows that
alo, ¢ 1) =, . a(crash(o, P;,r),¢ ).

rk
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Note that in all executions constructed in the proof, at noost set of process&d does not
appear in a layer; sincde?;| < f, this implies that at least — f processes take a step in every
layer, and hence every execution in the construction costileast:(n — f) steps.

Lemmas 10.2 and 10.12 imply that for every sequence of @inéo ., ¢, Co) ~s(ac, ,+1)+1
(o tu, G, Cs), Sincecy . < (25 +4)%, we have thab(2¢; . + 1) +1 < (25 +4)*1. Substituting
in Theorem 10.1 yields thaj, > m

constant, we get the next theorem:

SincesS can be taken to be a constant whér is a

Theorem 10.13Let A be a randomized consensus algorithm in the asynchronousdimaemory
model, with single-writer registers and cheap snapshdterd are a weak adversary and an initial
configuration, such that the probability that does not terminate aftér(n — f) steps is at least

-, Wherec is a constant if %] is a constant.

10.2.2 Multi-Writer Cheap-Snapshot

We derive the lower bound for multi-writer registers by retlon to single-writer registers. In a
simple simulation of a multi-writer register from singleiter registers (e.g., [73]), performing a
high-level read or write operation (to the multi-writer igtgr) involves: low-level read operations
(of all single-writer registers) and possibly one low-lewgite operation (to the process’ own
single-writer register). This multiplies the total steprgaexity by O(n).

However, with cheap-snapshots, we can read all singleexwr@gisters in one step, yielding
a simulation that only doubles the total step complexitpgsiwriting includes a cheap-snapshot
operation). The pseudocode of the simulation appears iarAlgn 10.1, which uses an arrd&§R
of single-writer variables.RR][i] is the last value written by;, together with a timestamp. The
correctness of this algorithm follows along the proof of &ighm 10.3 from [18].

Since in the single-writer cheap-snapshot model each boapperation accounts for one ac-
cess to the shared memory, every algorithm in the multievmtodel can be transformed to an
algorithm in the single-writer cheap-snapshot model, whiee step complexity is only multiplied

by a constant factor. Combining this with Theorem 10.13dg¢he next theorem.

Theorem 10.14 Let A be a randomized consensus algorithm in the asynchronousdimaemory

model, with multi-writer registers and cheap snapshoterélare a weak adversary and an initial
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Algorithm 10.1 Simulating a multi-writer registeR from single-writer registers.

Procesg; has a shared regist&R][1], each consisting of the pajv, t);

initially, each register holdg), init), whereinit is the desired initial value

1: read(R):
2:  snapshofRR array into local(t, v) array

3:  returnv[j] such that[;] is maximal

4: write(R,v) by py:

snapshofR R array into local(t, v) array
letlts be the maximum of[1], ..., t[n]
write the pair(v, lts + 1) to RR[w]

return

configuration, such that the probability that does not terminate aftét(n — f) steps is at least

-, Wherec is a constant if 7] is a constant.

10.3 Monte-Carlo Algorithms

Another way to overcome the impossibility of asynchronoossensus is to allow Monte-Carlo
algorithms. This requires us to relax the agreement prpertl allow the algorithm to decide
on conflicting values, with small probability. Let be the maximum probability, over all weak
adversaries and over all initial configurations, that psses decide on conflicting values after
k(n — f) steps. The next theorem is the analogue of Theorem 10.1ptording the probability
of terminating aftek(n — f) steps.

Theorem 10.15Assume there is an integet: such that for all sequences of coing

— — 1- 1
Oé(Ufuu, C, Co) Nm Oé(Ufuu, C, Cs) Thenqk > %

Proof: Assume, by way of contradiction, that + 1)g, < 1 — (m + 1)e;. Consider then +
1 executions in the sequence implied by the fact that;.., ¢, Co) ~, o(opu,c, Cs). The

probability thatA does not terminate in at least one of these 1 executions is at mosin + 1)gy.
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By assumptiong;(m+ 1) < 1 — (m+ 1), and hence, the sét of sequences of coirissuch that
A terminates in alln + 1 executions has probability Pre B] > (m + 1)¢;.

If the agreement property is satisfied in@ll+ 1 executions, then by the validity condition, as
in the proof of Theorem 10.1, we get that the decisioa(a,,;, ¢, Cy) is the same as the decision
in a(o s, ¢, Cs), which is a contradiction. Hence, for every: B, the agreement condition does
not hold in at least one of these executions.

Since we haven + 1 schedules in the chain, there exists a schedule for whichgheement
condition does not hold with probability greater thanBut this means that satisfies agreement

with probability smaller than — ¢, which is a contradiction. ]

Substituting with Lemma 10.2 and Lemma 10.4, yields the dveeind for the message pass-
ing model.

Theorem 10.16 Let A be a randomized consensus algorithm in the asynchronousagepassing
model. There are a weak adversary and an initial configurgtguch that the probability that
does not terminate aftér(n — f) stepsis at Ieasl%kek, wherec is a constant iﬂ?} IS a constant,

ande, is a bound on the probability for disagreement.

Substituting with Lemma 10.2 and Theorem 10.14 yields theetdound for the shared mem-
ory model.

Theorem 10.17 Let A be a randomized consensus algorithm in the asynchronousdimaemory
model with multi-writer registers and cheap snapshots. r@ta@e a weak adversary and an ini-

tial configuration, such that the probability that does not terminate aftet(n — f) steps is at

least 1*6,56’“, wherec is a constant iff 2] is a constant, and,, is a bound on the probability for
c f p y

disagreement.

The bound we obtain in Theorem 10.15 on the probabilitpf not terminating increases as
the allowed probability, of terminating without agreement decreases, and coinewtbsTheo-
rem 10.1 in case the agreement property must always bead{jisé. ¢, = 0). In case an algorithm

always terminates ih(n — f) steps (i.e.gx = 0), we can restate Theorem 10.15 as a bouné,on

Corollary 10.18 Assume there is an integer. such that for all sequences of coin$
a(o i, ¢, Co) =m a0, €, Cs). Moreover, assume that the algorithm always terminatesr aft

k(n — [) steps, i.e.q; = 0. Thene, > —L-.
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For example, the algorithms for the message-passing modsh §y Kapron et al. [52] are
Monte-Carlo, i.e., have a small probability for termingtiwithout agreement. They present an
algorithm that always terminates withjrolylog(n) asynchronous rounds, and has a probability
W for disagreeing. For comparison, our lower bound of CorglE0.18 for disagreeing
whenk = polylog(n) andg, = 0is ¢, > m wherec is a constant n’ﬂ is a constant. Their
second algorithm always terminates witlf(°s" ») asynchronous rounds, and has a probability

ooly (n for disagreeing, while our lower bounddg > m
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Chapter 11

A Lower Bound for a Strong Adversary

In this section we prove a lower bound for randomized consensider a strong adversary, as
defined in Section 9.2. We begin, in Section 11.1, by layirgstting for the framework we use.
This section defines the key notions used in our lower boundfpspotenceandvalence—and
proves that layered executions in the multi-writer sharesinory model ar@otence connected

The lower bound proof appears in Section 11.2.

We emphasize that we are considering multi-writer regssteghich we could not have assumed
when manipulating layers for the lower bound under the welesary because there the register
written to by a process has to be fixed in advance for the admets be non-adaptive. However,
under a strong adversary we cannot directly employ the temuof Section 10.2.2 from single-
writer cheap-snapshot registers to multi-writer regstercause the adaptiveness of our strong ad-
versary may imply a weakening of the algorithm (splittingeogtions that are modelled as atomic
operations into several memory accesses). Dealing withi-mvter registers directly imposes
some subtle challenges when proving indistinguishalalitgonfigurations, therefore the manip-
ulations we perform on the layers for proving the lower boumthis section are more involved.
Moreover, coping with these manipulations requires addéi definitions which are specific for

this lower bound, and hence do not appear in Chapter 9.
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11.1 Potence and Valence of Configurations

In order to derive our lower bound, we are interested in tlubdability of reaching each of the
possible decision values, from a given configuration. Asatgerithm proceeds towards a decision,
we expect the probability of reaching a decision to grow, ieher a configuration in which a
decision is reached, this probability is 1. This intuitierformalized as follows. Let > 0 be an

integer, and define
1 k

i (n—f)°

Our proof makes use of adversaries that have a probability-of, for reaching a certain decision

€ —

value from a configuration reached affetayers. As the layer numbérincreases, the value of
¢, decreases, and the probability- ¢, required for a decision grows. The valuecpfis set with
foresight to achieve the stated bound.

An adversary with a high probability of deciding is defined@kws.

Definition 11.1 An f-adversaryx from a configuratiorC' that is reachable from an initial config-
uration by anf-execution witht > 0 layers, isv-decidingif Pr{decision fromC' undera is v] >

1_€k-

Next, we classify configurations according to the prob#bdgiof reaching each of the possible
decisions from them. We adapt the notiorpotenceg60] to fit randomized algorithms.
Instead of considering all possible adversaries, we funtestrict our attention to a certain

subset of them, which will be specified later.

Definition 11.2 A configurationC' that is reachable from an initial configuration by aft+
execution withk > 0 layers, is(v, k, S)-potent for v € {0, 1} and a setS of f-adversaries, if

there is av-deciding adversary € S fromC'.

Definition 11.3 A configuration iSv, k, S)-valentif it is (v, k, S)-potent but notv, k, S)-potent.
Such a configuration is also calléd, S)-univalent

A configuration is(k, S)-bivalentif it is both (0, &, S)-potent and 1, k, S)-potent.

A configuration i5k, S)-null-valentif it is neither (0, k, S)-potent nor(1, k, S)-potent.
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max Pr{decision fromC' undera is 0]

1

0-valent bivalent
1-— €k

null-valent | 1-valent

max Pr[decision fromC undera is 1]
1—¢€ 1 a

Figure 11.1:Classifying configurations according to their valence.

We often say that’ is v-potent ¢-valent, bivalent, null-valentyvith respect taS, when the
number of layer is clear from the context. Further, if the sets also clear from the context, we
will sometimes use the notatianpotent ¢-valent, bivalent, null-valent). Figure 11.1 illustrates
the valence of configurations as follows. A configurati@nis mapped to a point in the figure,
according to the maximum probabilities over all adverssioe deciding 0 and for deciding 1 from
C; the valence ot” is determined by the area in which the respective point k&s.example, if
this point lies beyond — ¢, on thex axis, it implies that there is an adversaryfrom C with
probability at least — ¢, for deciding 1. Therefore}' is either bivalent or 1-valent, depending on
whether it lies beyond — ¢, on they axis or not.

Note that a configuration can have a certain valence withextgp one set of adversariés
and another valence with respect to a different8eFor example, it can be univalent with respect
to S and null-valent with respect t8' # S; however, this cannot happen whernC S’. (Another
example appears in Lemma 11.1 below.)

The set off-adversaries we consider, denotggd, is induced by a subset of procesgesC
{p1,...,pn}. An adversaryx is in Sp, if all of the layers it may choose arB-free, where a
layer is P-freeif it does not include any procegsc P. Specifically, the sefb is the set of all
f-adversaries.

A layer is full with respect toSp if it contains then — |P| distinct process identifiers
{p1,...,pa} \ P; otherwise, the layer ipartial. Scheduling a partial layer without some pro-

cessp ¢ P, does not imply thap is failed, since the system is asynchronous, anthy appear in
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later layers. However, considering only adversarieSgrfor some nonempty se?, is equivalent
to failing the processes iR since they do not take further steps.

Restricting a set of adversaries can only eliminate possittversaries, and therefore cannot in-
troduce potence that does not exist in the original set ofesdries, as formalized in the following

simple lemma.

Lemma 11.1 If a configurationC', reached aftek layers, isv-valent with respect t&'p, then it is

notv-potent with respect t6'p,,; for any process.

Proof: Assume towards a contradiction, that there is a propessch thatC' is v-potent with

respect taSpy(,3. Then there exists adeciding adversary in Spy, i.€.,
Pr{decision inC’ o ais 7] > 1 — €.

But o is also an adversary ifip becausesry,; € Sp, which implies thatC' is v-potent also with

respect toSp, contradicting the fact that' is v-valent with respect t6'p. |

Let C' be a configuration reached after some number of layeend fix a vectorj; € X°¢.
We consider every configuration that can be reached by apgplisingle layer t@'. We define
a relation between these various configurations, basedeimpibtence, which generalizes notions

for deterministic algorithms suggested by [60].

Definition 11.4 For a given vectory;, two configurationsC, v, L) and (C, 1, L') haveshared

potence with respect t8p, if they are both,-potent with respect t6'» for somev € {0, 1}.

We definepotence connectivitlgetween two layers, as the transitive closure of the abdae re

tion.

Definition 11.5 For a given vectory;, two configurationgC, v, L) and (C, 1, L") are potence
connected with respect t6p, if there is a sequence of layefs = Lg, L1,...,L, = L’ such
that for everyi, 0 < ¢ < h, there exists a procegssuch that the configuration&”, 7, L;) and
(C, 41, Li+1) have shared potence with respectSta, ;.
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In particular, if(C, 41, L) and(C, 71, L') have shared potence with respectiq,,; for some
proces®, then they are potence connected.

Our goal is to show that givef, y; andSp, if the set of all configurations of the for(d, v, L)
does not contain a null-valent configuration, then theséigorations are potence connected with
respect taSp. Therefore, if there are both 0-potent and 1-potent cordigums in this set, then
there must also be a bivalent configuration in it. This wouatgly that there is a non-univalent
configuration among this set, namely, a configuration thabts-valent, for anyv.

The following claims are used to prove this connectivity,dhpwing that specific configura-

tions are potence connected. They are proved under thevioticassumption:

Assumption 1 LetC be a configurationy; € X¢, andSp a set of adversaries. For every process
p and every layel, the configuratior{C, i, L) is univalent with respect t§p and Sp,.

We proceed to stating and proving our connectivity claims.

Claim 11.2 Under Assumption 1, if = [p;,, pi,, - - -, pi,] IS @ layer where for somg 1 < j < ¢,

p;; andp; ., both write to the same registét, andL' = [p;,,...,pi,_,,Pi,..,- - -, Pi,] IS the layer

L after removingy;,, then(C, 1, L) and(C, 1, L) have shared potence with respecm{pij}.
Proof: By Claim 9.2, taking each set to be a single process, we hawd th
(L) (0o L), which implies that(C, g1, L) and (C, 7, I') have the same
potence with respect tSPU{pij}. By Assumption 1, this implies that they have shared potence

with respect td5puy,, 1, Since they are not null-valent. m

Claim 11.3 Under Assumption 1, it = [p;,, pi,.- .., p;,] IS alayer,p is a process not i, and
L' = [pi,,pi,---»Pi,, p] is the layerL after addingp at the end, thedC, ¢, L) and (C, 41, L)
have shared potence with respectta ;.

—

Proof: If p performs a read operation, théd, i, L) riel (C, 41, L"), which implies that these
two configurations have shared potence with respeéptg,,, and the claim follows.

If p performs a write operation to registgr then the states of all processes noPit {p} are
the same i{C, 71, L) and in(C, 4;, L), but the value of? may be different.

If (C,41,L)and(C,y, L") do not have shared potence with respec$toy,,, then since we

assume they are univalent with respec$o,,,; (Assumption 1), we have that for some= {0, 1},
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(C, 1, L) is v-valent with respect t&'py,y and(C, v, L) is v-valent with respect t&pyg,). In
particular, there is a-deciding adversany € Spyy,) from (C, 41, L'). Addingp at the beginning
of the first layer ofa yields a new adversary which is -, and isv-deciding when applied to
(C, 41, L), since itis the same as applyingo (C, 41, L'). However, by Lemma 11.1(C v, L) is

v-valent with respect t&'», which is a contradiction. [ ]

Claim 11.4 Under Assumption 1, ifL = [py.pi,,-..,p;,] IS @ layer and L' =
[Pirs -3 Dij_1s Pij1s Pijs Dijyas - - - » Py 1S the layerL after swapping;, andp; ., then(C, i, L)

and(C, v, L') are potence connected with respectta

Proof: By Claim 9.1, taking each set to be a single procesg, ifand p;,,, access different
registers, or if they both read, orjif, reads registeR andp;,,, writes to R or vice versa, then

— -P —
(Oa Y1, L) ,L\JJ{p} (Oa Y1, L/) )

wherep is eitherp;; or p;,, . Both cases imply thdC, 41, L) and(C, 31, L') are potence connected
with respect toSp. The remaining case is when, andp; ,, both write to the same register
R. 1t may be that all the rest of the processes in the layer remd fegisterR, and therefore
distinguish between the two resulting configurations. leme cannot argue in this case that the
configurations have shared potence, but we can prove theatagotence connected. This is done
by reverse induction on.

Basis:If j =¢—1,letLy =L, L, = [p;,,--.,pi,_,, i, b€ the layelL after removingy;, ,,
andL, = L'. By Claim 11.2,(C, ¥, L) and(C, 41, L) are potence connected with respect to
Sp, and by Claim 11.3(C, v, L1) and(C, 71, L») are potence connected with respecbto The
transitivity of potence connectivity implies that', 4, Ly) and(C, 1, L) are potence connected
with respect taSp.

Induction stepLet

Lo=1L= [pi1api27 ce ,pn]
and let
Ly = [Piys s Diy 15 Dijirs Pigias -+ Dif]
be the layerL, after removingp;,. By Claim 11.2,(C, 1, Lo) and(C, #1, L) are potence con-
nected with respect t6p. Let

LQ = [p’i17 co s Pij_15Dijp1sPijyar - - - upzj)pij]
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Lo= pir(R1) ... piw(R2)  pir1if(R2)  piveW(R2) ... pn—1iM(R3)  pnir(Ra)

L= pl:r(Rl) . pZW(RQ) pi+1:r(R2) pi+2:W(R2) e pn,lil‘(Rg)
L= pl:r(Rl) . pi+1:r(R2) pZW(RQ) pi+2:W(R2) . pn,lil‘(Rg)
Li= pur(Ri) ... pipair(Re) Pit2W(R2) ... pp-1ir(Rs)

Figure 11.2:Example of potence connected configurations: the first andnskconfiguration are con-
nected by Claim 11.3, the second and third are connected &iyndl1.4, while the third and fourth are
connected by Claim 11.2.

be the layer., after addingy;; at the end. By Claim 11.3C, 41, L;) and(C, #1, Lo) are potence
connected with respect tep.

Foreverym,3<m </{—j+1,let

Lm = [pim co 9 Pij 15 Pijy1sPijyasr -+ -5 Pijy Pig iz - 7pzj]

be the previous layet,,  after swapping,;, with the process before it, until it reachgs, .

Specifically,
LZ*jJrl = L/ = [pilv s 7pij,17pij+17pij7pij+27 s 7pig]-

By the induction hypothesisC, 4, L,,) and (C, 41, L,,+1) are potence connected with respect
to Sp, for everym, 2 < m < ¢ — j + 1. The transitivity of potence connectivity implies that

(C, 1, Lo) and(C, ¢, L,—+1) are potence connected with respecbto ]

Figure 11.2 shows an example of using the claims, for theldykr L, and the partial layer
L, obtained by removing the steps pfandp, from L,. We show two layerd.’ and L” such
that only one process,,, distinguishes between the configurations lead td.fpgndL’, only one
processp; 1, distinguishes between the configurations lead tétgnd ", and only one process,
p;, distinguishes between the configurations lead té/bgnd ;. Thus, the configurations lead to
by L, and L; must be potence connected.

The following lemma shows that given a configuratidrand a vector; ¢ X, if there is
a layer that extend€' into a v-valent configuration and a layer that extertdsnto a v-valent
configuration, then we can find a layer that exte6dsto a non-univalent configuration, possibly

by failing one additional process.
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Lemma 11.5 LetC be a configuration and lgf; be a vector inX°. If there are layerd., and L,
such that(C, i, L,) is (v, k + 1, Sp)-valent and(C, ¥, L) is (v, k + 1, Sp)-valent, then there is
alayer L suchthat(C, 7y, L) is either not(k + 1, Sp)-univalent or not(k + 1, Spuy,y)-univalent,

for some process.

Proof: Assume towards a contradiction that for every lajeand every process, the configu-
ration (C, 71, L) is univalent with respect to botsip and.Spy,,; (this implies that Assumption 1
holds). LetL! be the full layer with respect t8p consisting of all processes not iy according
to the order of their id’'s. Ther,” is univalent with respect t6p, say it is(v, k + 1, Sp)-valent.
(Otherwise, we follow the same proof wiily.)

DenoteL, = [p;,, - .., p;,| and consider the layer = [p;,, ..., p;,, . - .] thatis full with respect
to Sp, and had., as a prefix. [, may be full with respect t&'», in which case’ is equal toL,.)

We start with the layer.”” and repeatedly swap processes until we reach the l&yén a
chain of configurations which, by Claim 11.4, are potencenected with respect t6p. From
L', we repeatedly remove the last process until reaching tfez Ia,, in a chain of configurations
which, by Claim 11.3, are potence connected with respe§tarhis implies thatC, i, L) and
(C, 1, L,) are potence connected with respectto

Since(C, 1, L,) is (v, k+1, Sp)-valent, and C, ¢, L) is (v, k+ 1, Sp)-valent, it follows that
there are layerg, andL, such that{C, vy, L) is (v, k+1, Sp)-valent,(C, 4y, L) is (v, k+1, Sp)-
valent, and C, 71, L1) and(C, 71, L) have shared potence with respecfi,;,,, for some process
p. By Lemma 11.1 and our assumption that all layers lead toalet configurations,C, 71, L1)
is (v, k41, Spugpy)-valent, and C, vy, Lo) is (v, k+1, Spugpy)-valent, and hence, they cannot have

shared potence with respect§g ,,. This yields a contradiction and proves the lemma. =

11.2 The Lower Bound

Before presenting the lower bound proof, let us recall Ioaaind proofs and impossibility results
for deterministic consensus algorithms. In these probfsconfigurations are classified intai-
valentandbivalentconfigurations. Since a deciding configuration has to bealent, these proofs
aim to avoid univalent configurations by showing that therari initial bivalent configuration, and

by moving from one bivalent configuration to another bivalenfiguration.
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Our proof generalizes the above technique to randomizeatitigns as follows. Recall that
in addition to bivalent and univalent configurations, wedaull-valent configurations, since va-
lence is now a probabilistic notion. We first show that somtaiihconfiguration is not univalent
(Lemma 11.6); namely, it is either bivalent or null-valent.

Ideally, we would like to complete the proof by showing thaoam-univalent configuration can
be extended by a single layer to a non-univalent configuratidnile (permanently) failing at most
one more process. Doing so would allow us to construct a éalyekecution withf layers, each
containing at least — f process steps, which implies the desired lower bound.

In Lemma 11.11 (Section 11.2.4), we show that this can be dattehigh probability in the
case of null-valent configurations, i.e., we can extend kvalént configuration by one layer and
reach another null-valent configuration.

A bivalent configuration, can be extended with both-deciding adversary and@adeciding
adversary, which we would like to use in Lemma 11.5 to obtaimoa-univalent configuration.
However, some complications arise here, which are takenafan Lemmas 11.7 and 11.8 (Sec-
tion 11.2.2).

We extend the execution in this manner, with high probahifior f layers. Sincen — f
processes take a step in each layer, we obtain the bound apanted(f(n — f)) steps (Theo-
rem11.12).

11.2.1 |Initial Configurations

We start by applying Lemma 11.1 to show that some initial gurfition is not univalent.

Lemma 11.6 There exists an initial configuratiofi that is not univalent with respect to eith&j

or Sy}, for some process.

Proof: Assume that all initial configurations are univalent witBpect toS,. Consider the initial
configurations’y, C, . . ., C,, such that inC;, 0 < i < n, the input of procesg; is 1 if j <iand

0, otherwise. By the validity conditiort}, is (0, 0, #)-valent andC,, is (1, 0, ())-valent. Therefore,
there is ani, 1 < ¢ < n, such thatC;_; is (0,0, 0)-valent andC; is (1,0, 0)-valent. Clearly,
C;_, % ¢, and hence(’;,_; andC; have the same valence with respecbtp,. By Lemma 11.1,
C;j_ is not1-potent with respect t&/,,,, andC; is not0-potent with respect t§,,,. Hence, they

are null-valent with respect t§, ;. n
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11.2.2 Bivalent and Switching Configurations

As mentioned before, from a bivalent configuration we havih laov-deciding adversary and a
v-deciding adversary. However, we cannot use them direntlyemma 11.5 to obtain a non-
univalent configuration, since the first layer ob-@eciding adversary may still lead tovavalent
configuration, because these definitions are probabili$tiz was an increasing function &f the
above situation would have small enough probability in otdesimply neglect it. However, this
cannot be done, sineg is defined as a decreasing functiorkoin order to handle the null-valent
configurations.

Instead, we prove (Lemma 11.7) that by failing at most onesrpoocess, a bivalent configura-
tion can be extended by a single layer to a non-univalentgordtion, or to a configuration which
is v-valent although reached while followingradeciding adversary. Such a configuration, as will
be formalized below, is called-switching

We also prove that there is a small probability of decidingiswitching configuration and
thus, from a switching configuration, the execution can kereded (with high probability) to a
non-univalent configuration, by at least one layer (Lemm&)11

We formally define switching configurations as follows.

Definition 11.6 Let C' be a(v, k, Sp)-potent configuration, letv = oy, 0,,... be av-deciding
adversary fronC'in Sp, and lety, be a vector inX“ such that the configuratiofC, i, o1 (7)) is
(v, k + 1, Sp)-valent. Then(C, 41, 01(y1)) is av-switching configuration with respect ) from
C by y; anda.

Lemma 11.7 implies that a bivalent configuration can be @ddrwith one layer to a configu-

ration that is either switching or non-univalent.

Lemma 11.7 If a configurationC' is (k, Sp)-bivalent, then there is an adversasysuch that for
every vectolj; € X, (C, 4,0 (i1)) is eitherv-switching for some € {0, 1}, or not(k + 1, Sp)-

univalent or not(k + 1, Spy(py)-univalent, for some procegs

Proof: Assume that for every layérand every procegs the configurationiC, ¢y, L) is univalent

with respect ta5» and toSpyy.
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Consider the extension ¢6f with L7, the full layer with respect t&». Fix a vectory; € X¢
and assume that” = (C,y,, L") is (v,k + 1,Sp)-valent. SinceC' is bivalent, there is a-
deciding adversary = 0,09, ... in Sp. Consider the configuratio’ = (C,,01(7y1)). By
the assumption(” is univalent. If it is(v, k + 1, Sp)-valent then it isv-switching with respect
to Sp from C by ¢, anda. Otherwise, it is(v, k + 1, Sp)-valent. SinceC” is (v,k + 1, Sp)-
valent, by Lemma 11.5, there exists a layeand a procesp such that(C, 7, L) is either not

(k4 1, Sp)-univalent or notk + 1, Spyypy)-univalent. u

The main issue when reachingiaswitching configuration is that we cannot rule out the pos-
sibility that all the other layers lead w@valent configurations as well. However, although-a
switching configuration ig-valent, the adversary that leads to itisleciding. This allows us to
look several layers ahead, for the desired situation of aperlleading to a-valent configuration,
and another layer leading tozavalent configuration. From such a setting, Lemma 11.5 can be
used to reach a non-univalent configuration again. Thevatig lemma presents the details of

this argument.

Lemma 11.8 Let C’ be awv-switching configuration with respect 1) from C by y; anda. Then
with probability at leastl — ﬁ C' can be extended with at least one layer to a configuration
which is eitherv-switching, or not univalent with respect &p, or not univalent with respect to

Spugpy, for some process.

Proof: Leta = oy05...; note thatC’ = (C, 1, 01(71)). DenoteCy = C, C; = €’ and for every
k > 2, fix a vectory, € X1 and letCy, = (Ci_1, ¥, ok ()

Assume that for every > 1, C}, is univalent, and leC’; be the first configuration which is
v-valent with respect t&'». If such a configuration does not exist then the executidreereaches
a configuration that decides or does not reach any decision. Sinceés v-deciding fromC), the
probability thatC, does not exist is at most < n—}/ﬁ

Since C; is the first configuration which is-valent, C,_; is v-valent. Therefore, there is
a v-deciding adversaryy = pq, po,... from C,_; in Sp. Consider the configuratiof” =
(Co—1, Yo, p1(ge)). If C" is not (k + ¢, Sp)-univalent then we are done. @ is v-valent, then
sinceCy is v-valent, by Lemma 11.5, there exists a layesuch that(C,_1, 4, L) is either not

(k + ¢, Sp)-univalent or not(k + ¢, Spugpy)-univalent, for some procegs in which case we are
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also done. Otherwis€” is v-valent, which implies that it is-switching with respect t&» from
C¢—1 by gy andp. n

11.2.3 One-Round Coin-Flipping Games

The remaining part of the lower bound proof deals with nallewt configurations, and it relies
on results about one-round coin-flipping games. As defind@3i a U-valued one-round coin

flipping game ofn playersis a function
g: {XiUl} x{Xoul}x---x{X,Ul} —{1,2,...,U},

whereX;, 1 <i < m, is thei-th probability space. A-hiding adversarymay hide at most of the
random choices X, . .., X,,, by replacing them with a..

Before presenting the formal definitions for the adversay the game, we describe one main
difference in the way that null-valent and bivalent confagions are handled. We have shown
in Section 11.2.2 that in order to reach a bivalent configoinarom a bivalent configuration, it
suffices to fail one process per layer. This process is fagdhanently, and may not take steps
in any later layer. The case of a null-valent configuratiodifferent. We may need to hide many
more processes in a layer in order to reach another nulhktalenfiguration. Fortunately, these
processes are onlyiddenin this layer and may take steps in subsequent layers, whglhas
that they are not failed according to the definition of an abyonous system. Therefore, we do
not need to account for them towards therocesses that we are allowed to fail, and hence their
number can be non-constant.

Formally, letX = X; x --- x X,, be the product probability space implied by the game.
For every vectory € X, and/ C {1,...,m}, the vector reached when the adversary hides the

coordinates of is defined as follows:

yli), ¢l
g, (i) =
4, 1€ 1.
For every possible outcome of the game {1,...,U}, define the set of all vectors ik for

which not-hiding adversary can force the outcome of the game to, be be
W ={ye X|g(y,) #uforeveryl C{1,...,m}suchthatl| <t }.
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We prove that wheflJ| = 3, there is an outcome for which there is high probability fiatitg
values in a way that forces this outcome; that is, for sanee{1, 2, 3}, Priy € W*"] is very small.
The proof relies on an isoperimetric inequality, followiagesult of [69]. The idea is to show
that if all three set3¥V!, W2, 13 C X have large enough probability, then there is a non-zero
probability for an element € X that is close to all three sets according to the Hamming mista
This will imply the existence of &hiding adversary fog, for which the value of the game cannot
be any of 1, 2 or 3, and hence there is a point for which the gamedefined.

Formally, the spacéX, d) is a finite metric space where for every pair of vectérandy in
X, d(Z,y) is the Hamming distance betwe@&mandy (the number of coordinates in whighandy
differ). ForA C X, B(A,t) is theball of radiust around the set, i.e.,

B(A,t) = {y € X|thereisz € A suchthati(y, ) < t}.

The next lemma is the isoperimetric inequality we rely on. 8hlew that given the probability of
a setA, there is a lower bound on the probability of the ball of a@@rtadius around!.

Lemmall9let X = X; x --- x X,, be a product probability space and C X such that
Pr[z € A] = c. LetA = /2mlog 2, then for? > ),
t=20)*

PrZ € B(A,0)] > 1 —2e= 2

Proof: Consider an element as a random functio : D = {1,...,m} — X;U---UX,,
such thatr(i) € X;. Define a sequence of partial domaths- D, ¢ D; C --- € D,, = D such
thatD; = {1,...,i}. Let f : X — R be a function that measures the distance of elements from
the given subset C X, i.e., f(Z) = d(A, ©).

Choose a random element@fe X according to the given distribution. Define the sequence
Yo,..., Y, by Y, = E[f(Z) | ¥|p, = w]. Specifically,Yy, = E[f(Z)] with probability 1, and
Y,, = f(&) with the probability of choosings. It is well known thatYy,...,Y,, is a Doob
martingale (see [3, Chapter 7] and [63, Chapter 4]).

Notice thatX}, ..., X,,, are independent and therefore for every D, the random variabl&(:)
is independent of other values ©f

The functionf satisfies the Lipschitz condition, i.e., for every 2 vect@rg that differ only
in D; \ D,_, for somei, we have|f(Z) — f()| < 1, by the triangle inequality of the Hamming
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metricd. This implies that the martingalg,, . . ., Y, satisfies the martingale Lipschitz condition,
i.e.,|Y; =Y, <1foreveryi 0 <i<m.
By Azuma'’s inequality we have that for every real numhes 0
2
Pr| f(Z) — E[f(Z)]] > A] < 2¢ 2m. (11.1)
We now claim that Ef(Z)] < Xo. Assume the contrary, that §z)] > \g. Since), =
\/2mlog 2, we have thade 2+ = c. For everyr € A we havef(Z) = 0, therefore

Prlf(Z) — E[f(@)]] > Ao] 2 PIf(Z) =0] =,

contradicting (11.1).
Hence, for every > )\, we have

(t=20)*

Pz ¢ B(A, ()] = Pilf(Z) > €] < P[f(Z) — E[f(D)]] > € — Ao] < 2e7 >m

which completes the proof. ]

We now use Lemma 11.9 to show that one of the Bétshas a small probability, and deduce
that foru = 1, 2 or 3 the outcome of the game can be forced ta lvéth high probability.

Lemma 11.10 For every3-valued one-round coin-flipping gameafplayers, there is a-hiding
adversaryt = 6./2mlog(m3), that can force the outcome of the game to be sorae{1, 2, 3}

with probability greater tharl — .

Proof: Recall that for every: € {1, 2, 3}, the seti¥™ is the set of all vectors itX for which no
t-hiding adversary can force the outcome of the game ta e wish to prove that Py € "] <
L, for someu € {1,2, 3}.

DenoteB* = B(W*,£). Assume that Rf € W*] > L forall u € {1,2,3}. Clearly,
Nuerzz W* = 0, since the value of the game is undefined for points in thesatgion. More-
over, we claim thaf, ., , 5, B" is empty.

Assume there is a point € [, o5, B" (see Figure 11.3). For every € {1, 2,3}, since
7 € B", there is a point" € W* and a set of indice$, C {1,...,m}, such tha{/,| < £ and
=7 . Let] = ,cq 03 Lo Sincez” € W*, we have thay(z}) # u, and henceg(z;) # u.
This implies thay (%)) is undefined, and therefofq, ., , 5, B = 0.

-
Zlu

132



9(Z) = g(7}) = g(12) = g(7?)
Zo= WU [ [ 1] ]
o= [T[[]]]
= [[[]T[[ 1]
=L TIf[]]]

Figure 11.3:The probability spac&’ = X; x X, x --- x X,,,. The distance between the poifto each

of the pointsz*, 72, 7 is at mostt.
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We now apply Lemma 11.9 for every= 1,2, 3, with A = W*". Notice that the results of the
local flips of each player are independent random variabMeshave that B € W*] > ¢ where
¢ = =5, and therefore\, = /2mlog (2m?). Hence, for! = £ = 2,/2mlog (2m?) = 2X,, we
have

(t—ko)Q _ 2mlog (2m3)

Pije BY|>1—2¢ 2n =1—2¢ 2n  =1-—2¢ 8™ =1 _

Since(,c(1 23 B = 0 we have that
1
Py e B'N B +Prige B'NB* +Prije BN B% < ok > Pije B,
ue{1,2,3}
which implies that
Plij € UueqiosyBY] = > Plje B'|— > PijeB"nNB"]+Pije (] B
ue{1,2,3} u#u/€{1,2,3} ue{1,2,3}

>

1

2

3 1
> 2.
- 2

This contradiction implies that for somee {1, 2,3}, we have Plij € W"] < . u

11.2.4 Null-Valent Configurations

In the final stage of the lower bound construction, we useroned coin-flipping games to
show that, with high probability, a null-valent configumtiC' can be extended with ong-
layer to a null-valent configuration. In order to achieve #imwve, we may need to hide up to
6+/2nlog (2n3) processes, other than the processe®jrin the layer. Therefore, we assume
that f > 12,/2nlog (2n3), and will always make sure thaP| < £. This will allow us to hide

g > 6+/2nlog (2n3) additional processes (not i), in executions irSp.

Lemma 11.11 If a configurationC' reachable by ary-execution igk, Sp)-null-valent, then with

probability at leastl — there is anf-adversaryo, such thatC o oy is (k + 1, Sp)-null-

1
(n—|P|)*’
valent.

Proof: LetC be a(k, Sp)-null-valent configuration. We consider every vegipe X and every

layer L in Sp, and classify the resulting configuratiofts, v, L) into three disjoint categories:
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1. The configuratiolC, i, L) is (0, k + 1, Sp)-potent.
2. The configurationC, vy, L) is (1, k + 1, Sp)-valent.
3. The configurationC, vy, L) is (k + 1, Sp)-null-valent.

Notice that the first category contains bothk + 1, Sp)-valent and k + 1, Sp)-bivalent con-
figurations.

This can be viewed as3avalued one-round coin-flipping gamesafplayers, as follows. The:
players are the processes nobig, i.e.,;m = n—|P|. The probability spaceX;, ..., X,, represent
the random choices of the processes, which are given; byEvery vector of choices induces
a resulting configurationC, y;, L), whereL! is the full layer with respect t&p, in which the
processes take a step in the order of their identifiers. igidmelemenk’; by the adversary is done
by choosing a partial layer in Sp that does not contain any step by the corresponding pragesse
but only a step of each process that is not hidden. Finakyy#tue of the game is the category of
the configurationC, vy, L).

Sincem = n — |P|, we have that — f < m < n. By the coin flipping game in Lemma 11.10,
we can hides/2m log(2m3) processes and force the resulting configuration into oneeébove
categories with probability at least— #

This implies that for one of the above categories, with pbaiig at leastl — % the vector
7 € X© has a corresponding partial layf,, such that the configuratiofC, 71, Lz, ) has the
valence of that category. We now define the adversargs the function that for every vector
71 € X¢ chooses the corresponding partial layef, i.e.,o,(y1) = Lgz. Our claim is that the
category that can be forced by is the third one, i.e., the resulting configuration is nudlent.

Assume, towards a contradiction, that the category thatbeaforced is the first one. This
implies that the probability over all vectofs € X that(C, 71, Ly, ) is (0, k + 1, Sp)-potent is at
leastl — —L;. Therefore, with probability at least— 5, the vectory; € X is such that there

exists a)-deciding adversaryg’ from (C, 41, Ly, ) for which:
Pridecision from(C, 71, Ly, ) undera’ is 0] > 1 — €4

Therefore with probability at least- 5, there exists an adversary= o, o’ from C' such that:
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Pr{decision fromC' undera is 0] =

= ) Pig] - Pridecision from(C, §i,, Ly, ) undera’ is 0]

NneXc

> (1—%) (1 — €ry1)
- (“ﬁ)'(“n;ﬁﬁfﬁf’)

PR S S 1 _ k+1

a nno (n—f° (mn—f’nyn  (n—f)°
1 k

> 1_n\/ﬁ+(n—f)3:1_€k’

where the last inequality holds for sufficiently largesince(n — f)° > (n — f)* ny/n andk =
O(n). This contradicts the assumption tliais (k, Sp)-null-valent.

A similar argument holds for the second category. Hencdy pribbability at least — # the
third category can be forced, namely, we can reach a configarthat is(k + 1, Sp)-null-valent.

11.2.5 Putting the Pieces Together

We can now put the pieces together and prove the lower boutiteantal step complexity of any

randomized consensus algorithm.

Theorem 11.12 The total step complexity of anf¢tolerant randomized consensus algorithm in
an asynchronous system, where- f € Q(n) and f > 124/2nlog (2n3), isQ(f(n — f)).

Proof: We show that the probability of forcing the algorithm to doueg layers is at least

1— ﬁ Therefore the expected number of layers is at I(ahstﬁ) : g Each of these layers is an

f-layer containing at least — f steps, implying that the expected total number of stepsleast

Q1 - Z5) - § - (n— f)), whichis inQ(f(n — f)) sincen — f € Q(n).

We argue that for everly, 0 < k < £, with probability at Ieasl—kn—}/ﬁ, there is a configuration
C reachable by arfi-execution with at least layers, which is either-switching or non-univalent

with respect toSp where|P| < k + 1. Once the claim is proved, the theorem follows by taking
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k = L, since the probability of having afrexecution with more thag layers is at least — £ -
ﬁ >1— ﬁ

We prove the claim by induction an

Basis:k = 0. By Lemma 11.6, there exists an initial configurati©@nhat is not univalent with
respect taSy or Sy, for some procesg.

Induction step/AssumeC’ is a configuration reachable by grexecution with at least layers,
that is either-switching or non-univalent with respect # where|P| < k + 1. We prove that
with probability at least — ﬁ C can be extended with at least one layer to a configuratfon
that is either-switching or non-univalent with respect & where|P’| < k + 2. This implies
thatC” exists with probability 1 — & =)(1 — ;=) = 1 — (k + 1) 7=.

If C' is bivalent, then by Lemma 11.7, there exists an adversagd a procesg such that
C o ¢ is eitherv-switching or not(k + 1, Sp)-univalent or notk + 1, Spyg,y)-univalent.

If C'isv-switching, then by Lemma 11.8, there exists a finite advgrsaand a procesgsuch
that with probability at least — ﬁ C o ay is eitherv-switching, or not univalent with respect to
Sp, or not univalent with respect t8p,,, .

If C'is null-valent, then by Lemma 11.11, there exists an advgrsasuch that the configura-

tion C' o oy is not(k + 1, Sp)-univalent with probability at least— 5. Sincem > n— f € Q(n),

1

nyn’ u

we have thal — 5 > 1 — s >1—

1
(n—1)

Finally, takingf € Q(n) andn — f € Q(n), we get a lower bound d®(n?) on the total step
complexity.
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Chapter 12

Discussion

This thesis studies several problems in distributed comgumotivated by the classic problem
of randomized consensus. Probabilistic methods are usedntruct and analyze randomized
algorithms for consensus, shared coins, counters and@ulitoncurrent data structures, and set
agreement, as well as for deriving lower bounds for randethtonsensus.

We have shown, in Chapter 4 and in Chapter 11, t@i?) is a tight bound on the total
step complexity of solving randomized consensus, undemagtadversary, in an asynchronous
shared-memory system using multi-writer registers.

Our algorithm exploits the multi-writing capabilities dfd register. The best known random-
ized consensus algorithm using single-writer registe8$ [asO(n?log n) total step complexity,
and it is intriguing to close the gap from our lower bound. &ltitat for the single-writer cheap-
snapshot mode® (n?) is a tight bound, since our lower bound applies to it, andghslinodifica-
tion of our algorithm yields the same total step complexityis is done by replacing the flatpne
with n separate flags (one for each process) whose OR is equivaltdrg briginaldonebit, and
performing a cheap-snapshot on théags after every coin flip. This guarantees that the analysis
of both the total step complexity and the agreement paramateain the same.

We remark that Aspnes [5] shows @Qlo’g—in) lower bound on the expected total number of
coin flips. Our layering approach as presented here, doedistotguish a deterministic step from
a step involving a coin flip, leaving open the question of tmant of randomization needed.

Turning our attention to another adversarial model, in @Gap0, we presented lower bounds

for the termination probability achievable by randomizedsensus algorithms with bounded run-
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Model ‘ k=1logn | k=1log*n
lower bound| asynchronous MP, SWCS, MWCS  — T
synchronous MP [36]

1
n2(loglog n)

upper bound SWMR [21] L
MWMR [20] 1

Table 12.1:Bounds ong, in different models, when agreement is required to alwayd.htP is the
message-passing model, while SW/MW stands for singleiftwiiter registers, SR/MR for single/multi-
reader registers, and CS for cheap snapshots.

ning time, under a very weak adversary. Our results areqodatly relevant in light of the re-
cent surge of interest in providiryzantine fault-tolerancm practical, asynchronous distributed
systems (e.g., [29, 55]). The adversarial behavior in tiaggdications is better captured by non-
adaptive adversaries as used in our lower bounds, rathertiiesadaptive adversary, which can
observe the results of local coin-flips.

For all models, when agreement is required to always holdyave shown that the probability
qx that the algorithm fails to complete ir{n — f) steps is at Ieasct—,, for a model-dependent value
¢ which is a constant if?} IS a constant. Table 12.1 shows the bounds for specific values

The previous lower bound for the synchronous messagempssodel [36] isq, > %

(Ck})k )
for some constant. From the perspective of the expected total step complegityen a non-
termination probabilitys, the lower bound of [36] implie$) ((n — f)log’i;/l‘s/&) steps, which is

improved by our bound t& ((n — f)log1/9) steps.

In the shared-memory model with single-writer multi-readegisters, Aumann and Ben-
der [21] show a consensus algorithm with probability- ﬁ for terminating inO(nlog® n)
steps. For multi-writer multi-reader registers, Aumanf][presents an iterative consensus al-
gorithm, with constant probability to terminate at eachat®n, independently of the previous
iterations. This implies that the probability of termimggiafterk iterations isl — Cik for some
constant.

When agreement is required to hold only with high probahilikapron et al. [52] give an
algorithm for the asynchronous message passing modellthaysaterminates withipolylog(n)
asynchronous rounds and has a probabiﬁyi)g—(m for disagreeing, and an algorithm that always

terminates withire®(°s" ) asynchronous rounds and has a probabf;% for disagreeing.

140



An interesting open question is to close the gap betweendhees of the probability, for
disagreement achieved in the algorithms of [52] and the tdveeinds obtained in this work on
that probability. It is also interesting to tighten the bdarin the synchronous model and for large

values ofk.

Our lower bounds can be used to estimate the error distoibatnd bound the variance of the
running time of randomized consensus algorithms. They doyietd significant lower bounds
for the expected step complexity—there is still a large geigveen the (trivial) lower bounds and
upper bounds for the shared-memory model, with a weak aawers

In addition to randomized consensus, an important topicwieaaddress in Chapter 6 is the
design of concurrent data structures. We give a method fagusaulti-writer multi-reader reg-
isters to constructn-bounded max registers withg m| cost per operation, and unbounded max
registers withO(min(log v, n)) cost to read or write the value An analog data structure of a
min registercan be implemented in a similar way. In [9] we prove a lowerrmbthat shows that
the cost of our implementation is optimal. For randomizeglamentations, we show a lower
bound ofQ2(log n/ log(w log n)) for read operations, whete is the cost of write operations. This
leaves open the problem of tightening the randomized lowemntd form > n, or finding an
implementation whose cost depends onlynon

We use max registers to construct wait-free concurrent-stat@tures out of any monotone
circuit, while satisfying a natural consistency conditia callmonotone consistencyhe cost of
a write isO(Sdmin([logm],O(n))), wherem is the size of the alphabet for the circuit,s the
number of gates whose value changes as the result of the amitie/ is the number of inputs to

each gate; the cost of a readhisn([log m], O(n)).

As an application, we obtain a simple, linearizable, wesefcounter implementation with a
cost of O(min(lognlogwv,n)) to perform an increment an@(min(log v, n)) to perform a read,
wherew is the current value of the counter. For polynomially-mangrements, these become
O(log®n) andO(logn), respectively, an exponential improvement on the bestiguely known
upper bounds of)(n) for an exact counting an@(n*/>*<) for approximate counting [11]. Note
that bounding the counters allows us to overcome the lireaer bound of Jayanti, Tan, and
Toueg [51], as well as the similar lower bounds by Fich, Hendind Shavit [41] that hold even

with CAS primitives. Whether further improvements are plolssis still open.
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Our polylogarithmic counter is used in Chapter 7 in orderbtatn a randomized consensus
algorithm with an optimal individual step complexity 6f(n).

Finally, Chapter 8 presents wait-free randomized algoritiior the set-agreement problem in
asynchronous shared-memory systems. There are many opstions that arise and are interest-

ing subjects for further research, as we elaborate next.

We extended the definition of shared-coin algorithms to rsidted shared coins. Itis an open
question whether oufk + 1)-sided shared-coin algorithm can be improved while keepirey
agreement parameter constant. In addition, the definigonbe modified so that the agreement
parameter holds for subsets of less tharalues. It is interesting to find good implementations for
multi-sided shared coins that satisfy this modified defomiti

For randomized set-agreement algorithms, it is open whdteger algorithms exist in this
model. In addition, it would be intriguing to prove lower buis on the complexities of such

algorithms, as no such bounds are currently known.

We note that fork < /n the total and individual step complexities of o, k& + 1,n)-
agreement algorithm are the same as for the optimal algofioh randomized binary consensus,
only divided byk. First, it is an open question whether the same complexiaase obtained for
larger values of. In addition, a similar relation between consensus andgeeaent occurs also
for complexities in deterministic synchronous algorithemsl lower bounds undérfailures, since
the optimal number of rounds for solving consensug is 1 [19], while the optimal number of
rounds for solving set agreementfigk + 1 [33]. It is interesting whether this is a coincidence or

an indication of an inherent connection between the twolprob.

We believe that similar algorithms to the ones presentetii;wwork can be constructed for
weaker adversarial models, see [7] for recent work. It is p@noquestion whether there can be
improved algorithms for weaker adversaries, and it is atgoortant to find analogous algorithms
for solving set agreement in message-passing systems.lddsdd say, obtaining lower bounds

for these models is an important direction for further reslea

Recent unpublished developments suggest that there islamared multi-valued consensus
algorithm with the same total and individual step complesitas binary consensus, i.€(n?)
andO(n), respectively. This would improve upon the exisg & factor of the complexities of the

corresponding algorithms presented here, and would bedigbe by definition binary consensus
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is a special case of multi-valued consensus.

As we have seen, many questions arising from the researcAndbmized consensus still
remain open. These constitute intriguing subjects fohfrtwork. Considering other decision
problems, such anaming and additional models of adversaries, are important sopscwell,

which lie at the heart of the theory of distributed computing

143



144



Bibliography

[1] K. Abrahamson. On achieving consensus using a shareconyettm Proceedings of the 7th
Annual ACM Symposium on Principles of Distributed Commu¢(PODC) pages 291-302,
1988.

[2] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. gavit. Atomic snapshots of shared
memory.Journal of the ACM40(4):873—-890, 1993.

[3] N. Alon and J. H. SpencelfThe probabilistic Method John Wiley & Sons, Hoboken, New
Jersey, 2nd edition, 2000.

[4] J. Aspnes. Time- and space-efficient randomized comsenslournal of Algorithms
14(3):414-431, 1993.

[5] J. Aspnes. Lower bounds for distributed coin-flippinglaandomized consensusournal of
the ACM 45(3):415-450, May 1998.

[6] J. Aspnes. Randomized protocols for asynchronous emuseDistributed Computingl 6(2-
3):165-176, Sept. 2003.

[7] J. Aspnes. A modular approach to shared-memory consengith applications to the
probabilistic-write model. IrProceedings of the 29th Annual ACM Symposium on Princi-
ples of Distributed Computing (POD)ages 460-467, 2010.

[8] J. Aspnes, H. Attiya, and K. Censor. Randomized conseimsaxpected (n log n) individ-
ual work. InProceedings of the 27th Annual ACM Symposium on Princidi@&stributed
Computing (PODC)pages 325-334, 2008.

145



[9] J. Aspnes, H. Attiya, and K. Censor. Max registers, cets)tand monotone circuits. In
Proceedings of the 28th Annual ACM Symposium on Principid3isiributed Computing
(PODC), pages 36—45, 20009.

[10] J. Aspnes, H. Attiya, and K. Censor. Combining shareith-@lgorithms.Journal of Parallel
and Distributed Computing/0(3):317-322, 2010.

[11] J. Aspnes and K. Censor. Approximate shared-memorgtougidespite a strong adversary.
ACM Transactions on Algorithm§(2):1-23, 2010.

[12] J. Aspnes and M. Herlihy. Fast randomized consensugyushared memoryJournal of
Algorithms 11(3):441-461, Sept. 1990.

[13] J. Aspnes and O. Waarts. Randomized consensus in eda@¢tV log> N) operations per
processorSIAM Journal on Computin@5(5):1024-1044, Oct. 1996.

[14] H. Attiya and K. Censor. Lower bounds for randomizedsmEmsus under a weak adversary.
In Proceedings of the 27th Annual ACM Symposium on Princigl@sstributed Computing
(PODC), pages 315-324, 2008.

[15] H. Attiya and K. Censor. Tight bounds for asynchroncarsdomized consensudournal of
the ACM 55(5):1-26, 2008.

[16] H. Attiya, D. Dolev, and N. Shavit. Bounded polynomiahdomized consensus. Pmoceed-
ings of the 8th Annual ACM Symposium on Principles of Diateld Computing (PODQC)
pages 281-293, 1989.

[17] H. Attiya and A. Fouren. Adaptive and efficient algonth for lattice agreement and renam-
ing. SIAM Journal on Computind31(2):642—664, 2001.

[18] H. Attiya and J. Welch Distributed Computing: Fundamentals, Simulations andakabed
Topics McGraw-Hill, 1st edition, 1998.

[19] H. Attiyaand J. L. WelchDistributed Computing: Fundamentals, Simulations andafabed
Topics John Wiley & Sons, Hoboken, New Jersey, 2nd edition, 2004.

146



[20] Y. Aumann. Efficient asynchronous consensus with the@kvadversary scheduler. In
Proceedings of the 16th Annual ACM Symposium on Principid3isiributed Computing
(PODC), pages 209-218, 1997.

[21] Y. Aumann and M. A. Bender. Efficient low-contention asjironous consensus with the
value-oblivious adversary schedul®&istributed Computingl17(3):191-207, Mar. 2005.

[22] Y. Aumann and A. Kapah-Levy. Cooperative sharing anghakronous consensus using
single-reader single-writer registers. Pnoceedings of the 10th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODAjages 61-70, 1999.

[23] Z. Bar-Joseph and M. Ben-Or. A tight lower bound for randzed synchronous consensus.
In Proceedings of the 17th Annual ACM Symposium on Princigl&sstributed Computing
(PODC), pages 193-199, 1998.

[24] M. Ben-Or. Another advantage of free choice (extendestract): Completely asynchronous
agreement protocols. IRroceedings of the 2nd Annual ACM Symposium on Principles of
Distributed Computing (PODC)pages 27-30, 1983.

[25] M. Ben-Or, E. Pavlov, and V. Vaikuntanathan. Byzantaggeement in the full-information
model in o(log n) rounds. IRroceedings of the 28th Annual ACM Symposium on Theory of
Computing (STOG)pages 179-186, 2006.

[26] J. L. Bentley and A. C.-C. Yao. An almost optimal algbnt for unbounded searching.
Information Processing Letters(3):82—-87, 1976.

[27] E. Borowsky and E. Gafni. Generalized FLP impossipilésult for t-resilient asynchronous
computations. IfProceedings of the 25th Annual ACM Symposium on Theory opGiomg
(STOC) pages 91-100, 1993.

[28] G. Bracha and O. Rachman. Randomized consensus intexigg:? log n) operations. In
Proceedings of the 5th International Workshop on DistrdalAlgorithms (WDAG)pages
143-150, 1991.

[29] M. Castro and B. Liskov. Practical byzantine fault talece and proactive recoverpCM
Transactions on Computer Syster28(4):398-461, 2002.

147



[30] K. Censor Hillel. Multi-sided shared coins and randeed set-agreement. Rroceedings of
the 22nd Annual ACM Symposium on Parallel Algorithms andhiégctures (SPAA)pages
60-68, 2010.

[31] T. D. Chandra. Polylog randomized wait-free consensu®roceedings of the 15th Annual
ACM Symposium on Principles of Distributed Computing (PQpages 166—-175, 1996.

[32] S. Chaudhuri. More choices allow more faults: Set casse problems in totally asyn-
chronous systemsnformation and Computatiqri05(1):132-158, July 1993.

[33] S. Chaudhuri, M. Herlihy, N. A. Lynch, and M. R. Tuttleight bounds fork-set agreement.
Journal of the ACM47(5):912-943, 2000.

[34] L. Cheung. Randomized wait-free consensus using aniaity assumption. IfiProceedings
of the 9th International Conference on Principles of Distied Systems (OPODI$)ages
47-60, 2005.

[35] B. Chor, A. Israeli, and M. Li. On processor coordinatiosing asynchronous hardware.
In Proceedings of the 6th Annual ACM Symposium on Principl&isifibuted Computing
(PODC), pages 86-97, 1987.

[36] B. Chor, M. Merritt, and D. B. Shmoys. Simple constaint¢ consensus protocols in realistic
failure modelsJournal of the ACM36(3):591-614, 1989.

[37] D.DolevandH. R. Strong. Authenticated algorithmsligzantine agreemerslAM Journal
on Computing12(4):656—-666, 1983.

[38] P. Elias. Universal codeword sets and representatibtiee integerslEEE Transactions on
Information Theory21(2):194-203, 1975.

[39] P. Ezhilchelvan, A. Mostefaoui, and M. Raynal. Randoedi multivalued consensus. In
Proceedings of the 4th IEEE International Symposium on @piented Real-Time Com-
puting pages 195-200, 2001.

[40] W. Feller. An Introduction to Probability Theory and Its Applicatign®lume 1. John Wiley
& Sons, 3rd edition, 1968.

148



[41] F. E. Fich, D. Hendler, and N. Shavit. Linear lower bosioth real-world implementations of
concurrent objects. IRroceedings of the 46th Annual IEEE Symposium on Foundatibn
Computer Science (FOCS)ages 165-173, 2005.

[42] M. J. Fischer and N. A. Lynch. A lower bound for the timeassure interactive consistency.
Information Processing Letterd4(4):183-186, 1982.

[43] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impogibof distributed consensus with
one faulty processlournal of the ACM32(2):374-382, Apr. 1985.

[44] S. Goldwasser, E. Pavlov, and V. Vaikuntanathan. Raldtrant distributed computing in full-
information networks. IfProceedings of the 47th Annual IEEE Symposium on Foundation
of Computer Science (FOG$)ages 15-26, 2006.

[45] G. R. Grimmett and D. R. StirzakelProbability and Random Processe®xford Science
Publications, 2nd edition, 1992.

[46] P. Hall and C. HeydeMartingale Limit Theory and Its ApplicatiorAcademic Press, 1980.

[47] M. Herlihy. Wait-free synchronizatiorACM Transactions on Programming Languages and
Systemsl3(1):124-149, January 1991.

[48] M. Herlihy and N. Shavit. The topological structure afyachronous computabilityournal
of the ACM 46(6):858-923, 1999.

[49] M. Inoue, T. Masuzawa, W. Chen, and N. Tokura. Lineargisnapshot using multi-writer
multi-reader registers. IRroceedings of the 8th International Workshop on DistréolAl-
gorithms (WDAG)pages 130-140, 1994.

[50] P. Jayanti. f-arrays: implementation and applications. Rroceedings of the 21st Annual
ACM Symposium on Principles of Distributed Computing (PQpa@ges 270-279, 2002.

[51] P.Jayanti, K. Tan, and S. Toueg. Time and space lowend®tor nonblocking implementa-
tions. SIAM Journal on Computing30(2):438-456, 2000.

149



[52] B. Kapron, D. Kempe, V. King, J. Saia, and V. Sanwalanastrasynchronous byzantine
agreement and leader election with full information. Rroceedings of the 19th Annual
ACM-SIAM Symposium on Discrete Algorithms (SOPpapes 1038-1047, 2008.

[53] A. Karlin and A. C.-C. Yao. Probabilistic lower bounds fbyzantine agreement and clock

synchronization. Unpublished manuscript.

[54] V. King, J. Saia, V. Sanwalani, and E. Vee. Scalable éeadection. InProceedings of the
17th Annual ACM-SIAM Symposium on Discrete Algorithm (Sppages 990-999, 2006.

[55] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.yZzyva: Speculative byzantine
fault tolerance. IProceedings of the 22nd ACM Symposium on Operating Systemcgies
(SOSP)pages 45-58, 2007.

[56] L. Lamport. The part-time parliamenACM Transactions on Computer Systedty2):133—
169, May 1998.

[57] M. C. Loui and H. H. Abu-AmaraMemory Requirements for Agreement Among Unreliable

Asynchronous Processgmges 163—-183. JAI Press, Greenwich, Conn., 1987.
[58] N. A. Lynch. Distributed Algorithms Morgan Kaufmann Publishers, 1996.

[59] N. A. Lynch, R. Segala, and F. W. Vaandrager. Observiragbhing structure through prob-
abilistic contexts SIAM Journal on Computing7(4):977-1013, 2007.

[60] Y. Moses and S. Rajsbhaum. A layered analysis of conser&AM Journal on Computing
31(4):989-1021, 2002.

[61] A. Mostefaoui and M. Raynal. Randomizéeset agreement. IRroceedings of the 13th
Annual ACM Symposium on Parallel Algorithms and Architess(SPAA)pages 291-297,
2001.

[62] A. Mostefaoui, M. Raynal, and F. Tronel. From binary sensus to multivalued consensus in
asynchronous message-passing systdmfermation Processing Letter§3(5-6):207-212,
2000.

150



[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

R. Motwani and P. RaghavaiiRandomized AlgorithmsCambrigde University Press, Cam-
bridge, United Kingdom, 1995.

M. Raynal and M. Roy. A note on a simple equivalence betweund-based synchronous
and asynchronous models. Pnoceedings of the 11th Pacific Rim International Symposium
on Dependable Computing (PRD@ages 387-392, 2005.

M. Raynal and C. Travers. Synchronous set agreemerneise guided tour (including a
new algorithm and a list of open problems).Rroceedings of the 12th Pacific Rim Interna-
tional Symposium on Dependable Computing (PRPEyes 267-274, 2006.

M. Saks, N. Shavit, and H. Woll. Optimal time randomizsmhsensus—making resilient
algorithms fast in practice. IRroceedings of the 2nd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODApages 351-362, 1991.

M. Saks and F. Zaharoglou. Wait-fréeset agreement is impossible: The topology of public
knowledge.SIAM Journal on Computind9(5):1449-1483, 2000.

N. Santoro and P. Widmayer. Time is not a healePtaceedings of the 6th Annual Sympo-
sium on Theoretical Aspects of Computer Science (STA@ggs 304-313, 1989.

G. Schechtman. Levy type inequality for a class of fenitietric spaces. lhecture Notes
in Mathematics: Martingle Theory in Harmonic Analysis ana@nach Spaces/olume 939,
pages 211-215. Springer-Verlag, 1981.

F. B. Schneider. Implementing fault-tolerant sergieesing the state machine approach: A
tutorial. ACM Computer Survey22(4):299-319, Dec. 1990.

R. Segala. A compositional trace-based semanticsrtdrgbilistic automata. IRroceedings
of the 6th International Conference on Concurrency The@®RNCUR) pages 234-248,
1995.

G. Taubenfeld.Synchronization Algorithms and Concurrent Programmiriyentice-Hall,
Inc., Upper Saddle River, NJ, USA, 2006.

151



[73] P. M. B. Vitanyi and B. Awerbuch. Atomic shared regisaéecess by asynchronous hardware.
In Proceedings of the 27th Annual IEEE Symposium on FoundatbiComputer Science
(FOCS) pages 233-243, 1986.

[74] J. Zhang and W. Chen. Bounded cost algorithms for malltied consensus using binary
consensus instancdsformation Processing Letterd09(17):1005-1009, 2009.

152






NNIDNA NIV 73N 2P DNTN TPDTIT NNIDN SV TPORITPPTIND DXTYNI 1900 NPDDD
-YLAPON YOP DXTYN 190N BY WMD) MIRPD-NN 2NPN NN 112 MYNIN NP INNNI
;D901 DPINYI-NN OONNI 2202 PAIY NN N RN (NN DY NDW 535 n-n MO
202 WNNWNN NP0 22770 NN D8N DX . DPNTN DXy DINNN YN VIO
MIPIMMNY DXTYN 190101 DWNNN DX IMNY ,DIPDPN-I0D2)T D) NN IMN DN
IAP N0 VNI HYA GMVYN YAV NMIAD NNDN DXPNND NN 1PN INRD N2 93 Ny
S129219 277 NN IYNNIVNN ,0(n) ¢ TPIMLAN TPIRITPTIN DXTYS 790N NPDO)
-PX DTYN 1900 NP DY FPNITII NNIDND DIPIMON NIWN MD GMYN Yyavn 050N
Herlihy-) Aspnes S¥ iP8ITI2 WY OIT DY O(n) DY TPODLNN TPONITPT

JMIVANR AN MYIND RO NDI0NN TPYA DY MIVAND IR NIRXIN IR NPY2 NINN 77T
N 1229100 NXAPN ONPOI DOVIPN NAY IRIIRIN-NNITIT TPYI MYNNNI R L) INTD 112
M2V ,Chaudhuri Y¥ NTIAY2 NYNRID NITNIN R 7Y T V9D NP I ,DIDN IWN
-10PDOR NN PLODPPIVT NN NNIAPNH-TNIODN NHYA NX NN TWARY N D)
AN INND . DXVYAN NAY DIMNN DNWN D¥IIWN 90NN Y0P M 1901 TIY 93,71
DIPIMON OMP ROVW | Zaharoglou-) Saks-) ,Shavit-1 Herlihy ,Gafni-y Borowski >7> 9¥ N2
-2 912> M2’930 1901 NIAY TPNIDPON NIIWNA N¥IAPN-NNIDN NPYA NN SODIPNIT
TINNIT DY O) ,NIDNN MY NIAY 1D DV NAY DINMNN DNYN DI 190100 ¥)
-JN 99010 DOPNN NN M NN FPXHMITII NADIN MYNNNA IINND 112 NN MIVAND ON
NN, M>S293 DY 1901 5 2192 DXTNRYN ,NNIAPN-NNODN NPYA NIY DPIITIV DN
NN 09 DIONNN Y > DY NN NNAIPD DININ DIV NDPINN GMUN NI DY
QMW DAVN OXPTII NN TI TNND .ODW £+ 1 TN £ DY N¥IIAP-NNIDND DIPININ DIPNN
oY VN DN DIV DY NP 27 D901 50 GMUN Yavn SY NN NNY TTR-11
DN MND Y DADN DIVNIY NIY DNTPININ 19D NI NN ,GDNA M Yavn
BaRhabiary

111



NI n IYND) O(nQ) oV PYTN YVILAYON BDN MINN NN M NN DY IR NN
9901 NOMN NIV TPV NNODN DY N22130 0°TUXRIT 1901 N1°312°0 NAY (D2PDNNN 190N
OTPN JPOYN DONN NPYW XT> DY TR NRNIN . DPINNN DI 27> DY DOYNIANN D100 DX TYNN
oV OTIPN NONNN DONN NDY > DY) TR T8N Rachman -1 Bracha DY O(n2 logn) S¥
DML D00 MY NI HY ST INOM IRSINN W T80 Aspnes Y Q(n? log” n)
00NN 2T 27T 1PN PARNA VWD PN .D¥DONNN Y3 1T DY NNIN INMIPY OININ
95 5V DOoN DANNDM DAMWNN DINWNN 7Y THO DY DY NN )IRNN NVONN NN
(20NN MOLVN MRNN 5512) ODINNN

D9DNN 0VKBID NI GIIWN VIYN HY YTN DIPINIR NINT MYNNIN W 11OV DONN
IR I¥MNIY SVDIVLON PONNN KY MIINON >T DY WYY NOIN DXTYNN 190N NPNDO)
-1 Aspnes 9V iPNITY IRYA GMVYNN YAVNDN DPWND TPNITII INO0NY DMINMONN NN
D107 MAN MOYA MY MY NXIAP DN Dy Wwwl NN 0onn Herlihy
2T0 90N D»DY DIPIMORIND YIND 1IN DY TPNITII NP INPLI YY) MW MNP
JIIW-TI0N X TPIIW-1T IPSNNANDA NI MIANDN IR 112 TN ORI NN
20NN MY ON NNYA DONMIIN ,YI0N MSVN SPNYN YT DY 57NN NINKD NIPRD

MNO0N SY NYNDN DXTYNN I0DN NPNVD NORY 5y NIV NNV 973N IRINDS qONA
TPNPNAD 99197 DITYNN 190N 5Y DDN NINY NIDN IR DIPIN NN 7N 2 TINT T
PMRNN 53 9y VIINVN W2 17T NN TPRYTIY NHBIDNY DIINON Y DYDY MIANDNN SV
TPRYTIV NHODNY DMIRY MIANDNN & TIY 9901 535 5 DNID DX, DIV P2 YN
DN Y12 NI ¢ NI ,1/¢F MNaY Non DY k(n — f) NN DPD> KY M) f 292 PRy
GMVYN IR SY TN D) 0D MYTIN NNAYN SV STINI IIYPIN IRNITIN MY NN 1/ f
NV 1277 DY 9 DN)

-0 T PONN DY NIRITT TR T TUR 19010 N1"312°0 XD D2IN12 DN IMN G0N T
TTIWY 92T 1N8YA NTIAYN 93 NN YNAZ YATND 10 7T PONN DPNMDN DAMYN MYav
oV PNNN TPORITPTIND DXTYNN 19010 NP0 NN DNNNNNDD DXOMYN MYavn NION
ADWO TN ORI DX M NN NO5ON DXTYNN 19010 NPNIVO NOTHINA XN M MDY
UMY TV NPION PTTNIAY 20NN MININ GMYN YIVN 52PY >TI2 DXAMYN NMYAVNH
D9WN NNX AWNN DIANIND NRYA .OPNPNN NNIDNN I0NIQ NN NN PY NNIOIN
20N SYW OOTIN 190D MIITII NNIDN NIAY MINTIP MIRNN

NORY ,025NNN 52 > DY NN NINIPY DININ DIVDNT DY YDNIDN TN MY

1



38PN

-390 YNT TN IWR 1090 NUOY DI T0INN PN TN I SW IMiNN PAND
VOP W PONN 525 NAY ,NITIAN NP2 > DY M TN INND 1170 .02 NN DRNY D2
2y TPTID? NN NNIDNN INYI DM PP DXVYIN HIY TI PINIA VYA NN POV NI
INNN NNIDNN MY ,GONI ;0PN DLVPAIN YW VI NIVARDY NPNIIPONX MIIWN
290V YMIPYY DPANKNN-NNINI NYHA NNON-2D)

12°91 IUNI ,N2IYNI OI5NN SW MOPNS MIYANIN Y1 NNIDN MWL DPYPN TNN
MTNRY NPND MYITI IPYDDAR 2N YTYN YNID P00 NI IWNRD IYNINN TOIN SV
MY RYD OPPNNY NN N YT WINTI DOHND DPPN DIONNY NLINDY M9 793
IMA-"101 NP2 ONIPIMONRD DY 1IN 19012

RIN MY 92T SW IMDA VY TP PPN TONN 5OV NYNT NNIDNN TPYA PONND 19INI
V29N, DONOPIO MNIND YN PTI .(MITNN "RIN MM DN P> DOVZIN DIV T2 ,(1T7RDN
NPT "RIN) DYINNN TR Y LIPN NPND N NN

JONYP DY DIPYY M2PNY MIYON DY MIIYNI 0NN DNTINVON DY OMIN
TINAN MW SY DN DD Y NIIWNN NDNIY NIRNN THININD >MIND 19INI DYV
99V 07112702 YSINN 2WONN TPNIDPD NIIWNI N1MITTIITR MIIWD N30 7NOWN 1N
22NN Y IMYPNN NNNA MO TYSN NN PPN TONN 53 5T 5y TR TYN 501 TN
OV DONY DXTYN NV PAY IRN DY BN PR INNT YN MNIND DWW PR, TPNIIPONX NIIvNI
TIYOX PN TPNIIPONR NIWNI 7290 DNY D¥HNN DY DXTYN MY PA IR DWW Pon
DO TN TONN P22 D9 ONN PA PNIAND

JFLP 5¢ MIWORD X IINRNIND NN ,IM20 280N SY i NININA NP TIDN MNNIND NNX
YODPNIVT DIPIMVIR DM ROV XM Paterson -1 Fischer, Lynch >1> ¥ NNWRID NNV
T PONTM AN 59 ROY NLAM DX G, TPNIIPONX NN NNIDNN 1Y NN IMY

oY T2INNY TN OY YN 297 PNN ,IMNIAN 2N NP AR NPN HNIDNN NNPYIY NYD
MoPN DY TPNIIPON NIIWNA NNIDN MIVIARDD YN INR 1D THITVANRD ON NINSIN
1 MNANDN DD DIONNT MIVAND MM N YN 2IWPND PSHTII NI 1PN
NN 592 DOWATI VTN NNODNN PRINY TIva  IPIVAN NI 551 DIpna

DNNNT OMION DNTPINONR NN M NN PO 12 RXDIIN RN NPN IMNITIN N300
NIAP-1D00N 5910, FPMITIN NNODN IPHNKD MYANN NPYIA PO NNHN G0N Pyad
DYDY D»9¥PN DN 212N



7N

AUNNN SYTND NVNPL PLY TPIN MO NPNINA NYYI PN

DOV TPRTPRD TMNNN ONVPITY NNIAD Y2YN NN NNPN DY TIND NTIN NPON 1IN
2y 511 172 NYN 2N APNKNN D21 '¥0N TUNn NIRIPY D221 N290 T2 D92 OMIN NN
NP PR D0IM NS0 MAY T 1D MTIND Y2IR KD O oW NN NIPHY T

YTPY DY NPIDLNN MRIIY DTN '91N99) H» NVIDIVNNND DIAON DNIM') 'Y NTIN N
N2 0NN ONTN DNV DY TIAYS INYN 0 N .ONPNA NOW

TYSM TN 2D 11 PIDLIN DN DIV '9HI9) AN-5T NVIOIVNNND PAN NI ‘919
DMWY DT OIN T O, (55921 M NN DY IINTIP XD DY MY

SN TS DT N NV ROV NPT UKD DIV X TIOND 11ty P10V D27 BN
MTT Y 1920 7PNDY /NP2 PO PPRMN NN )N YT ONNYI XN DN DY
IOMWNN NAPN MPOAN NIDIND 72YN MM ,NINNN

DN2) . DNINIM DNANN DY 2K PR PTITIHOINTITO PR MW ONND DTN IR N0
DNY WIPM M MM 272 NN DY

PRTPRA YW DONTR TIN9N MIDNND , DIPINIZ-DF?'N PIRI MNP )P0 1T 2N
STINSTVYNA N2TIN TPODIN NPNNN Y, DYTND TN






IMIAN YPNI NIPINIANON MYV

NN Sy NN

NN NP7 MUITN OV PoN M) DY
PO’ NVPT

991 MI8 P

HNISY NIV PNON - PIDVN VIDY YIN

2010 VONIN non V'VN 95N






IMIAN YPNI NIPINIANON MYV

991 NI 1P



	ThesisFinal.pdf
	ThesisFinalHebrewRev

