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Abstract

In digital data storage systems, such as magnetic and optical storage devices,
the recorded data has to satisfy certain constraints that are imposed by the
physical structure of the media. One of the most frequently investigated type
of constraints are the (d,k) run-length limited (RLL) constraints. A binary
sequence satisfies a one-dimensional (d, k) constraint if every run of zeroes
has length at least d and at most k.

Recent developments in optical storage, especially in holographic memory,
regard the recorded data as two-dimensional. A one-dimensional constraint
has to be satisfied in each of the array directions. Similarly to the one-
dimensional case, the capacity of a two-dimensional constraint © is defined

as:
C(©) = lim log, N(n,m | @)7

n,m— o0 nm

where N(n,m | ©) is the number of arrays of size n x m that satisfy ©.
Few connectivity models have been proposed in the literature to handle two-
dimensional data: the diamond model, the square model, the hexagonal
model, and the triangular model. The constraints may be asymmetric, i.e.
vary among the different directions.

In this work, we derive some new methods for determining zero and pos-
itive capacity. We generalize a technique for proving zero capacity, which is
based on scanning a G-constrained array whose labels are partially known,
and counting the number of possible ways to label the rest of the array. This
method provides an upper bound for the number of constrained arrays of
size n x m, which is small enough to determine that C'(0) = 0.

For proving positive capacity of some constraints, we define shapes which
can tile the plane. Given such a shape, we find two different valid ways to
label it. We then show that tiling the plane with copies of the shape, where
each copy can have either one of the two labels, results in a ©-constrained



array. This provides a lower bound for the number of constrained arrays of
size n x m, which is large enough to determine that C(©) > 0.

We apply the above methods to the different connectivity models in order
to characterize their zero/positive capacity regions. We consider asymmetric
constraints in the diamond model, and provide an almost complete charac-
terization of the positive capacity region.

In the triangular model, we show that C(d,d + 3) = 0 for every d > 3.
For d = 1(mod 4), d > 5, we show a tight characterization: C(d, k) > 0 if
and only if £ > d + 4. Together with the former result, it implies that for
other values of d, the gaps between the known zero and positive capacity
regions are relatively small.

Finally, in the square model we show that C'(d,d+3) = 0 for every d > 1.



Abbreviations and Notations

N(n|®©)
N(n,m | ©)
c(®e)

(d, k)-RLL

(d17 kl) d27 k?)_RLL

[n x m,k x1] tile

number of ©-constrained sequences of length n
number of ©-constrained arrays of size n x m
capacity of the constraint ©

constraint in which the number of zeroes between every
pair of consecutive ones is at least d and at most k

two-dimensional constraint where (dy, k) is the hori-
zontal constraint and (da, k2) is the vertical constraint

capacity of the (d, k) constraint in the diamond model
capacity of the (d, k) constraint in the square model

capacity of the (d, k) constraint in the hexagonal model
capacity of the (d, k) constraint in the triangular model

n X m array from which a k x [ array was removed from
the upper right corner



Chapter 1

Introduction

Constraint coding is widely used in digital storage applications, particularly
magnetic and optical storage devices [10, 11]. In such systems, the physical
structure of the storage device imposes constraints on the recorded data.
This chapter introduces the field of constrained coding, and describes our
main lines of research.

1.1 Physical Constraints in Digital Storage
Systems

Magnetic storage devices consist of tracks of magnets. When the data is
recorded, a bit one is represented by a reversal of the magnetic polarity
along the data track, and no reversal of the polarity represents a zero. While
reading the data, the head which reads responds to a polarity change by an
induced voltage. When no change occurs, no voltage is produced. A suffi-
ciently high voltage is considered as a one, and otherwise the bit is considered
to be a zero. On one hand, if successive ones are too close, the voltage lev-
els read by them might interfere with each other. Hence there is a lower
bound on the number of zeroes between successive ones that are allowed in
the recorded data. On the other hand, the clock of the device is adjusted
when high voltages are read and a one is detected. To avoid clock drifting,
that might cause erroneous recovery of data, there is an upper bound on the
number of zeroes between successive ones that are allowed in the recorded
data.

When recording data on an optical device such as a CD, the bit one is
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represented as a peak on the surface. In order to read the data, a laser beam
is projected. The light is reflected from the surface, and when reading a peak,
a destructive interference occurs. Therefore the detector sees darkness and
interprets it as the bit one, and otherwise the bit is a zero. On one hand, in
order for the detector not to miss the peak, the peak has to be wide enough,
which implies a lower bound on the number of zeroes between successive ones
that are allowed in the recorded data. On the other hand, reading peaks
allows the detector to adjust the speed of rotation of the CD according to
the distance of the track from the center. Hence, there is an upper bound on
the number of zeroes between successive ones that are allowed in the recorded
data.

1.2 (d, k)-RLL constraints

The constraints that are implied from the discussion above are called (d, k)-
RLL constraints. Formally, a binary sequence satisfies a (d, k)-RLL con-
straint (or a (d, k) constraint), if every run of zeroes between successive ones
has length at least d and at most k. At the beginning and end of the sequence,
the runs are only required to be of length at most k.

Example 1 The sequence 00100010000010 is (2, 5)-constrained.

Indeed, there are many standard storage devices that use (d, k)-RLL con-
straints.

Example 2
o Floppy-disks are (1,7) or (2,7)-constrained.

e DVDs are (2,10)-constrained.

1.3 Encoding

The user of a storage system may wish to record any binary data on the
device, and therefore it has to be changed in order to comply with the con-
straints. This is called encoding. An encoder (see Fig. 1.1) is required to
transform any binary sequence of length p into a constrained sequence of
length n (a codeword). Usually n > p, since not all sequences are valid. The
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encoding procedure has to be reversible in order to later read the recorded
data correctly, hence a decoder is required, which converts the constrained
sequences of length n back into the original sequences of length p.

Encoder —

Figure 1.1: An encoder with rate 2.

The ratio £ is the rate of the encoder. A higher rate implies that fewer
bits are written per one input bit, which decreases the amount of space
needed to record the data. Given a constraint ©, we are interested in finding
the maximal rate possible for an encoder. The capacity of a one-dimensional
constraint © is defined as:

0(6) = lim 082N [9)
n—oo n
where N(n | ©) is the number of codewords of length n that satisfy ©. Given
N(n | ©) output words of length n, the maximum length p of input sequences
can be at most log, N(n | ©). Hence, the capacity C'(©) upper bounds the
rate of any encoder for the constraint ©. Therefore given a constraint ©, we
are interested in finding the capacity C'(O).

1.4 One-Dimensional Constrained Coding

Given a one-dimensional (d, k) constraint we construct the following graph
(see Fig. 1.2):

e The set of nodes is {0,. .., k}.

e For 0 <i <k — 1, there is an edge from node 7 to node i + 1, that is
labelled by 0.



0 /0 0 ./ N0 /N0 0
0 1 d d+1 k
N
1

1 1

Figure 1.2: A graph for the (d, k)-RLL constraint.

e For d < i <k, there is an edge from node i to node 0, that is labelled
by 1.

The graph describes the one-dimensional (d, k) constraint in the following
sense: any walk in the graph produces a (d, k) codeword by the sequence of
labels on the edges of the walk, and any (d, k) codeword has a corresponding
walk.

The capacity of a (d, k) constraint is known to be equal to log, A, where
A is the Perron eigenvalue of the adjacency matrix of the graph.

1.5 Two-Dimensional Constrained Coding

Recent developments in optical storage — especially in the area of holographic
memory — increase recording density by exploiting the fact that the recording
device is a surface. In this new model, the recorded data is regarded as
two-dimensional, as opposed to the track-oriented one-dimensional recording
paradigm. This new approach, however, necessitates the introduction of new
types of constraints which are two-dimensional rather than one-dimensional.
While the one-dimensional case has been widely explored, results in the two-
dimensional case have been slower to arrive. This is mainly due to the fact
that imposing constraints in a few directions makes the coding problem much
more difficult. Nevertheless, in the last decade there has been a considerable
progress in the study of two-dimensional constraints.

Similarly to the one-dimensional definition, a two-dimensional surface is
said to satisfy a (d, k) constraint, if each direction defined by its connectivity
model satisfies a one-dimensional (d, k) constraint. The capacity of a two-
dimensional constraint © is defined by:
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n,m— o0 nm

where N(n,m | ©) is the number of n x m arrays satisfying the constraint
©. An array which satisfies the constraint © is called ©-constrained or a ©
array.

In general, the algebraic tools used to compute the capacity of one-
dimensional constraints, cannot be similarly used in the two-dimensional
case. This work focuses on the reduced task of characterizing the region of
parameters d, k for which C'(d, k) > 0. We describe the different connectivity
models in the following section.

1.5.1 Connectivity Models

Data should be organized on a two-dimensional surface in some order. This
order will be defined by the way in which the data is read. For this purpose
four connectivity models are defined. The diamond model, the square model,
and the hexagonal model are frequently considered in the literature, e.g., for
constrained codes they were considered first by Weeks and Blahut [12]. The
triangular model was considered by [19] for constrained codes and for other
applications in [6]. Some other papers which consider capacities of constraints
in such models are [7, 13, 14, 18, 20].

The first connectivity model is the diamond model. In this model, a point
(i,7) € Z? has the following four neighbors:

{(Z + 17j)7 (i - 17j)7(i7j + 1)7 (27] - 1)}

When (4, ) is a boundary point, the neighbor set is reduced to points within
the array. In this model the data is organized in the two-dimensional rect-
angular grid, and it is read horizontally and vertically.

The second model is called the square model, in which each point (i, j) €
Z? has eight neighbors:

{(Z—I—l,j),(l— 17])7(Zaj+1)7(17]_ 1);
(t+1,j+1),6i—1,741),6G+1,7—-1),i—1,7—1)}.

In this model the data is organized in the two-dimensional rectangular grid
and it is read horizontally, vertically, and in the two diagonal directions.
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The third model is called the hezagonal model. Instead of the rectangular
grid we have used up to now, we define the following graph. We start by
tiling the plane R? with regular hexagons. The vertices of the graph are the
center points of the hexagons. These points define the hexagonal lattice [5].
We connect two vertices if and only if their respective hexagons are adjacent.
In this way, each vertex has exactly six neighboring vertices.

We will use an isomorphic representation of the model. This representa-
tion includes Z? as the set of vertices. Each point (4, j) € Z? has the following
neighboring vertices:

{(l + 1>j)>(i - 1,j),(i,j + 1)7(i7j - 1)>(i - 1aj - 1)7(1. + 1>j + 1)}

It can be shown that the two models are isomorphic [21]. From now on, by
abuse of notation, we will also call the last model — the hexagonal model. In
this isomorphic model the data is organized in the two-dimensional rectan-
gular grid and it is read horizontally, vertically, and in one of the diagonals
direction called right diagonal.

The neighbor sets of the three different models are summarized in Fig.
1.3. A square with a dot is the point (7, j). In all models, rows and columns
of the arrays will be indexed in ascending order, bottom to top and left to
right.

(i+1,9)

Gi-n[ e[ JGi+n ® ®

(i—1,9)

(a) (b) ()

Figure 1.3: Neighbors of position (i, j) in the: (a) diamond model, (b) square
model, (¢) hexagonal model.

The fourth model is called the triangular model. Again, we start by tiling
the plane R? with regular hexagons. The vertices of the graph are now the
vertices of the hexagons, rather than their centers. The edges between the
vertices are the sides of the hexagons. Hence, each vertex has exactly three
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neighboring vertices. If we connect the centers of the hexagons with lines we
will obtain a tiling of the R? with equilateral triangles. The vertices of the
graph are the center points of the equilateral triangles. The set of vertices
is also a union of two translates of the hexagonal lattice. Clearly, a point in
this model can be represented by a triple (7,7, s) € Z? x {0,1}. Each point
(i,7,0) € Z* x {0} has the following neighboring vertices:

{(,5,1), (i —1,5,1), (4,5 — 1, 1)}
Each point (i, j,1) € Z? x {1} has the following neighboring vertices:
{(4,7.0), (i +1,5,0), (i, 5 + 1,0)}.

The neighbor sets in this model are illustrated in Fig. 1.4.

(i'j;lﬁ jﬂl) (+1,),0) Z

JAva " &
(i.j,0) Ny

(a) (b)

Figure 1.4: Neighbors of positions (4, 7,0) and (i, 7, 1) in the triangular model.

As the vertices are two translates of the hexagonal lattice, one can con-
sider the model as having six directions. We will consider it slightly differ-
ently. Instead of data stored in the centers of the triangles, the data will
occupy the whole area of the triangle. Therefore, in this interpretation there
are three directions in this model. Finally, we note that in the triangular
model an n x m array has 2nm points. Therefore the definition of the ca-
pacity in this model is accordingly adjusted to be:

n,m— o0 2nm

10



1.5.2 Previous Work

Let Co(d, k) denote the capacity of the (d, k) two-dimensional constraint in
the diamond model. The value of Cs(1,00) has been investigated in many
works. Calkin and Wilf [3] showed that

0.587890... < Cs(1,00) < 0.588339...
Weeks and Blahut improved these results in [12], showing that
0.58789116177527... < Cs(1,00) < 0.58789149494390...

Then they used a numerical convergence-speeding technique called Richard-
son Extrapolation to estimate that Co(1, 00) ~ 0.587891161775 and that this
approximation is correct up to 12 digits.

For d > 1, Siegel and Wolf [22], and Halevy, Chen, Roth, Siegel and
Wolf [9], bounded Co(d,00) by studying bit-stuffing encoders. Kato and
Zeger [13] also showed bounds for these capacities.

For k > 1, the value of Cs(0, k) was investigated by Talyansky [23], and
by Kato and Zeger [13].

For other values of d the capacity of Co(d, k) is generally unknown. Kato
and Zeger [13] characterized the positive capacity region of (d, k) constraints
in the diamond model, by proving that Co(d, k) > 0 if and only if & > d + 2.

We are interested in asymmetric constraints in this model, in which there
can be different constraints for rows and for columns. Co(dy, k1, da, ko) de-
notes the capacity of the asymmetric (dy, k1, do, ko) constraint in the diamond
model, i.e., horizontally the constraint is (dy, k1) and vertically the constraint
is (da, k2). These constraints were handled in [14].

Ca(d, k), Co(d, k), and Ca(d, k) denote the capacity of the (d, k) con-
straint in the square model, hexagonal model, and triangular model, respec-
tively. In the hexagonal model, the exact value of Cp(1,00) was given by
Baxter [1]. The positive capacity region of hexagonal constraints has been
studied by Kukorelly and Zeger in [16, 15].

Finally, the capacity of the hard-triangle constraint (isolated ones) was
shown in [19] to be bounded by 0.628831217 < Ca(1,00) < 0.634775895.
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1.5.3 Description of the Work

The rest of the chapters are organized as follows. In Chapter 2 we present the
known basic techniques to prove zero or positive capacity. We generalize these
techniques, so that they could be applied to more complicated cases which
we will have in succeeding chapters. In Chapter 3 we examine asymmetric
constraints in the diamond model and provide an almost complete solution
for the zero/positive capacity region problem. In Chapters 4, and 5 we
examine capacities of constraints in the square model and the triangular
model, respectively. Discussion and open problems are in Chapter 6.
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Chapter 2

Basic Techniques

In this chapter we will survey the known techniques, except for ad-hoc meth-
ods, used to prove zero capacity, and those used to prove positive capacity.
We will generalize these techniques in a way that will enable them to handle
more complicated scenarios. The first lemma which appeared in [14] is an
immediate consequence of the definition of the (d, k) constraint.

Lemma 1 Let © be a constraint with minimum runlength d and mazimum
runlength k in direction A. Let © be a constraint with minimum runlength
d < d and maximum runlength k > k in direction A, and the same con-

straints as in © in the other directions. Then C(0) < C(O).

2.1 Positive Capacity

An [n x m, k x {] skeleton tile is a tile which consists of an n X m array from
which a k x £ array was removed from the upper right corner. If £ = 1 we
simply have an [n x m, k] skeleton tile. An example of a [7x 12,3 x 5] skeleton
tile is given in Fig. 2.1.

Figure 2.1: A [7 x 12,3 x 5] skeleton tile.
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For two points 21 = (x1,y1) and 2y = (29,%2), 21,22 € Z2, let L(21, 22) =
{(ixy + jxo,iyn + Jy2) : 1,7 € Z} be the set of points spanned by zy, zs.
This is the lattice defined by z; and z» (see [5, 8]). Note, that by abuse of
notation, the first coordinate is for the row index and the second is for the
column index. The following lemma can be easily verified.

Lemma 2 Let A be an [n x m,k x {] skeleton tile. If we place the bottom
leftmost point of A on the points of L((n — k,m — (), (n,—{)), then a tiling
of Z% with copies of A is obtained.

The tiling obtained by Lemma 2 will be called the standard tiling. If A
is an n x m array (a skeleton array) then the standard tiling is obtained by
substituting £k = 0 and £ = 0 in the skeleton tile of lemma 2. Clearly, we can
also use a parallelogram instead of a rectangle. A standard tiling can use a
few tiles with the same shape and different labels. In this case each one of
the tiles can have any one of the labels. The next lemma is a straightforward
generalization of similar lemmas for skeleton arrays, given in [7, 14].

Lemma 3 Let A and B be two identical tiles with different labels, and ©
a two-dimensional constraint. If any standard tiling with A and B yields a
two-dimensional array which is ©-constrained, then C(©) > 0. Moreover, if

we can use t identical tiles with different labels Ay, --- |, As, and the number
of points in A; is N, then C(©) > +logst.

2.2 Zero Capacity - The Scanning Method

The most effective method to prove zero capacity was given by Blackburn [2]
for specific constraints. However, this method can be formulated to handle
general two-dimensional constraints.

Assume we want to show that the capacity of a two-dimensional constraint
© is zero. We consider an (n + 7 + 13) X (m + t; + t3) array A which is
O-constrained, where t1, to, 71, and 7o are constants which might depend on
the runlength constraints, but do not depend on n and m. Assume further
that the labels at positions of the first r; rows, the last ro rows, the first
t1 columns, and the last {5 columns, are known. We now scan the other
positions of A. We scan the other n rows from bottom to top, and the m
positions in a row are scanned from left to right. We assume that all positions
in the array are scanned, i.e. we omit arrays in which not all positions can

14



be labelled. If each position is determined by the known labels and the
positions which are already scanned, then the capacity of the constraint ©
is zero. We will not give a proof to the claim, since we will prove a much
stronger result. This technique will be called scanning. The strength of
scanning is demonstrated by providing a very short proof to the following
theorem by Kato and Zeger [13].

Theorem 1 Co(d,d+ 1) =0 for every d > 1.
Proof. Consider an n x m array A which is (d, d + 1)-constrained. We will

show that the labels of A are determined by the labels at positions (i, j),
where 0 <i<dor0<j<d—1lorj=m-—1.

Al AlxlY
i ] A|B
IpRp:

A|B
C| D

Figure 2.2: Scanning of a (d,d + 1) array.

We show that for every d+1 < i, d < j < m—2, the label of the position
marked by X (see Fig. 2.2) is determined by the labels to the left of it and
the labels below it. Assume the contrary that X can be a zero and can be
a one. It implies that all the positions marked by A are zeroes and either
X or Y is a one. Since Y can be a one, it follows that all positions marked
by B are zeroes. Since X can be a zero it follows by the vertical constraint
that C' is a one. Similarly, since Y can be a zero, it follows that D is a one,
a contradiction to the horizontal constraint. Hence, Co(d,d +1) =0. =

We strengthen the technique as follows:
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Theorem 2 Assume the scanning method is applied to a two-dimensional
constraint ©. If for the label in each scanned position (i,7), one of the fol-
lowing three states holds:

(s1) The label in position (i,7) is completely determined;

(s2) The label can be either zero or one, but with one of these labels the
suffiz of the row is completely determined;

(s3) The label can be either zero or one, but the prefix of the row before
position (i, ) is a given sequence P(i,j);

then C(©) = 0.

Proof. Assume p positions, numbered by 0,1,...,p — 1, are scanned in a
row, as depicted in Fig. 2.3.

Figure 2.3: Scanning of p positions in a row.

Let 7 be a directed tree with p + 1 levels defined as follows. The root of
7T (level 0) represents position 0. For ¢ < p, the vertices in level ¢ represent
position ¢. The vertices in level p represent all the valid labels of all the p
positions in the row. A vertex v which is not a leaf has out-degree one or
two depending whether the label of the corresponding position is completely
determined or not, respectively. The edge which connects a vertex v in level
¢ to vertex u in level ¢ + 1 is labelled with one of the possible labels of the
position represented by v. If the out-degree of v is two then one edge is
labelled by a zero and one edge is labelled by a one. Each vertex v is labelled
with the ordered labels of the path from the root to v. Hence, each leaf
corresponds to a valid sequence of labels for the p positions. We now bound
the number of leaves in the tree, which gives an upper bound to the number
of possible rows in the scanning.
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An example of a tree 7 that represents the scanning of p positions with
no constraints is illustrated in Fig. 2.4. When no constraints are imposed

level 0
level 1
0
level p— 1
0 1
level p 0 071 e 1°

Figure 2.4: The tree 7 when no constraints are imposed.

every row is valid, therefore the tree is a complete binary tree. The number
of leaves equals the number of all rows of length p, which is 2.

We now bound the number of leaves in any tree 7. First, we note that
the label on a vertex v, which represents position (i, j), represents the labels
of the positions before position (i,7). A vertex representing a position in
which state (s1) holds has exactly one son. A vertex representing a position
in which state (s2) holds has two sons, but one of them is a chain of vertices
representing positions in state (s1). Hence, the number of leaves of a subtree
whose root is in level ¢, and does not have vertices which represent positions
in state (s3), is at most p — ¢ + 1.

If state (s3) holds in position (4, j) represented by v, then the label on v
must be P(i, 7). Therefore, in each level there is at most one vertex which
represents a position in which state (s3) holds.

Now, we construct a tree 7’ from 7 by swapping subtrees of 7, with
roots on the same level. Clearly, the number of leaves in 7’ is equal to the
number of leaves in 7. 7’ will be constructed in a way that all vertices which
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correspond to positions in which state (s3) holds, are on the same path (see
Fig. 2.5). The total number of leaves of 7', which are not on this path, is at

most > »_(p—C+1)= @.

Figure 2.5: The tree 7’. Every subtree which does not include vertices on
the leftmost path, does not have vertices that represent positions that are in
state (s3).

The number of leaves in 7 is equal to the number of different labels for
a row in the (n +ry +72) X (m + t; + t2) array which is ©-constrained (for

p=m).
We now have that the total number of possible different labels for an
(n4r1+7r2) X (m~+t1+ty) array which is ©-constrained is at most (@4—1)”7

which implies that C(©) =0. =
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Chapter 3

Asymmetric Run-length
Constrained Channels

The positive capacity region of (d, k) constraints in the diamond model has
been determined by Kato and Zeger in [13]: for every d > 1, Co(d, k) > 0 if

and only if £ > d + 2.

In this chapter we investigate asymmetric constraints in the diamond
The zero/positive region of asymmetric constraints, denoted by
Co(dy, k1,da, k2), has been studied by Kato and Zeger in [14]. They have

model.

summarized their results in which seven cases remained unsolved:

(ul)
(u2)
(u3)
(u4)
(u5)
(u6)

(u7)

dy =1,
2 <dy,
2 <dy,
2 <dy,
2 <d,
2 <dy,

2§d17

k1:37
ki =dy +1,
d1+2§k1§2d1a

d1+2§k1 §2d17
dy +2 < kg <2d,
2d1<k1,

2d; < k]_,

dy =2,
d2 = d17
d2 = d17

di <dg < k1 — 1,
d2:k1_17
d1<d2<k}1—1,

dy = ky — 1,

In this chapter we solve most of these cases.
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ke =3

ko < 2d,.
ko =dy+1
ko =dy+1
ko < 2d,.
ko =dy+1
ko < 2d,.



3.1 Constructions for Proving Positive Ca-
pacity

Lemma 4 Co(d,2d + 1,2d,2d + 1) > 0 for every d > 1.

Proof. Let T, be the following (2n — 2) x (2n) array. T,(1,2n —2) = 1
and 7,,(0,n — 2) = 1; if T,,(4,5) = 1 then T,,(i + 2,5 — 1) = 1 provided that
1+ 2 < 2n — 3. All other positions of T,, are zeroes. Ty is illustrated in
Fig. 3.1.

1

Figure 3.1: The array Tj.

Consider the [(4d +4) x (2d + 3), 2d + 3] skeleton tile shown in Fig. 3.2.
Let A and B be the two [(4d 4+ 4) x (2d + 3),2d + 3] tiles obtained from

2d Td+1

3 0%5‘ oi
*

2d

(=

Tg+1

WO 0 I 0 [T

1 d 1 d 1
Figure 3.2: The skeleton tile for the (d,2d + 1,2d,2d 4 1) constraint.
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this skeleton tile by substituting the two skew tetrominoes shown in Fig. 3.3
instead of the four asterisks. We claim that any standard tiling with the

[1]
0[1] 1]0]
0] [1]

Figure 3.3: Two skew tetrominoes for substitution in the skeleton tile.

arrays A and B yields a (d,2d + 1,2d,2d + 1)-constrained array. One can
easily verify that it is sufficient to prove that the [(4d +4) x (2d + 3), 2d + 3]
skeleton tile is a (d,2d + 1,2d,2d + 1) tile, and that the constraint is not
violated on rows and columns crossing two different skeleton tiles, on the
positions marked in bold in Fig. 3.4.

Figure 3.4: Tiling the plane with skeleton tiles.

Now, consider the portions of the rows that cross two skeleton tiles. The
scenario is depicted in Fig. 3.5. First note that in Figures 3.2 and 3.5 all
the gaps between ones, in which at least one of the ones is not in Ty, are
calculated and written. Therefore, we only have to calculate the gaps between
ones in the rectangles depicted in Fig. 3.6. In each one of the two figures
Fig. 3.6(a),(b), let a be the leftmost copy of Ty1, and 5 the rightmost copy.
In each one of the two figures Fig. 3.6(c),(d), let o be the upper copy of Ty, 1,
and (3 the lower copy.
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L T 0 :g‘ 0 4
T
T

=

=)
]
o

Ty

I 0 [I] 0 I

Figure 3.5: Areas crossing two tiles for the (d,2d 4 1,2d,2d + 1) constraint.
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1. We start with the ones of Fig. 3.6(a). We calculate the gaps between
ones of & and 3. « and [ are separated by one column, and since the
width of T,y is 2d + 2, and S is shifted down by two rows, the gaps
between ones are 2d + 1.

2. In Fig. 3.6(b), the gaps between ones of o and [ are also 2d + 1, since
the width of Ty, is 2d + 2.

3. In Fig. 3.6(c), @ and 3 are separated by three rows, and since the height
of Ty is 2d, and f is shifted to the right by one column, the vertical
gaps between ones are 2d.

4. In Fig. 3.6(d), the vertical gaps between ones are also 2d, since the
height of T,;,1 is 2d, and « and (3 are separated by one row.

2d

=
[~
|
1
|
|
1
-
w

e e L
4
[N S TEN

(a) (b) (c) (d)

Figure 3.6: Relative locations of Ty, arrays.

Hence, any standard tiling with A and B is a (d,2d + 1,2d, 2d + 1) array.

Therefore, by Lemma 3 we have Co(d, 2d+1, 2d,2d+1) >

__1
8d%+18d+9"

1 _
(4d+4)(2d+3)—(2d+3) —
[

Lemma 5 Co(d,2d 4 2,2d 4+ 1,2d 4+ 2) > 0 for every d > 1.

Proof. Consider the (4d+5) x (2d+ 3) skeleton array of Fig. 3.7. Let A and
B be the two (4d + 5) x (2d + 3) arrays, obtained from the skeleton array by
substituting a one instead of one of the asterisks and a zero instead of the
other.
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d+1 Id+1 0 0
d+1 O E Id+1
*
ol
d+1 Id+1 0 O
d+1 O 0 Id+1
4L 0 J11 0
d+11 d+1

Figure 3.7: A skeleton array for the (d,2d + 2,2d + 1,2d + 2) constraint.

Consider any standard tiling of the plane with A and B. Every row that
does not contain an asterisk, has the pattern (102¢72)> which is (d, 2d + 2)-
constrained. The rows that contain asterisks have the pattern (07! % 091)>
or (104 091)>° which will be valid in any substitution of zeros and ones
instead of the asterisks.

Similarly, every column that does not contain an asterisk, has the pattern
(102¢+21024F1)> " which is (2d + 1,2d + 2)-constrained. The columns that
contain asterisks have the pattern (10241 x x02+1)>° which will be valid in
any substitution of one zero and one one instead of each consecutive asterisks.

Hence, any standard tiling of the plane with A and B yields a two-
dimensional (d, 2d+2, 2d+1, 2d+2)-constrained array. Therefore, by Lemma 3

1 _ 1
Co(d,2d +2,2d +1,2d+ 2) > grsaa7s = serooas ™

Lemma 6 [f d1 > 1, k’l > 2d1, dQ = k’l — 1 and k’l < kQ < ng then
Co(dl,kl,dg,kg) > 0.

Proof. Assume dy > 1, ky =2d; +t,t > 0,dy =k — 1, and ky = k1. We
distinguish between two cases:

Case 1: t=2r+1,r > 0.

By Lemma 4 we have Co(dy + 7,2dy + 2r + 1,2dy + 2r,2dy + 2r + 1) > 0.
Therefore, by Lemma 1 we have Co(dy, 2d; +2r+1,2dy 4+ 2r, 2d, +2r+1) > 0.
Case 2: t =2r+2,r > 0.

By Lemma 5 we have Co(dy 4+ 7,2dy + 2r + 2, 2d;, + 2r + 1,2d; + 2r + 2) > 0.
Therefore, Lemma 1 implies Co(dy, 2dy 4+ 2r+2,2d; +2r+1,2d; +2r+2) > 0.
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Hence, Co(dy,2dy +t,2dy +t — 1,2d; +t) > 0 and thus by Lemma 1
we have that if d1 2 1, ]Cl > 2d1, dg = /{31 — 1 and kl S ]Cg S 2d2 then
Co(dl, kl,dQ, k‘z) >0. m

Lemma 7 Ifd>2andd—1>r > 1, then Co(d,2d+1,d+7r,d+r+1) > 0.

Proof. We begin by recursively defining a (d +r — 1) x d array, Hy,., as
follows. For p > 1 let,

0 10 0
H(S*l,prl 00 0
H5,2p = 0 ) H6,2p+1 = 0 )
0 0 0 © Hs_19,
0 01 0

where H;; = I5. Hgg is illustrated in Fig. 3.8.

1

1

Figure 3.8: The array Hgg.

Next, we define the (d +r — 1) x d array H,, by rotation of Hg, by
180°. Note that Hg, = Hj, if and only if r is odd. Also, in the “center” of
H,, (H élﬂn) there is the identity matrix I;_,,;. This part of the array will be
called center.

Consider the [(2d+2r+4) x (3d+2), 2d + 2r + 1] skeleton tile of Fig. 3.9.
Let A and B be the two [(2d + 2r +4) x (3d + 2),2d + 2r + 1] tiles obtained
from the skeleton tile by substituting the two skew tetrominoes of Fig. 3.3
instead of the four asterisks.

As in the proof of Lemma 4 we have to prove that any standard tiling
with A and B is a (d,2d+1,d+r,d+r+1)-constrained array. One can easily
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1 1
21 I
1 '
, dor d+r—1
d-‘r’f‘—l / d,’)"
d,?” +r
2 Il . 4
L] ]
i) * 1
2 '
L d+r—2
f H Hdﬂ‘
H d,r
d+r—2 dr | g+ r il 5
; 1
B 1
T a 17 4 d

Figure 3.9: The skeleton tile for (d,2d 4+ 1,d + r,d + r + 1) constraint.

verify that it is sufficient to prove that the [(2d+2r+4) x (3d+2), 2d+2r +1]
skeleton tiles are (d,2d + 1,d + r,d + r 4+ 1) tiles, and that the constraint is
not violated on rows and columns crossing two different skeleton tiles on the
positions marked in bold in Fig. 3.4. The scenario is depicted in Fig. 3.10.

First note that rotating the plane by 180°, around any of the tetrominoes
(while the tetrominoes are still labelled with the asterisks) leaves the plane
with exactly the same labels. Note also that in Figures 3.9 and 3.10 all the
gaps between ones, in which at least one of the ones is not in Hy, or Hy,
are calculated and written. Therefore, we only have to calculate the gaps
between ones in the rectangles depicted in Fig. 3.11. In each one of the three
figures (Fig. 3.11(a),(b),(c)), let o be the leftmost copy of Hy,, [/ the middle
copy, and v the rightmost copy of Hy,,.

1. We start with the ones of Fig. 3.11(a). We calculate the gaps between
ones, where one of the ones is in . If the second one is in 3 then both
ones belong to the center of Hy,, and hence the gap between them
is d. If the corresponding row in 3 consists only of zeroes, then the
corresponding row in 7y contains a one as depicted in Fig. 3.11(a). The
gap between these two ones is 2d. The gaps between ones of § and ~
are the same as the gaps between the ones of a and (.

2. The gaps between the ones of @ and [ in Fig. 3.11(b) are the same
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1 1
[1 1 H(Iir
1 )
1
| i
H' d,r
d,r
1
L]
LE k]
1] * 1 Hd,'r'
Hd,'r
- H Hd,r
d,r 1
Hy, o 1
d,r
Hd,r il
1 1 1
1 1
1 1
/
H' Hd,r
H' d,r
d,r
]
Lk * ]
1] * 1
] Hdr
Hdr T
HdJ‘ ' Ll
1
1
1

Figure 3.10: Areas crossing two tiles for the (d,2d + 1,d + r,d + r + 1)
constraint.
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IR D D
LU 5 F

4
(a) (b) () (e)

Figure 3.11: Relative locations of Hy, arrays.

as the gaps between the ones of o and 3 in Fig. 3.11(a). The gaps
between the ones of @ and v in Fig. 3.11(b), where the corresponding
row of [ has zeroes are greater by one than the gaps between the ones
of o and ~y in Fig. 3.11(a), and hence these gaps have length 2d + 1.
Similarly, the gaps between 3 and ~ are d + 1.

3. The gaps between the ones of @ and [ in Fig. 3.11(c) are greater by
one than gaps between the ones of a and (3 in Fig. 3.11(a), and hence
these gaps have length d+ 1. The gaps between the ones of a and ~y in
Fig. 3.11(c), where the corresponding row of 3 has zeroes are the same
as the gaps between the ones of « and ~ in Fig. 3.11(a). Similarly, the
gaps between ( and v are d + 1.

4. Since the height of Hy, is d +r — 1, it follows that the vertical gaps
between ones in Fig. 3.11(d) is d 4+ r if r is odd. If r is even, then the
gap between two ones is d+ 1 if at least one of them is not in the center
of its shape, and d + r + 1 between the other ones.

5. The vertical gaps between ones in Fig. 3.11(e) is d + r if r is even. If r
is odd, then the gap between two ones is d 4+ r if at least one of them
is not in the center of its shape, and d + r + 1 between the other ones.

This completes the proof that any standard tiling with A and B is a (d, 2d +
1, d+r, d+r+1)-constrained array. Therefore, by Lemma 3 we have Co(d, 2d+

1 _ 1
Ld+rd+r+1)> Gdr2r 1 )(3d+2)—(2d+2r+1)  62+6driiddierir ™
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Lemma 8 [fdl > 2, k/‘l > 2d1, d1 < dg < kl —1 and kg = d2+ 1, then
O<><d17k17d2ak2) > 0.

Proof. Assume d; > 2, k1 > 2dy, di < dy < k1 — 1, and kg = dy + 1. We
distinguish between two cases:

Case 1: d; < dy < 2d;.

By Lemma 7 we have Co(dy,2dy + 1,ds,dy + 1) > 0. Since ky > 2d; + 1, by
Lemma 1 we have Co(dy, kq,da,dy + 1) > 0.

Case 2: 2d) < dy < k1 — 1.

Since dy > 2d; then by Lemma 6 we have Co(dy,da+1,da, do+1) > 0. In this
case k; > dy + 1, and therefore Lemma 1 implies Co(dy, k1, do,do+1) > 0. =

3.2 Proving Zero Capacity

Proposition 1 Ifdy > 2, k; <2dy, dy < dy < k;—1, and ks = dy + 1 then
Co(dly kh an k?) = 0.

Proof. Consider an array A which is (di, k1, da, ko )-constrained. We will
show that the label X at position (i, j) is determined by the d; labels to the
left of it, and the labels of the (ds+1) x (d; 4+ 1) array below it (see Fig. 3.12).

Al JalxFlF

dy B|E E
,||B|E| |E
a2

B|FE E

dy
Figure 3.12: Labels of the array in Proposition 1.

Assume the contrary that X can be labelled by a zero and can be labelled
by a one. It implies that all the positions marked by A are zeroes. If any of
them was labelled with a one, it would imply that X is a zero, in order to
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avoid a pattern which violates the horizontal constraint. The same argument
vertically implies that all the positions marked by B are zeroes.

If the position marked by C' is a zero, then the positions marked by B or
C form a run of ds + 1 = ky zeroes, which implies that X is a one. Hence, C
is a one and all the positions marked by D are zeroes, in order to satisfy the
horizontal constraint.

Consider the dy positions marked by E in one of the corresponding d
columns. If all these dy positions are zeroes, then the position marked by F
in the same column should be labelled with a one by the vertical constraint,
and X is a zero by the horizontal constraint. Therefore, in each column
with positions marked by E, one of these positions is a one which implies
that all the positions marked by F' are labelled by zeroes. Since all positions
marked by A are also zeroes, it follows that X is a one, which contradicts
our assumption.

Thus, by Theorem 2 we have Co(dy, k1,d2,ks) =0. ®

3.3 Summary of Results for the Diamond Model

The results in this chapter produce solutions to most of the seven unsolved
cases of [14]:

(ul) is solved in Lemma 4,

(u2), (u3), and (u4) in Proposition 1,

(u6) in Lemma 8,

(u7) in Lemma 6,

and (ub) was solved when ks = dy + 1, in Proposition 1.

The only case which remains unsolved is when 2 < d;, d; +2 < k; < 2dy,
do =ky —1,dy+2 < ky < 2dy.
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Chapter 4

The Square Model

In this model the data is organized in the two-dimensional rectangular grid,
and is read horizontally, vertically, and in the two diagonal directions.

4.1 Proving Zero Capacity

Recall that the hexagonal model can be represented as a rectangular grid with
3 directions. Therefore, any (d, k)-constrained array in the square model is
also a (d, k)-constrained array in the hexagonal model, which implies the
following lemma:

Lemma 9 For every d, k, Cm(d, k) < Co(d, k).

In particular, Lemma 9 implies that if Co(d,k) = 0 then Cm(d, k) = 0.
We will use this in proving zero capacity for some constraints in the square
model.

Theorem 3 Cm(d,d+ 3) =0 for every d > 1.

Proof. We begin by proving for d = 1. Kukorelly and Zeger [16] showed that
Co(d,d +2) = 0 for every d > 1. In particular, Co(2,4) = 0 and therefore
by Lemma 9 we have Cg(2,4) = 0. Hence, if Cg(1,4) > 0 then there exists a
(1,4) array that has a run of exactly 1 zero (see Fig. 4.1). Each one implies
zeroes in each of its 8 neighbors, therefore all the positions marked by A are
zeros. This creates a run of 5 zeros horizontally, which is a contradiction.
Hence, Cg(1,4) = 0.
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b
-
o
-
b

Figure 4.1: Proving Cg(1,4) = 0.

For d = 2, the proof is similar. Again we have by Lemma 9 that Cg(3,5) =
0, hence if Cgy(2,5) > 0 then there exists a (2,5) array that has a run of
exactly 2 zeroes (see Fig. 4.2). Each one implies zeroes in each of its 8

AlAJA|AIAlA
Al1]0]0 |1 A
AlAJAA AlA

Figure 4.2: Proving Cg(2,5) = 0.

neighbors, therefore all the positions marked by A are zeros. This creates a
run of 6 zeros horizontally, which is a contradiction. Hence, Cm(2,5) = 0.

In [15], Kukorelly and Zeger prove that Co(d,d + 3) = 0 for d = 3,4, 5.
Therefore by Lemma 9, we have that Cg(d,d + 3) = 0 for d = 3,4, 5.

The rest of the proof assumes d > 6. Consider an array .4 which is
(d,d + 3)-constrained. We will show that the label X at position (7,7) is
determined by the labels to the left of it and labels below it (see Figure 4.3).
Assume the contrary, i.e. that X can be labelled by a zero and can be labelled

Figure 4.3: Scanning of a (d,d + 3) array.

by a one. It implies that all the positions marked by A are zeroes and either
X or one of the three positions to the right of X is a one. Therefore, at least
one of the following three cases must be valid.
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Case 1: X can be a one and Y; can be a one (see Fig. 4.4). Clearly, all

B | B
Al jAalx iy
B | B

d

B\ B
Ci| D
Cy| D

Figure 4.4: Case 1 of Theorem 3.

positions marked by B are zeroes. X can be a zero, and therefore by the
vertical constraint either C; or Cs is a one. This implies that both positions
marked by D are zeroes, which will create a vertical run of d 4+ 4 zeroes when
Y: will be a zero, which is a contradiction.

Case 2: X can be a one and Y, can be a one (see Fig. 4.5). As in case

5 Ja)
E|D E|E E ¢
E| B E|B
Cy| B| D
A Alx B v

S|
Sy
Sy
Sy
Sy

B B B B

Figure 4.5: Case 2 of Theorem 3.

1, the positions marked by B are zeroes. Also, if X will be a zero then the
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positions marked by C; and Cy will be ones, and if Y5 will be a zero then
the positions marked by D will be ones. Therefore, the positions marked by
E must be zeroes. This implies, by the diagonals constraints, that if Cy will
be a zero then both F; and F5 will be ones, a contradiction to the horizontal
constraint since the gap between them is of length 5.

Case 3: X can be a one and Y; can be a one (see Fig. 4.6). Clearly, all

Co| | Dy

Q
()

B B

Q
()

B B

Figure 4.6: Case 3 of Theorem 3.

positions marked by B are zeroes. If X will be a zero, then by the vertical
constraint either C; or Cy will be a one, and by the right diagonal constraint
either Dy or Dy will be a one, which implies that C; and D, will be ones.
Similarly, if Y3 will be a zero, then by the vertical constraint and the left
diagonal constraint, the positions marked by E will be ones. This implies
that Dy and all positions marked by F must be zeroes. Hence, similarly to
case 1, in order to avoid a vertical run of d+4 zeroes, two of the four positions
marked by G must be ones, which is clearly impossible.

By Theorem 2, this completes the proof that Cg(d,d + 3) = 0, for every
d>1 m
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4.2 Summary of Results for the Square Model
The following positive capacity results in the square model appear in [4]:

e Cg(d,d+6) >0, for every d = 1,21(mod 30)
o Og(d,d+8) >0, for every d = 2,30(mod 42)
e Cg(d,d+16) > 0, for every d = 2,46(mod 66)
e Cg(d,d+18) > 0, for every d = 3,55(mod 78)

Theorem 3 proves that Cg(d,d + 3) = 0, for every d > 1. Thus, there is
still a gap between the known zero and positive capacity regions.
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Chapter 5

The Triangular Model

In this chapter we investigate the positive capacity region of the triangular
model.

Let A be an n x n triangular array. We say that A has n rows, n right
columns, and n left columns. A(i, 7, s) belongs to row i, right column j, and
left column [i + j + s, (see Fig. 5.1).

left column / right column
N/
*
*
* *
* / \*
*
*
row * *
> * * * * *
* * * * *

Figure 5.1: A triangular array

5.1 A Construction for Proving Positive Ca-
pacity

An n x n triangular array is called a doubly periodic non-attacking triangle
queens array if each row, right column, and left column has exactly one one.
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Lemma 10 An n x n doubly periodic non-attacking triangle queens array
exists if and only if a (2n — 1,2n — 1) triangular array exists.

Proof. Let A be an n x n doubly periodic non-attacking triangle queens
array. Consider the following 2n x 2n triangular array:

/2[4

Clearly, each row (right column) of B has two ones separated by 2n — 1
zeroes. Now, consider the bottom right and the upper left copies of A. Each
left column which has a one in these arrays has two ones on the corresponding
left column of B. They are separated by 2n — 1 zeroes as the other two copies
of A cannot have a one on the same left column of 5.

Note that any run of 2n symbols in the tiling has a representation in B.
Therefore, ones in each row of the tiling are separated by 2n — 1 zeroes, and
the same is true for right and left columns. m

Lemma 11 If A is an n x n (d,d) triangular array then any exchanges of
copies of the patterns shown in Fig. 5.2 in disjoint positions of A will result
ina(d—2,d+2) array.

& A A

Figure 5.2: Three 2 x 2 exchangeable triangular arrays.

Proof. The ones in all three triangular arrays occupy the same rows, and
right and left columns. In each direction, the difference between the arrays,
is a change of at most 2 positions for the label one.

In a (d,d) array, any two adjacent copies of the patterns above must be
identical. Therefore, by exchanges of copies of the above patterns in disjoint
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positions of a (d, d) array, the length of any given run of zeroes may increase
or decrease by at most 2. This results in a (d — 2,d + 2) array. =

We now make use of Lemmas 10 and 11, to construct tiles that imply positive
capacity of some constraints in the triangular model.

Lemma 12 Ifd =1 (mod 4) then Ca(d,d +4) > mlogg?).

Proof. For even n we construct an n x n doubly periodic non-attacking
triangle queens array 7, where 7,,(i,1,s) = 1 if s # i (mod 2), for every
0 <i<n-—1 (7 is illustrated in Fig. 5.3). By Lemma 10, the standard

INONONONINAN
INONININIS/N/
INONONANININ/
VAVAVATAVAYAYY
INANNININ/N/
XAVAVAVAVAV

Figure 5.3: The triangular array 7Zs.

tiling with 7, is a (2n — 1,2n — 1) array. By Lemma 11, any exchanges of
copies of the pattern shown in Fig. 5.2 in disjoint positions of A will result in
a (2n—3,2n+1) array. The total number of different (2n — 3,2n + 1) arrays
used in the tiling is 32. Hence, by Lemma 3 we have that Cx (2n—3,2n+1) >
ﬁloggii. ]

The following lemma shows that when d = 3 (mod 4), a similar construction
to the one above does not exist.

Lemma 13 If n is odd then there is no n X n doubly periodic non-attacking
triangle queens array which contains an appearance of any of the patterns
shown in Fig. 5.2 .

Proof. Assume that n is odd and an n x n doubly periodic non-attacking
triangle queens array A exists. We write A as a sequence ag, ay, - ,0p_1,
where a; = (j;, ;) if A(7,7:,8;) = 1. Since A is a doubly periodic non-
attacking triangle queens array, it follows that for every 0 <r < ¢ <n —1,
we have j,. # j, because there cannot be 2 ones in the same right column,
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and j. +r + s, Z jo +  + s¢(mod n) because there cannot be 2 ones in
the same left column. Therefore, jo, j1, -+, jn_1 and [jo + 0 + So]n, [j1 + 1 +

S1lns s [Jno1 +(n—1) + 8,_1], are permutations of 0,1,--- ;n— 1. For any
given permutation pg,p1,- -+ ,Pn_1 of 0,1,--- ,n — 1 we have
n—1
-1
Zpi = w = 0(mod n),
i=0

since n is odd. Therefore,

n—1 n—1 n—1 n—1
Zsi = Z(ijiJrsi) _Zji —Zz’ = 0(mod n).
i=0 i=0 =0 =0

Hence, either s; =0 foreach 0 <i<n—1,ors;=1foreach0<i<n-—1,
implying that all the positions that are ones have the same orientation. Thus,
there is no doubly periodic n X n non-attacking triangle queens array which
contains an appearance of any 2 x 2 array shown in Fig. 5.2. =

5.2 Proving Zero Capacity

In this section we prove that Ca(d,d + 3) = 0 for every d > 5. For technical
reasons, the proof is divided into two parts, one proof for even values of d,
and another for odd ones.

The following lemma will be used in Lemma 15, when proving that
Ca(d,d+3) >0 for even d > 6.
Lemma 14 Let d > 6 be an even integer, h = #, and let A be an infinite
(d,d + 3) array. If A contains an r x h sub-array B whose first two rows
form the pattern PEven (see Fig. 5.4), then the first two and the last two
right columns of B are substrings of (109t1)%°.

d

/Y~ Lo/

d+2

Figure 5.4: The pattern PEven.
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Proof. Let C be an r x (h + 1) sub-array of .4 with the pattern PEven as
depicted in Fig. 5.5. Clearly the positions marked by A are zeroes. By the
left column constraint either By or B, will be a one and hence all positions
marked by C are zeroes. Assume the position marked by D is a one. Then,

Figure 5.5: Labels implied by the pattern PEven.

all positions marked by E will be zeroes which will create a run of d 4+ 7
zeroes in the right column, a contradiction. Hence, D is a zero, F' is a one,
By is a zero, and B, is a one.

The four ones in the left columns of By and F' form the pattern PEven
and hence by the same arguments the two positions marked by G are ones.
The positions marked by Bs, F', and G form again the pattern PEven. The
claim of the lemma is proved now by induction. m

Lemma 15 Ifd > 6 is even then Ca(d,d + 3) = 0.

Proof. We use the scanning technique again, and show that one of the three
states of Theorem 2 occurs in each scanned position. Assume we have to label
the next scanned position marked by X. We have to distinguish between two
different types of orientations of the position as depicted in Fig. 5.6.

T e

Figure 5.6: The possible orientations of a scanned position.
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Case 1: Assume that X, as depicted in Figure 5.7 (to simplify the picture,
the array is drawn in a different orientation), is not uniquely determined,
i.e., it can be labelled by a zero and it can be labelled by a one. It implies
that all the positions marked by A are zeroes, either X or one of the three
positions to the right of X is a one, and either By or By is a one. Therefore,
the positions marked by C' are zeroes and at least one of the following three
cases must be valid.

NVAVAVAVAVAVAVY
UNONENNNE
NVAVAV/SVAVAVAVAVAN

VAVAVAVAVAVAYAV

1Bch

Figure 5.7: Case 1 of Lemma 15.

Case la: X can be a one and Y] can be a one (see Fig. 5.8). Clearly, all
positions marked by D are zeroes. Y7 can be a zero, therefore E is a one, and
hence Bs is a zero and Bj is a one. Therefore, the seven positions marked

by F are zeroes.

M

AVAVAVATATAVAYAN

IVAVAVAY AVATAVY
VAVAVAVAAVAVAY

WAVAVAVAVAVAYAN
V%V/AVAVAVAVAVAA

Figure 5.8: Case la of Lemma 15.

Assume G is a one. Then the d positions below it (ending with the
d — 5 positions marked by H) are zeroes, creating a run of d + 7 zeroes, a
contradiction. Hence, G is a zero.
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If X will be a zero then either I; or I, will be a one. Assume I; will be a
one. Then, all the positions marked by J are zeroes. If X will be a one then
I; and K will be zeroes, Y7 will be a zero, either L or Lo will be a one and
the two positions marked by M will be labelled by zeroes. Therefore, there
is a run of d 4+ 4 zeroes is the right column of K, a contradiction. Hence, if
X will be a zero then I; will be a zero, Iy and Y; will be ones. E, By, I,
and Y] will form the pattern Peven, and hence by Lemma 14 the suffix of the
current row is completely determined, and we are in state (s2).

Case 1b: X can be a one and Y, can be a one (see Fig. 5.9). If Y5 will be
a one then all positions marked by D are zeroes. If X will be a one then Y5
will be a zero, and hence there is a run of d + 5 zeroes in the left column of
Y5, a contradiction. Thus, Y5 cannot be a one.

d D

A /N /\A/\ALND A
AN/AN/- /A >

JAVAVAYAVATATAVY
VAVAVAVAVAVAVAVAN
VAV AVAVATA7AY,

1BC

Figure 5.9: Case 1b of Lemma 15.

Case 1c: X can be a one and Y3 can be a one (see Fig. 5.10). Clearly, all

M
AN \A\DA
VAYAVAY
AAA TAVAVAVAVAN
NAD/NNANN/
VAYAVAVAVAVAVAV

1 BZCC

Figure 5.10: Case 1c of Lemma 15.

positions marked by D are zeroes. If X will be a zero, then Y3 will be a one
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and the position marked by F will be a one, and hence all positions marked
by F' are zeroes. Therefore, there is a run of length d + 4 in left column of
X, a contradiction. Thus, X cannot be a zero.

Case 2: Assume that X, as depicted in Fig. 5.11, is not uniquely determined,
i.e., it can be labelled by a zero and it can be labelled by a one. It implies
that all the positions marked by A are zeroes, either X or one of the three
positions to the right of X is a one, and at least one of the following three
cases must be valid.

d

AVAVAT0AY,
TAVAY VAT
VAV NAVAVAY,
AVAVAVAAVA

Figure 5.11: Case 2 of Lemma 15.

Case 2a: X can be a one and Y] can be a one. Clearly, all positions marked
by B are zeroes (see Fig. 5.12). X can be a zero and hence either C or Cy

Figure 5.12: Case 2a of Lemma 15.

is a one. Y7 can be a zero and therefore either D; or D, is a one. It implies
that C; and D; are ones. Hence, all positions marked by E are zeroes. By
the horizontal constraint either F; or F5 is a one. Since Y7 can be a zero, it
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follows that either G; or GGy is a one. Hence, Fj is a one and all positions
marked by H are zeroes.

Assume I will be a one. Then all positions marked by J will be zeroes,
creating a run of d+44 zeroes in their right column, a contradiction. Therefore,
I is labelled by a zero.

Assume all the d—5 positions marked by K are zeroes. Then L is labelled
by a one and Y; cannot be a one, a contradiction. Hence, one of the positions
marked by K is a one, L and Lo are labelled by zeroes.

Therefore, if X will be a one then Y; will be a zero and by its right column
constraint M will be a one. M, X, Cy, and Dy will form the pattern PEven,
and hence by Lemma 14 all the prefix of the row before X is a given sequence
P(i, ), and we are in state (s3).

Case 2b: X can be a one and Y5 can be a one. Clearly, all positions marked
by B are zeroes (see Fig. 5.13). X can be a zero and hence exactly one of
the C;’s is a one, and exactly one of the D,’s is a one. Y5 can be a zero and
therefore exactly one of the E;’s is a one, and exactly one of the F;’s is a one.
Clearly, D3 and E3 cannot be ones.

2 2 2 2
C, E,

Figure 5.13: Case 2b of Lemma 15.

e If F)5is a one then (' is a one. If X will be a one then Y5 will be a zero
and by its left column constraint G will be a one. E,, C;, X, and G
will form the pattern PEven, and hence by Lemma 14 all the prefix of
the row before X is a given sequence P(i, j), and we are in state (s3).

o If D, is a one then Fj is a one. If Y5 will be a one then X will be a zero
and by its right column constraint H will be a one. Dy, F, Y5, and H
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will form the pattern PEven, and hence by Lemma 14 the suffix of the
current row is completely determined, and we are in state (s2).

e If Dy, D3, E5, and FE3 are zeroes then D; and E; are ones which is
impossible since the gap between them is d — 1 and the horizontal
constraint will be violated.

Case 2c: X can be a one and Y3 can be a one. Clearly, all positions marked

Figure 5.14: Case 2c of Lemma 15.

by B are zeroes (see Fig. 5.14). If X will be a one then Y3 will be a zero
and by its left column constraint C' will be a one. Hence, all the positions
marked by D will be labelled by zeroes, creating a run of d + 4 zeroes in the
right column of Y3, a contradiction.

Thus, by Theorem 2, Ca(d,d+ 3) = 0 for every even d > 6. =

Similarly to Lemma 14, the following lemma will be used in Lemma 17, when
proving that Ca(d,d + 3) > 0 for odd d > 5.

Lemma 16 Let d > 5 be an odd integer, h = %, and let A be an infinite
(d,d + 3) array. If A contains an r X h sub-array B whose first two rows
form the pattern POdd (see Fig. 5.15), then the first two and the last two

right columns of B are substrings of (109+2)%.
d+1

i AV
TS A

d+3

Figure 5.15: The pattern POdd
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Proof. Let C be an (r + 2) x h right sub-array of A with the pattern POdd
as depicted in Fig. 5.16. Clearly the positions marked by A are zeroes.
Assume the position marked by B is a one. Then the d — 4 positions
marked by C' will be zeroes, creating a run of d + 4 zeroes in their right
column, a contradiction. Therefore, B is a zero and either Dy or Dy is a one.

Figure 5.16: Labels implied by the pattern POdd.

Assume D is a one. Then Dy and all positions marked by F; or Fs will
be zeroes. Hence, by the right column constraint, F' will be a one and the
two positions marked by G will be zeroes, and it will create a run of d 4+ 4
zeroes in their left column, a contradiction. Therefore, D is a zero and Do is
a one. It implies that all positions marked by E; or G are zeroes, and hence
Es5 is a one.

The four ones in the left columns of Dy and E5 form the pattern POdd
and hence by the same arguments the two positions marked by H are ones.
The positions marked by D,, Fs, and H form again the pattern POdd. The
claim of the lemma is proved now by induction. =

Similarly to Lemma 15 we have the following lemma.
Lemma 17 Ifd > 5 is odd then Ca(d,d+ 3) = 0.

Proof. We will use the scanning technique again. Assume we have to label
the next position marked by X. We have to distinguish between two different
types of positions as depicted in Figure 5.6.
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Case 1: Assume that X, as depicted in Figure 5.17, is not uniquely de-
termined, i.e., it can be labelled by a zero and it can be labelled by a one.
It implies that all the positions marked by A are zeroes, either X or one
of the three positions to the right of X is a one, and either B; or B, is a
one. Therefore, the positions marked by C' are zeroes and at least one of the
following three cases must be valid.

Figure 5.17: Case 1 of Lemma 17.

Case la: X can be a one and Y; can be a one (see Fig. 5.18). Clearly, all
positions marked by D are zeroes, E is a one, and hence B is a zero and By
is a one. If X will be a zero then Y; and F will be ones. E, By, Y7 and F
will form the pattern Podd, and hence by Lemma 16 the suffix of the current
row is completely determined, and we are in state (s2).

NAVAY:
N A

Figure 5.18: Case la of Lemma 17.

Case 1b: X can be a one and Y, can be a one (see Fig. 5.19). If Y5 will be
a one then all positions marked by D are zeroes, and hence E will be a one.
Therefore, the positions marked by F' are zeroes, and since also X will be a
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zero, it follows that there is a run of d + 4 zeroes in the left column of X, a
contradiction.

Figure 5.19: Case 1b of Lemma 17.

Case 1c: X can be a one and Y3 can be a one (see Fig. 5.20). Clearly, all

Figure 5.20: Case 1c of Lemma 17.

positions marked by D are zeroes. If X will be a zero, then Y3 will be a one
and the position marked by F will be a one, and hence all positions marked
by F' are zeroes. If X will be a one, then Y3 will be a zero and E will be a
zero, and to avoid a run of length d + 4 in the left columns we must have
ones in the positions marked by G, which is impossible.

Case 2: Assume that X, as depicted in Fig. 5.21, is not uniquely determined,
i.e., it can be labelled by a zero and it can be labelled by a one. It implies
that all the positions marked by A are zeroes, either X or one of the three
positions to the right of X is a one, and at least one of the following three
cases must be valid.
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d

AGAT/A AN
NVAVAV/AVAVAV
RVAVAVAVAVA AN

A A

Figure 5.21: Case 2 of Lemma 17.

Case 2a: X can be a one and Y; can be a one (see Fig. 5.22). Clearly, all
positions marked by B are zeroes. If Y7 will be a one then X will be a zero,
and therefore either D; or Dy is a one. If X will be a one then Y; will be
a zero, and therefore either Iy or Fs is a one. Hence, Dy and E5 are ones.
If X will be a one then F' will be a one. Ds, Ey, X and F' will form the
pattern Podd, and hence by Lemma 14 all the prefix of the row before X is
completely determined, and we are in state (s3).

Figure 5.22: Case 2a of Lemma 17.

Case 2b: X can be a one and Y3 can be a one (see Fig. 5.23). Clearly, all
positions marked by B are zeroes. X can be a zero and hence exactly one of
the C;’s is a one, and exactly one of the D;’s is a one. Y can be a zero and
hence exactly one of the E;’s is a one, and exactly one of the F}’s is a one.
Clearly, ¢y and F} cannot be ones.

o If C5 is a one then Fj3 is a one. If X will be a one, then by the left
column constraint G will be a one. Cy, F3, X and G will form the
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pattern Podd, and hence by Lemma 16 all the prefix of the row before
X is completely determined, and we are in state (s3).

o If F, is a one then D3 is a one. If Y5 will be a one then by the right
column constraint H will be a one. Fy, D3, Y3 and H will form the
pattern Podd, and hence by Lemma 16 the suffix the current row is
completely determined, and we are in state (s2).

e If Cy and Fy are zeroes then C3 and F3 are ones which is impossible
since the gap between them is d + 4 and the horizontal constraint will
be violated.

Figure 5.23: Case 2b of Lemma 17.

Case 2c: X can be a one and Y3 can be a one (see Fig. 5.24). Clearly, all

Figure 5.24: Case 2c¢ of Lemma, 17.

positions marked by B are zeroes. If X will be a one then C will be a one
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by the left column constraint, and hence all the positions marked by D are
zeroes; Y3 will be a zero and hence one of the positions marked by F is a one
and the positions marked by F' are zeroes. If Y3 will be a one then C' will be
a zero and hence by the right columns constraint both positions marked by
G should be ones which is impossible by the horizontal constraint.

Thus, by Theorem 2, Ca(d,d + 3) = 0 for every odd d > 5. =

Corollary 1 Ca(d,d+3) =0 ford > 5.

5.3 The Capacity for Small Values of d

For small values of d the zero/positive capacity region is slightly different,
and is described in this section.

Lemma 18 Ca(1,k) > 0 if and only if k > 3.

Proof. We first show that Ca(1,2) = 0. This is done by a simple scanning
argument. Assume we have to label the next scanned position marked by X.
We have to distinguish between the two different types of orientations of the
position as depicted in Fig. 5.6.

Case 1: Assume that X, as depicted in Figure 5.25, is not uniquely deter-
mined, i.e., it can be labelled by a zero and it can be labelled by a one. It
implies that the positions marked by A are zeroes. If X will be a zero, there
will be a run of 3 zeroes in the left column, a contradiction.

AV
A%
Figure 5.25: Case 1 of Lemma 18.

Case 2: Assume that X, as depicted in Figure 5.26, is not uniquely deter-
mined, i.e., it can be labelled by a zero and it can be labelled by a one. It
implies that the position marked by A is a zero. If X will be a zero, Y will
be a one by the horizontal constraint, and therefore B is a zero. Moreover,
if X will be a zero there will be 2 zeroes in the right column, hence C' is a
one. Similarly, Y can be a zero, which implies that D is a one. C and D are
adjacent ones, a contradiction.
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AV
a7

Figure 5.26: Case 2 of Lemma 18.

This completes the proof that Ca(1,2) = 0. This proof can be trivially
generalized to show that Ca(d,d + 1) = 0 for every odd d, but our results
for the triangle model are stronger, and hence the generalization is omitted.

We now show that Ca(1,3) > 0. Consider the (1, 1) array of size n x n, where
(7,7,0) = 1 (see Fig. 5.27). Clearly, any change of nonconsecutive ones into

N/
AANAANAN/
AAAAAN
Figure 5.27: The array for the proof that Ca(1,3) > 0.

zeroes, results in a (1, 3) array. Any tiling of the plane with the lattice points
{(z,y) : x =14, y=1+3j, i,j € Z}, using the two triangular tiles of
Fig. 5.28, corresponds to some array constructed in the above manner. By

1\/1 1
1 1

Figure 5.28: Two triangular tiles to prove that Ca(1,3) > 0.

Lemma 3, this tiling implies that Cx(1,3) > ¢.

In this proof, we make use of the fact that any change of nonconsecu-
tive ones into zeroes in the (1,1) array, results in a (1,3) array. But the
lower bound on the capacity that is achieved by the corresponding tiling,
can be much improved by noticing the following. The ones in the (1, 1) array
form a hexagonal lattice, where two consecutive ones correspond to adja-
cent hexagons. Any set of nonconsecutive ones is an independent set in the
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hexagonal lattice. The exact number of independent sets in the hexagonal
model, also known as the number of arrays in the hard hexagonal model, has
been given by Baxter in [1]. Since the hexagonal lattice induced by the ones
is a hexagonal n x m array, we have the following bound on the capacity:

1Og2 N(nam ’ (1a3)> >

OA(L?)) - n,?lvir—r}oo 2nm -
1 1
> =+ Co(1,00) & 5 - 0.480767... ~ 0.240383...,

which is better than the bound of % given by the tiling. m
Lemma 19 Ca(2,k) > 0 if and only if k > 4.

Proof. We first show that Ca(2,3) = 0. Clearly Ca(3,3) = 0, hence if
Ca(2,3) > 0, then there exists a (2,3) array that has a run of zeroes whose
length is exactly 2. We analyze such an array, and show that a run of zeroes
whose length is 4 must exists. Let A be an n x n array with a run of zeroes of
length 2 as depicted in Fig. 5.29. The leftmost one implies that the position

AV

1\/0

Figure 5.29: A forced run of 4 zeroes in a (2, k) triangular array.

marked by A is a zero, and the rightmost one implies that the positions
marked by B are zeroes, which creates a run of 4 zeroes horizontally. Hence,
Ca(2,3) =0.

We now show that Ca(2,4) > 0. Any tiling of the plane with the lattice

points {(z,y) : x = 3i, y = 3i +97j, i,j € Z}, using the two triangular
arrays of Fig. 5.30 is a valid (2,4) array. By Lemma 3, this tiling implies

VA TAVA YAVA TAVAV\VAVERYA TAVA TAVA TAVAVAV
INANINANINANISININ INANINANINANIN/N/N/
AVAVAYAVAVAVAVAVAVARY \VAVAYAVATAVAV VAV

Figure 5.30: Two triangular arrays to prove that Ca(2,4) > 0.

that Ca(2,4) > &;. m
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Lemma 20 CA(3,k) > 0 if and only if k > 7.

Proof. First, we use the scanning technique again to prove that Ca (3,6) = 0.
Assume we have to label the next scanned position marked by X. We have
to distinguish between the two different types of orientations of the position
as depicted in Fig. 5.6.

Case 1: Assume that X, as depicted in Figure 5.31, is not uniquely deter-
mined, i.e., it can be labelled by a zero and it can be labelled by a one. It
implies that all the positions marked by A are zeroes, either X or one of
the three positions to the right of X is a one, therefore at least one of the
following three cases must be valid.

A Aw 4N

AAA

A A

Figure 5.31: Case 1 of Lemma 20.

Case 1la: X can be a one and Y; can be a one (see Fig. 5.32). Clearly, all
positions marked by B are zeroes. X can be a zero, therefore either C or Cy
is a one, and D is a zero. Y; can be a zero, therefore E is a one, C is a zero,
C5 is a one, and the positions marked by F' are zeroes. Hence, by the right
column constraint G is a one, which implies that H is a zero. This implies
that either Iy or I, is a one, and the positions marked by J are zeroes, which
creates a run of 8 zeroes in the left column when X is a zero, a contradiction.

VAVAVAVA
NAVAVAVA
Figure 5.32: Case la of Lemma 20.

Case 1b: X can be a one and Y3 can be a one (see Fig. 5.33). Clearly, all
positions marked by B are zeroes. X can be a zero, therefore C' is a one,
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and similarly Y5 can be a zero, therefore D is a one. This implies that all
positions marked by E are zeroes. By the horizontal constraint F' is a one,
and therefore G is a zero, which creates a run of 7 zeroes in the left column
when X is a zero, a contradiction.

Figure 5.33: Case 1b of Lemma 20.

Case 1c: X can be a one and Y3 can be a one (see Fig. 5.34). Clearly,
all positions marked by B are zeroes, therefore C' is a one, and all positions
marked by D are zeroes, which creates a run of 7 zeroes in the left column
when X is a zero, a contradiction.

EVAVATAYAN
RVAVAZSTEN
A7V

A

Figure 5.34: Case 1c of Lemma 20.

Case 2: Assume that X, as depicted in Figure 5.35, is not uniquely deter-
mined, i.e., it can be labelled by a zero and it can be labelled by a one. It
implies that all the positions marked by A are zeroes, either X or one of
the three positions to the right of X is a one, therefore at least one of the
following three cases must be valid.

A X

A A
A A

Figure 5.35: Case 2 of Lemma 20.
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Case 2a: X can be a one and Y] can be a one (see Fig. 5.36). Clearly, all
positions marked by B are zeroes. X can be a zero, therefore either C or Cy
is a one. Y] can be a zero, therefore either Dy or D is a one. This implies
that Cy and Dy are ones, and the positions marked by E are zeroes. By the
horizontal constraint F' is a one, and the positions marked by G are zeroes.
By the left column constraint H is a one, and the positions marked by I are
zeroes. X can by a zero, therefore by the horizontal constraint J is a one,
and K is a zero. If X will be a one, Y; will be a zero, hence L will be a one
and the positions marked by M will be zero, which will create a horizontal
run of 7 zeroes, a contradiction.

M\/ M
|'GHGBBM
VAAVINVANAAVE
G \E/e\E /AN B\

Figure 5.36: Case 2a of Lemma 20.

Case 2b: X can be a one and Y3 can be a one (see Fig. 5.37). Clearly, all
positions marked by B are zeroes, which creates a horizontal run of 7 zeroes,
a contradiction.

Figure 5.37: Case 2b of Lemma 20.

Case 2c: X can be a one and Y3 can be a one (see Fig. 5.38). Clearly,
all positions marked by B are zeroes, therefore C' is a one, and all positions
marked by D are zeroes. Y3 can be a zero, therefore by the right column
constraint, F is a one, and all positions marked by F' are zeroes. X can
be a zero, therefore by the right column constraint G is a one, all positions
marked by H are zeroes, and either I; or I is a one. This implies that J is
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a zero, which creates a run of 7 zeroes in the right column when X is a zero,
a contradiction. This completes the proof that C'a(3,6) = 0.

e/
RAATA
WNB

D
FF ED

UJ)>

B
B

Figure 5.38: Case 2c of Lemma 20.

We now show that Ca(3,7) > 0. Consider the (3,3) array of size n xn, where
(24,25,1) =1 and (20 + 1,25 + 1,0) = 1 (see Fig. 5.39). Clearly, any change

AYAVATANAVAVAY
INANINANNAN/N/
AVAVAVAVAVAV%V

Figure 5.39: The array for the proof that CA(3,7) > 0.

of nonconsecutive ones into zeroes, results in a (3,7) array. Any tiling of the
plane with the lattice points {(z,y) : = =2i, y =2i+6j, i,j € Z}, using
the four triangular tiles of Fig. 5.40, corresponds to some array constructed
in the above manner. By Lemma 3, this tiling implies that Cx(3,7) > .

%%WW

Figure 5.40: Four triangular tiles to prove that Ca (3

o7



As in Lemma 20, the lower bound on the capacity that is achieved by
the corresponding tiling, can be much improved by noticing that the ones
in the (3,3) array form two hexagonal lattices, where two consecutive ones
correspond to adjacent hexagons. Since each hexagonal lattice induced by

the ones is a hexagonal § X % array, we have the following bound on the
capacity:

log? N(nvm ‘ (377)) >

OA(B, 7) = lim

n,m—00 2nm
1 |1 1
> | = 1 — 1 =
=3 4CQ( ,oo)+4Co( ,00)

= i-Co(l,oo) ~

. . 1 . o1
which is better than the bound of 75 given by the tiling. =

-0.480767... =~ 0.120191...,

= =

Lemma 21 Ca(4,k) > 0 if and only if k > 9.

Proof. By Lemma 17 we have that Ca(5,8) = 0. Hence if Ca(4,8) > 0,
then there exists a (4, 8) array that has a run of zeroes whose length is exactly
4. We analyze such an array, and show that a run of zeroes whose length is
9 must exists. Let A be an n X n array with a run of zeroes of length 4 as
depicted in Fig. 5.41. Clearly the positions marked by A are zeroes. Assume

Figure 5.41: Proving Ca(4,8) = 0.

the position marked by B is a zero. Then, by the horizontal constraint C' is
a one, and by the left and right columns, D and E are zeroes, which creates
a run of 9 zeroes horizontally. Hence, B is a one, all the positions marked
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by F are zeroes, C and E are zeroes, and D is a one. This implies that G
must be a one by the right column constraint, and all the positions marked
by H are zeroes. I is a one by the left column constraint, and hence all the
positions marked by J are zeroes. Therefore, K is a one by the right column
constraint, and L is a zero, which creates a run of 9 zeroes in that left column.
Hence, Ca(4,8) = 0.

By using d = 5 in Lemma 12 we have that Ca(5,9) > 0. Therefore
Lemma 1 implies that Cx(4,9) > 0, which completes the proof. m

5.4 Summary of Results for the Triangular
Model

This chapter shows a tight characterization for Ca(d, k) when d = 1 (mod 4),
given by Lemmas 12 and 17:

Corollary 2 For everyd= 1 (mod 4), d > 5 we have: Ca(d, k) > 0 if and
only if k > 4.

For other values of d, by Lemmas 12 and 1, we have:
Corollary 3

o Oa(d,d+5)>0ifd= 0 (mod 4)

o Ca(d,d+6)>0ifd= 3 (mod 4)

o Oa(d,d+T7)>01ifd= 2 (mod 4)

By Corollary 1 we have that Ca(d,d + 3) = 0 for all d > 5, hence the
remaining gaps are relatively small.
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Chapter 6

Discussion and Open Problems

In this work we considered the positive capacity region of two-dimensional
run-length constrained channels in a few connectivity models — the diamond,
square, and triangular models. We have managed to find some regions where
the capacity is positive and some in which the capacity is zero, by using
generalizations and modifications of known techniques.

6.1 The Scanning Method

The main contribution regarding techniques for proving zero capacity, is the
generalization of the scanning method of [2] in Theorem 2. Previous tech-
niques for proving zero capacity, strongly depended on the specific constraint
they were applied to. The proofs were much longer and required the con-
sideration of many different cases. The alternative proof in chapter 2 for
the result of Kato and Zeger that Co(d,d + 1) = 0, shows the efficiency of
the scanning method. Perhaps more important, is that the generalization
of scanning method allows to determine zero capacity for constraints © that
have larger values of N(n,m | ©). An interesting path for further research is
generalizing the scanning method to handle constraints in which the number
of constrained arrays is much larger.

6.2 Bounding the Capacity

When proving positive capacity, we find tiles with different labels, and show
that tiling the plane with them induces valid arrays. This implies a bound
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on the capacity as described in Lemma 3. The proofs of Lemmas 18 and
20 show that the bound induced by the tiling could be far from the actual
capacity.

How good are these bounds for other constraints? For example, can the
bound of Lemma 12, Ca(d,d + 4) > mwgﬁ for d = 1 (mod 4), be
improved?

6.3 The Connectivity Models

6.3.1 The Diamond Model

We considered asymmetric constraints in the diamond model in Chapter 3.
We solved most of the open cases of [14], using the techniques presented in
Chpater 2, and showed a characterization of the zero/positive capacity region
in which only one case remains unsolved. We would like to see the capacity
of the last case determined:

for 2 S d], d1+2 S k‘l S 2d1, d2 = k’l—]., d2+2 S k‘g S 2d2, is
C<>(d1, k’l, dQ, ]fg) =0or Co(dl, kll, dg, k’g) > 07

6.3.2 The Square Model

The gaps between the known zero and positive capacity regions in the square
model are relatively large. In Chapter 4 we proved that Cg(d,d + 3) = 0 for
every d > 1, but the known positive capacities are much farther.

Further research should attempt to find an infinite set S of positive inte-
gers, and an integer r, such that Cg(d,d +r) = 0 and Cg(d,d+7r+1) >0
for each d € S.

6.3.3 The Triangular Model

We considered the triangular model in Chapter 5 and showed a tight char-
acterization of the positive capacity region for many values of d. We showed
that Ca(d, k) > 0 if and only if £ > d + 4, for every d = 1(mod 4). Together
with the proof that Ca(d,d+3) = 0 for every d > 3, it implies that the gaps
between the zero and positive capacity regions in this model are relatively
small. A full characterization in the triangular model is yet to be determined.
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