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The proceedings version of the paper [2] contains an error in the definition of Exact Order Types. The
original definition is such that it excludes the stack type. This was pointed out in [1]. This erratum contains
the correct definition that should be used. The proof that a wait-free linearizable implementation of an Exact
Order Type using READ, WRITE and CAS cannot be help-free should be fixed accordingly. In this erratum,
we illustrate how to adjust the proof as well.

Definition 1 (Exact Order Types – original definition.) An exact order type t is a type for
which there exists an operation op, an infinite sequence of operations W , and a (finite or an
infinite) sequence of operations R, such that for every integer n ≥ 0 there exists an integer
m ≥ 1, such that for at least one operation in R(m), any response it returns in a sequential
execution of any sequence in W (n+ 1) ◦ (R(m) + op?) differs from any response it returns in
a sequential execution of any sequence in W (n) ◦ op ◦ (R(m) +Wn+1?).

Definition 2 (Exact Order Types – correct definition.) An exact order type t is a type for
which there exists an operation op, an infinite sequence of operations W , and a (finite or an
infinite) sequence of operations R, such that for every integer n ≥ 0 there exists an integer
m ≥ 1, such that the following holds. Consider the set of two sequences W (n+1)◦op?◦R(m)
and the set of two sequences W (n) ◦ op ◦Wn+1? ◦ R(m), and for each possible sequence s
denote by resR(s) the sequence of responses to the operations in R(m), when s is executed
sequentially. Then we require that the set {resR(s) | s ∈ W (n+ 1) ◦ op? ◦ R(m)} is disjoint
from the set {resR(s) | s ∈W (n) ◦ op ◦Wn+1? ◦R(m)}.

All the claims and theorems in paper [2] hold with regard to the new and correct definition as well.
However, the proofs of Claim 4.2 and Claim 4.3 are more complex and require additional logic. We now
illustrate how to adjust the proof of Claim 4.2 to the new definition. Recall that Q is a linearizable, help-free
implementation of an Exact Order Type.

Claim 4.2 (Unchanged): Let h be a history in H on Q such that the first n operations are decided to be
the first n operations of p2 (which are W (n)), and p3 has not yet taken any step. Formally, in h, for every
1 ≤ i < j ≤ n, the ith operation of p2 is decided before the jth operation of p2, and before any operation
of the other processes (p1 and p3). Denote the (n+ 1)-st operation of p2 by op2.

1. If in h, op1 is decided before op3, then the order between op1 and op2 is decided.

2. Similarly, if in h, op2 is decided before op3, then the order between op1 and op2 is decided.
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The proof starts the same as before: For convenience, we prove (1). The proof of (2) is symmetrical.
Assume that in h, op1 is decided before op3, and let m be the integer corresponding to n by the definition of
exact order types. Immediately after h, let p3 run in a solo execution until it completes exactly m operations.
Denote the history after this solo execution of p3 by h′, and consider the linearization of h′. Notice that op2,
which is Wn+1, may or may not be a part of h′. The first n operations in the linearization must be W (n). The
linearization must also include exactly m operations of p3 (which are R(m)), and somewhere before them,
it must also include op1. The linearization may or may not include op2. There are two cases. If the (n+1)-st
operation in the linearization is op1, then the linearization is in W (n) ◦ op1 ◦ (R(m)+Wn+1?), while if the
(n+1)-st operation in the linearization is op2, then the linearization must be exactly W (n+1)◦op1◦R(m).

At this point, an adjustment to the proof is required. The crux is to argue that if the (n+ 1)-st operation
in the linearization is op1, and thus the linearization is in W (n)◦op1 ◦(R(m)+Wn+1?), then for the results
of the operations R(m), denoted resR, it holds that resR ∈ {resR(s)|s ∈W (n) ◦ op1 ◦Wn+1? ◦R(m)}.
The argument is as follows: If the linearization itself is in W (n)◦op1 ◦Wn+1?◦R(m), then it is immediate
that resR ∈ {resR(s)|s ∈ W (n) ◦ op1 ◦Wn+1? ◦ R(m)}. Otherwise, there must be some 1 ≤ q ≤ m
such that the linearization is: W (n) ◦ op1 ◦ R(q) ◦W (n+ 1) ◦ R(q + 1...m). It follows by Definition 3.2
that in history h, Wn+1 is not decided before R1. Thus, by Claim 3.6, in h, Wn+1 is not decided before any
future operation, and in particular, Wn+1 is not decided before Rm. Next, since Q is help free and since
p2 did not take any step between h and h′, it follows that Wn+1 is not decided before Rm in h′ as well. It
follows by Definition 3.2 that there exists a continuation of h′, denoted h′′, in which Rm is before Wn+1.
Thus, h′′ starts with: W (n) ◦ op1 ◦ R(m), and therefore the results of operations R(m) in h′′ belongs to
{resR(s)|s ∈ W (n) ◦ op1 ◦Wn+1? ◦ R(m)}. Now, in h′ all operations R(m) are already completed, so
their results must be the same in h′ and in h′′, and thus resR ∈ {resR(s)|s ∈W (n)◦op1◦Wn+1?◦R(m)}.
We have obtained that if the (n + 1)-st operation in the linearization of h′ is op1 then the results resR ∈
{resR(s)|s ∈ W (n) ◦ op1 ◦Wn+1? ◦ R(m)}, and if the (n + 1)-st operation in the linearization is Wn+1

then the results resR ∈ {resR(s)|s ∈ W (n + 1) ◦ op1? ◦ R(m)}. By the (corrected) definition of Exact
Order Types, these two sets are disjoint.

The proof now continues similarly as in the original paper to show that the order between op1 and in op2
is decided.

The adjustments to the proof of Claim 4.3 are similar in nature: when we show a history has a linearization
which is in W (n+1)◦(R(m)+op1?)( alternatively, W (n)◦op1◦(R(m)+Wn+1?) ), we use the same logic
as above to show that the results of operations R(m) are in fact in {resR(s)|s ∈W (n+1) ◦ op1? ◦R(m)}
( alternatively, {resR(s)|s ∈W (n) ◦ op1 ◦Wn+1? ◦R(m)}).
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